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Personal Reflections on the Gaussian Broadcast Channel Outline

OUTLINE

Broadcast Channels: Introduction.

The Gaussian scalar broadcast channel.

∗ converse via I-MMSE & challenges.

Vector (MIMO) Gaussian broadcast channels.

∗ historical perspective, applications & challenges.

Broadcast channels – a network motivated outlook.

Concluding remarks.

References.
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Introduction Broadcast Channels

A BROADCAST CHANNEL
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Introduction Broadcast Channels

Historical Perspective:

T. M. Cover, “Broadcast Channels,” IEEE Trans. Inform. Theory,
vol. IT–18, no. 1, pp. 2–14, January 1972.

encoder
channel

decoder-1

decoder-2

Y ∈ Y

PY,Z|X Z ∈ Z (M̂c, M̂z)

(M̂c, M̂y)
(Mc, My, Mz)

X ∈ X

1

(Mc, My, Mz) common/private messages.

X ∈ X channel input: subjected to input constraints,
e.g. E(X2) ≤ P.

Y ∈ Y, Z ∈ Z – channel outputs.
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Introduction Broadcast Channels

CLASSICAL RESULTS REVIEW

(Rc, Ry, Rz) – Information rate triplet.
Capacity Region in general ???

- depends on marginals PY|X, PZ|X.

Some solved cases

- degraded channels [Bergmans, IT’73], [Gallager, PPI’74],
- less noisy [Körner-Marton, Coll-IT’75],
- more-capable [El Gamal, IT’79],
- degraded message set [Körner-Marton, IT’77]
- deterministic component [Marton, IT’79],

[Gelfand-Pinsker, PPI’80],
- sum-product, reversely degraded [El Gamal, PPI’80],

Special case of degraded channels:
the Gaussian scalar broadcast channel.
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Introduction Broadcast Channels

DEGRADED BROADCAST CHANNELS

x

P(y|x)
y z

P̃(z|y)

1

P(z|x) =
∫

dy P(y|x)P̃(z|y)

P̃(z|y) = P(z|y) =⇒ physically degraded
P(y, z|x) = P(y|x)P(z|y)
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Introduction Broadcast Channels

DEGRADED BROADCAST CHANNELS

Capacity Region:

[Bergmans IT’73], [Gallager, PPI’74], [Ahlswede-Körner, IT’75]

=⇒ Optimize Marton with (Marton’s notations): W, V = φ, U = X.

(Rc, Ry, Rz) – satisfying (U – is kept for tradition):

Rc + Rz ≤ I(U; Z)
Ry ≤ I(X; Y|U)

for some:
PU,X,Y,Z = PUPX|UPY,Z|X .

set convex, and cardinality constraints |U| ≤ min{|X |, |Y1|, |Y2|}
in finite alphabets.
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Gaussian Scalar Broadcast Channel Description

GAUSSIAN SCALAR BROADCAST CHANNEL

Σ

Σ

X

Ny

Nz

Z

Y

1

Y = X + Ny , Z = X + Nz

E(X2) ≤ P , E(N2
y ) = σ2

y , E(N2
z ) = σ2

z ≥ σ2
y .

Shlomo Shamai (Technion) Gaussian Broadcast Channel ISIT 2007 7 / 95



Gaussian Scalar Broadcast Channel Description

GAUSSIAN SCALAR BROADCAST CHANNEL

⇓
degraded

Σ Σ
X Z

Ny N∆ E(N2

∆
) = σ

2
z
− σ

2
y
.

Y

1
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Gaussian Scalar Broadcast Channel Capacity Region

CAPACITY REGION
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Superposition coding + successive decoding

Scalar Gaussian BC
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σ2
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= 7
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z

= 1

Ry ≤ 1
2 log

�
1 + αP

σ2
y

�

R̄z
4
= Rc + Rz ≤ 1

2 log
�

1 +
(1−α)P
αP+σ2

z

�
,

0 ≤ α ≤ 1 .

Achievability by superposition coding [Cover ’72].

X = Xz + Xy superposition coding, E(X2
z ) = (1− α)P , E(X2

y ) = αP.

Xz = Xzc + Xzz – carries the messages (Mc, Mz), Xy – carries the message (My).

@ receiver z =⇒ noise level: αP + σ2
z =⇒ decodes (Mc, Mz).

@ receiver y =⇒ decodes (Mc, Mz) and strips out Xz =⇒ noise level:
σ2

y =⇒ decodes (My).

- superposition: interference removed @ receiver y.
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Gaussian Scalar Broadcast Channel DPC

DIRTY PAPER CODING (DPC)

DECODERENCODER
Σ Σ

X

E(X2) < P

S ∼ N (0, Q)

Y

N ∼ N (0, σ2)

M̂M

Y
n(M, Sn)

1

- state {Sn} available un-causally @ transmitter.

[Gelfand-Pinsker, PCIT’80] – coding idea: binning.

C = I(U : Y)− I(U : S) , PU,X,S,Y ; U − (X, S)− Y
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Gaussian Scalar Broadcast Channel DPC

DIRTY PAPER CODING (DPC)

Dirty Paper: [Costa, IT’83]:

U = X + αS , X q− S , α = P
P+N

=⇒ C = 1
2 log

(
1 + P

σ2

)
Extended to vectors (X, S, N, Y)

[Yu-Sutivong-Julian-Cover-Chiang, ISIT’01].

Practical aspects of DP coding [Erez-Shamai-Zamir, IT’02],

[Bennatan-Burstein-Caire-Shamai, IT’06],

[Sun-Liveris-Stankovic-Xiong, ISIT’05].

∗ Vector-perturbation [Peel-Hochwald-Swindlehurst, TCOM’05].
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Gaussian Scalar Broadcast Channel DPC - Achievability

ACHIEVABILITY BY “DIRTY-PAPER CODING” (DPC)

X = Xz + Xy

Xz = Xzc + Xzz – as in superposition coding conveys messages (Mc, Mz)

E(X2
z ) = (1− α)P

Xy – conveys messages (My) by DPC against the ‘interference’

Xz accounting for additive noise σ2
y .

E(X2
y ) = αP & Xy q− Xz ,

Rates:

Rc + Rz =
1
2

log
�

1 +
(1− α)P
αP + σ2

z

�

Ry =
1
2

log
�

1 +
αP
σ2

y

�

∗ DPC: interference for receiver – y removed @ transmitter.

∗ receiver y decodes also, in parallel, (Rc, Rz).

∗ receiver z operates as in superposition coding.
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Gaussian Scalar Broadcast Channel EPI

ENTROPY POWER INEQUALITY

Converse by EPI [Bergmans, IT’74]
EPI [Shannon, BSTJ’48], [Stam, IC’59],[Blachman, IT’65]

Zn = Xn + Yn

(Xn, Yn) independent n-component vectors given U
(conditioned version).

e
2
n h(Zn|U) ≥ e

2
n h(Xn|U) + e

2
n h(Yn|U)

Equality Xn, Yn|U independent Gaussian with proportional
covariance matrices

∗ . Proportionality always satisfied for n = 1.
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Gaussian Scalar Broadcast Channel Converse by EPI

CONVERSE BY EPI
Converse by EPI (A. El Gamal, Lecture Notes, EE478)

∗ I(U; Z) = h(Z)− h(Z|U)

∗ I(X; Y|U) = h(Y|U)− h(Y|U, X) = h(Y|U)− h(Ny)

∗ Z = X + Nz = X + Ny + N∆ = Y + N∆.

1 h(Z) ≤ 1
2 log

h
2πe(σ2

z + P)
i
, equality X ∼ N(0, P).

2 1
2 log[2πeσ2

z ] ≤ h(Z|U) ≤ h(Z) ≤ 1
2 log[2πe(σ2

z + P)]
=⇒ h(Z|U) = 1

2 log[2πe(σ2
z + αP)] , 0 ≤ α ≤ 1

3 EPI: e2h(Z|U) ≥ e2h(Y|U) + e2h(N∆)

=⇒ h(Y|U) ≤ 1
2 log

�
e2h(Z|U) − 2πe(σ2

z − σ2
y )
�

= 1
2 log[2πe(σ2

y + αP)]

=⇒ I(U; Z) ≤ 1
2 log

�
1 + (1−α)P

σ2
z +αP

�
=⇒ I(X : Y|U) ≤ 1

2 log
�

1 + αP
σ2

y

�
Classics of EPI (conditional version) applications: instrumental in the proof.
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Classics of EPI (conditional version) applications: instrumental in the proof.
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Gaussian Scalar Broadcast Channel Converse by EPI
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Gaussian Scalar Broadcast Channel I-MMSE

I-MMSE

The I-MMSE relation [Guo-Shamai-Verdú, IT’05].

Y =
√

snr X + N

X − Input signal.

Y − Output signal.

N − Gaussian noise ∼ N (0, 1).

snr − Signal-to-Noise Ratio.

d
dsnr

I(X; Y) =
1
2

mmse(X : snr)

mmse(X : snr) = E
(

X − E
(
X|Y
))2

.

Generalization: Vectors, continuous time process
[Guo-Shamai-Verdú, IT’05].
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Gaussian Scalar Broadcast Channel I-MMSE: Examples

I-MMSE - EXAMPLES

I-MMSE: Gaussian Example: X ∼ N (0, 1).

mmse(Xg : snr) = E
(

X −
√

snr
1+snr Y

)2
= 1

1+snr ,

I(Xg; Y) = Ig(snr) = 1
2 log(1 + snr).

I-MMSE: Binary Example: Xb = ±1, symmetric.

mmse(Xb : snr) = 1−
∞∫
−∞

e−y2/2

√
2π

tanh(snr−
√

snry) dy

I(Xb : Y) = Ib(snr) = snr−
∞∫
−∞

e−y2/2

√
2π

log cosh(snr−
√

snr y) dy
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Gaussian Scalar Broadcast Channel I-MMSE

d
dsnr

I(X; Y) =
1
2

mmse(X : snr)

2 4 6 8 10
snr

0.2

0.4

0.6

0.8

1

1.2
Gaussian Ig�snr�

Binary Ib�snr�

Gaussian mmse�Xg:snr�

Binary mmse�Xb:snr�
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Gaussian Scalar Broadcast Channel mmse Properties

mmse: Unique crossing point

between MMSEs of a Gaussian and an arbitrary X variable.

X be arbitrary zero mean: E(X2) = 1.
Xg ∼ N (0, 1).

∆mmse(snr)
4
= mmse(

√
ρ Xg : snr)−mmse(X : snr)

Given any snr0 > 0, let ρ ≤ 1 be the largest number:

∆mmse(snr0) = 0.
Then:

∆mmse(snr) ≤ 0 , d∆mmse(snr)
dsnr ≥ 0 , 0 ≤ snr < snr0

∆mmse(snr) ≥ 0 , snr0 ≤ snr

Equality: X ∼ N (0, 1) =⇒ ∆mmse(snr) ≡ 0.
Arbitrary: E(X2) → b2mmse(X : b snr) = mmse(bX : snr).
note: mmse (

√
ρXg : snr) = ρ

1+ρsnr ∼
ρsnr�1

1
snr .

Shlomo Shamai (Technion) Gaussian Broadcast Channel ISIT 2007 16 / 95



Gaussian Scalar Broadcast Channel mmse Properties

mmse: Unique crossing point

between MMSEs of a Gaussian and an arbitrary X variable.

X be arbitrary zero mean: E(X2) = 1.
Xg ∼ N (0, 1).

∆mmse(snr)
4
= mmse(

√
ρ Xg : snr)−mmse(X : snr)

Given any snr0 > 0, let ρ ≤ 1 be the largest number:

∆mmse(snr0) = 0.
Then:

∆mmse(snr) ≤ 0 , d∆mmse(snr)
dsnr ≥ 0 , 0 ≤ snr < snr0

∆mmse(snr) ≥ 0 , snr0 ≤ snr

Equality: X ∼ N (0, 1) =⇒ ∆mmse(snr) ≡ 0.
Arbitrary: E(X2) → b2mmse(X : b snr) = mmse(bX : snr).
note: mmse (

√
ρXg : snr) = ρ

1+ρsnr ∼
ρsnr�1

1
snr .

Shlomo Shamai (Technion) Gaussian Broadcast Channel ISIT 2007 16 / 95



Gaussian Scalar Broadcast Channel mmse Properties

mmse: Unique crossing point

between MMSEs of a Gaussian and an arbitrary X variable.

X be arbitrary zero mean: E(X2) = 1.
Xg ∼ N (0, 1).

∆mmse(snr)
4
= mmse(

√
ρ Xg : snr)−mmse(X : snr)

Given any snr0 > 0, let ρ ≤ 1 be the largest number:

∆mmse(snr0) = 0.
Then:

∆mmse(snr) ≤ 0 , d∆mmse(snr)
dsnr ≥ 0 , 0 ≤ snr < snr0

∆mmse(snr) ≥ 0 , snr0 ≤ snr

Equality: X ∼ N (0, 1) =⇒ ∆mmse(snr) ≡ 0.
Arbitrary: E(X2) → b2mmse(X : b snr) = mmse(bX : snr).
note: mmse (

√
ρXg : snr) = ρ

1+ρsnr ∼
ρsnr�1

1
snr .

Shlomo Shamai (Technion) Gaussian Broadcast Channel ISIT 2007 16 / 95



Gaussian Scalar Broadcast Channel mmse Properties

mmse: Unique crossing point

between MMSEs of a Gaussian and an arbitrary X variable.

X be arbitrary zero mean: E(X2) = 1.
Xg ∼ N (0, 1).

∆mmse(snr)
4
= mmse(

√
ρ Xg : snr)−mmse(X : snr)

Given any snr0 > 0, let ρ ≤ 1 be the largest number:

∆mmse(snr0) = 0.
Then:

∆mmse(snr) ≤ 0 , d∆mmse(snr)
dsnr ≥ 0 , 0 ≤ snr < snr0

∆mmse(snr) ≥ 0 , snr0 ≤ snr

Equality: X ∼ N (0, 1) =⇒ ∆mmse(snr) ≡ 0.
Arbitrary: E(X2) → b2mmse(X : b snr) = mmse(bX : snr).
note: mmse (

√
ρXg : snr) = ρ

1+ρsnr ∼
ρsnr�1

1
snr .

Shlomo Shamai (Technion) Gaussian Broadcast Channel ISIT 2007 16 / 95



Gaussian Scalar Broadcast Channel mmse Properties

mmse: Unique crossing point

between MMSEs of a Gaussian and an arbitrary X variable.

X be arbitrary zero mean: E(X2) = 1.
Xg ∼ N (0, 1).

∆mmse(snr)
4
= mmse(

√
ρ Xg : snr)−mmse(X : snr)

Given any snr0 > 0, let ρ ≤ 1 be the largest number:

∆mmse(snr0) = 0.
Then:

∆mmse(snr) ≤ 0 , d∆mmse(snr)
dsnr ≥ 0 , 0 ≤ snr < snr0

∆mmse(snr) ≥ 0 , snr0 ≤ snr

Equality: X ∼ N (0, 1) =⇒ ∆mmse(snr) ≡ 0.
Arbitrary: E(X2) → b2mmse(X : b snr) = mmse(bX : snr).
note: mmse (

√
ρXg : snr) = ρ

1+ρsnr ∼
ρsnr�1

1
snr .

Shlomo Shamai (Technion) Gaussian Broadcast Channel ISIT 2007 16 / 95



Gaussian Scalar Broadcast Channel I-MMSE

d
dsnr

I(X; Y) =
1
2

mmse(X : snr)

Scaling: ρ = 0.8

1 2 3 4
snr

0.2

0.4

0.6

0.8

1

snr0 snrz

Gaussian Ig�Ρsnr�

Binary Ib�snr�

mmse������Ρ Xg:snr�

mmse�Xb:snr�
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Gaussian Scalar Broadcast Channel mmse Properties

UNIQUE CROSSING POINT: EXTENSION

- Xu be a zero mean RV dependent on U = u.

- U – an arbitrary RV.

- Xg ∼ N (0, 1) , E(X2) = 1.

∆mmse(snr, u) = mmse(
√

ρXg : snr)−mmse(Xu : snr)
∆mmse(snr) = EU∆mmse(snr, u)

Given any snr0 > 0, let ρ ≤ 1 be the largest positive number: ∆mmse(snr) = 0.
Then:

∆mmse(snr) ≤ 0 , d∆mmse(snr)
dsnr ≥ 0 , 0 ≤ snr < snr0

∆mmse(snr) ≥ 0 , snr0 ≤ snr

Properties useful on their own: improved Gaussian based bounds on
mmse(X : snr), improved bounds on entropy via differential entropy.

Proof Outline: [Guo-Shamai-Verdú’07]

d
dsnr mmse(X : snr) = −E

"
E
��

X − E(X|Y)
�2
|Y
�2
#

& Jensen.
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Gaussian Scalar Broadcast Channel Converse via I-MMSE

PROOF ON CONVERSE

– Gaussian Broadcast channel

Z =
√

snrz X + Nz ,

Y =
√

snry X + Ny .

Ny, Nz ∼ N (0, 1), E(X2) = 1, snry ≥ snrz

capacity region:

Ry ≤ I(X; Y|U)

R̄z
4
= Rc + Rz ≤ I(U; Z) = I(X, U; Z)− I(X; Z|U)
=

U−X−Y
I(X; Z)− I(X; Z|U)

I(X; Z) ≤ 1
2 log (1 + snrz).
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Gaussian Scalar Broadcast Channel Converse via I-MMSE

I-MMSE EXPRESSIONS

I(X; Z|U) = EUI(X; Z|U = u)

=
1
2

snrzZ
0

EUmmse(Xu : ν) dν

I(X; Y|U) = EUI(X; Y|U = u)

=
1
2

snryZ
0

EUmmse(Xu : ν) dν

= I(X; Z|U) +

snryZ
snrz

EUmmse(Xu : ν) dν

Now, there is 0 ≤ α ≤ 1

I(X; Z|U) =
1
2

log(1 + αsnrz) =
1
2

snrzZ
0

EUmmse(Xu : u) dν

=
1
2

snrzZ
0

α

1 + αν
dν
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Gaussian Scalar Broadcast Channel Converse via I-MMSE

d
dsnr

I(X; Y) =
1
2

mmse(X : snr)

Scaling: α = ρ = 0.8

1 2 3 4
snr

0.2

0.4

0.6

0.8

1

snr0 snrz

Gaussian Ig�Ρsnr�

Binary Ib�snr�

mmse������Ρ Xg:snr�

mmse�Xb:snr�
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Gaussian Scalar Broadcast Channel Converse via I-MMSE

I-MMSE EXPRESSIONS

This implies that:

EUmmse(Xu; snr) >
α

1 + αsnr
, 0 ≤ snr ≤ snr0 ≤ snrz

EUmmse(Xu; snr) <
α

1 + αsnr
, snr ≥ snr0

EUmmse(Xu; snr0) =
α

1 + αsnr0

Thus:

EUmmse(Xu; snr) <
α

1 + αsnr
, snrz < snr ≤ snry

1
2

snry∫
snrz

EUmmse(Xu; ν) dν ≤ 1
2

snry∫
snrz

α
1+αν dν

= 1
2 log(1 + αsnry)− 1

2 log(1 + αsnrz)
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Gaussian Scalar Broadcast Channel Converse via I-MMSE

⇒
I(U; Z) = I(X; Z)− I(X; Z|U)

≤ 1
2 log(1 + snrz)− 1

2 log(1 + αsnrz) = 1
2 log

(
1 + (1−α)snrz

1+αsnrz

)
I(X : Y|U) ≤ I(X : Z|U) + 1

2 log(1 + αsnry)− 1
2 log(1 + αsnrz)

= 1
2 log(1 + αsnry)

But MMSE is related to entropy [Guo-Shamai-Verdú, IT’05]

h(X) =
1
2

log(2πe)− 1
2

∞∫
0

{
1

1 + ν
−mmse(X : ν)

}
dν

and can be used elegantly to prove the EPI [Verdú-Guo, IT’06].

I-MMSE and EPI are related to de Bruijn’s identity

∂h(x +
√

tN)
∂t

=
1
2

J(X +
√

tN)

Yet the proof here is based on first principles, addressing only mutual
information in a natural way.
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Gaussian Scalar Broadcast Channel Fading Scalar BC

FADING SCALAR BROADCAST CHANNEL

Zi = Hz,iXi + Nz,i

Yi = Hy,iXi + Ny,i
, i-time index

- {Xi} – power limited input, E(X2) = P.

- {Nz,i}, {Ny,i} – AWGN, E(N2
z ) = σ2

z ≥ E(N2
y ) = σ2

y .

- {Hz,i}, {Hy,i} – ergodic fading processes
known @ respective receivers.

[Biglieri-Proakis-Shamai, IT’98], [Tuninetti-Shamai, DIMACS’04].

Symmetric fading Hz ∼ Hy ∼ H =⇒ degraded BC.

Gaussian superposition codes =⇒

Rc + Rz ≤ EH
1
2

log
(

1 +
|H|2(1− α)snrz

1 + |H|2αsnrz

)
, snrz = P/σ2

z ,

Ry ≤EH
1
2

log
(

1 + |H|2αsnry

)
, snry = P/σ2

y .
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Gaussian Scalar Broadcast Channel Fading Scalar BC: Challenges

FADING BROADCAST CHANNEL

Challenges: Fading BC:
Degraded Capacity Region:

Rc + Rz ≤ I(U; Z|H)
Ry ≤ I(X; Y|U, H)

U − X − (Y, H)

Is Gaussian (U, X) optimal as conjectured [Tuninetti-Shamai-Caire, ITA’07] ??
Problem: Jensen’s Penalty in EPI

log
�

eE(U) + 1
�
≤ E log

�
eU + 1

�
.

Partial results:
- On-Off (0, 1) fading.
- Finite state fading (uniformly degraded region),

=⇒ I-MMSE methodology.
Other cases:

- known transmitter CSI [Li-Goldsmith, IT’01]
- more capable settings [Tuninetti-Shamai, DIMACS’04]
- cases with one sided CSI [Agrawal-Cioffi, ALLERTON’06]
- and others.
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MIMO Gaussian Broadcast Channel The Model

DOWNLINK CHANNEL OF A MULTI-ANTENNA MOBILE SYSTEM
1'

&

$

%

Downlink channel of a multi-antenna mobile system

yi = h
T

i
x + ni i = 1...K

• hT

i
- Channel fading, ni ∼ CN (0, Ni)- additive noise, yi - Received signals

• Each user receives a different message!

• Can we obtain an M-fold increase in throughput?

Weingarten, Steinberg, Shamai Technion, November 14, 2005

yk = Hkxk + nk , k = 1...K

Hk - Channel fading, nk ∼ CN (0, Nk)- additive noise, yk - Received signals.

Each user receives a different message! (Rc = 0)!

Possible average power constraint: E(x†x) ≤ P.

Can we obtain an M-fold increase in throughput?

In general not a degraded channel!
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MIMO Gaussian Broadcast Channel TDMA

TIME DIVISION MULTIPLE ACCESS
2'

&

$

%

Time Division Multiple Access
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TDMA: 2-User example

TDMA

• No multiplicative increase in throughput compared to the single antenna

transmitter.

Weingarten, Steinberg, Shamai Technion, November 14, 2005

No multiplicative increase in throughput compared to the single antenna
transmitter.
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MIMO Gaussian Broadcast Channel Beamforming

BEAM-FORMING AND ZERO-FORCING 3'

&

$

%

Beam-Forming and Zero-Forcing
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Beam-forming: 2-User example

TDMA

Beam-forming

• A 2-fold increase in throughput (maximum sum-rate).

Weingarten, Steinberg, Shamai Technion, November 14, 2005

A 2–fold increase in throughput (maximum sum-rate).
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MIMO Gaussian Broadcast Channel Beamforming - Zero-Forcing

BEAM-FORMING AND ZERO-FORCING 4'
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%

Beam-Forming and Zero-Forcing
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Sum-Rate: 2-User example

Beam-Forming to best user

Zero-Forcing Region

Optimal Beam-Forming for 2 users

• A 2-fold increase in throughput (maximum sum-rate).

Weingarten, Steinberg, Shamai Technion, November 14, 2005

A 2–fold increase in throughput (maximum sum-rate).
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MIMO Gaussian Broadcast Channel Dirty-Paper-Coding

BEAM-FORMING AND ZERO-FORCING
5'

&

$

%

Dirty Paper Coding
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Dirty Paper Coding: 2-User example

TDMA

Beam-forming

DPC

• Caire and Shamai, IEEE IT 2003.

Weingarten, Steinberg, Shamai Technion, November 14, 2005

DPC [Caire-Shamai, IT’03].

DPC a must not an alternative to superposition!
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MIMO Gaussian Broadcast Channel Overview - Historical Perspective

HISTORICAL PERSPECTIVE

Non degraded =⇒ open in general.

The 2–User case (K = 2): [Caire-Shamai, IT’03] sum rate.
- Costa DPC (achieves Marton’s region), [Marton, IT’79].

- Sato’s cooperated bound, [Sato, IT’78].

General M-antennas, K-Users sum-rate:

[Tse-Viswanath, IT’03], [Vishwanath-Jindal-Goldsmith, IT’03]
- MAC-Broadcast duality concepts.

- An MMSE-DFE approach [Yu-Cioffi, IT’04].

Optimality of DPC under a Gaussian assumption.

- Degraded Same Marginal Bound.

[Tse-Viswanath, DIMACS’03],

[Vishwanath-Kramer-Shamai-Jafar-Goldsmith, DIMACS’03]

Capacity region: [Weingarten-Steinberg-Shamai, IT’06]
- Optimality of DPC via the notion of an Enhanced Channel.

Capacity region via extremal entropy inequalities [Liu-Viswanath, IT’07].
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MIMO Gaussian Broadcast Channel Duality Concepts

MIMO MAC CHANNEL MODEL: DUALITY CONCEPTS

“Reciprocal” MIMO Gaussian MAC:

y =
∑

k

H†
kxk + n

n ∼ CN (0, N).

Input constraints: individual transmit power, E[x†kxk] ≤ Pk,
total transmit power

∑
k E[x†kxk] ≤ P.
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MIMO Gaussian Broadcast Channel MAC

MIMO MAC: CLASSICAL RESULTS

Capacity region (known from Cover-Wyner):

Cmac(P1, . . . , PK ; H1,...,K , N) =

(X
k∈A

Rk ≤ log det

 
I + N−1

X
k∈A

H†
k PkHk

!
, ∀A

)

Capacity region under sum-power constraint:

- achieved by Gaussian codes,
Cmac(P; H1,...,K , N) = c.h.

[
P

k Pk≤P

Cmac(P1, . . . , PK ; H1,...,K , N)

Polymatroid structure (Wyner-Cover pentagon): vertices π

Rπk = log
det
�

N +
P

i≤k H†
πi Pπi Hπi

�
det
�

N +
P

i<k H†
πi Pπi Hπi

�
Vertices achieved by successive decoding and cancellation:
MMSE-DFE interpretation (“Multiuser Detection”).
Successive decoding order: πK , πK−1, . . . , π1.
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MIMO Gaussian Broadcast Channel DPC Achievable Region

DPC ACHIEVABLE REGION OF THE MIMO BC

Let S ∈ S+ be an input covariance constraint. The region

Rdpc(S; H1,...,K , N1,...,K)

= c.h.
⋃
π

⋃
P

k Bk≤S

R : Rπk ≤ log
det
(

Nπk + Hπk

(∑
i ≤k Bπi

)
H†πk

)
det
(

Nπk + Hπk

(∑
i<k Bπi

)
H†πk

)


is achievable by DPC.

Achieved by individual Gaussian coding with input covariance matrices
Bk. While coding for user πk, invoke Costa precoding to account all users
πi with i > k.

- Successive precoding order: πK , πK−1, . . . , π1.

Rdpc(P; H1,...,K , N1,...,K) =
⋃

tr(S)≤PRdpc(S; H1,...,K , N1,...,K).
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MIMO Gaussian Broadcast Channel Duality Concepts

DUALITY CONCEPTS
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Two−user MIMO−BC capacity region

R
2

R
1

User 1 encoded last 

User 1 encoded first 

Dominant face 
(maximum sum rate) 

Rdpc(P; H1,...,K) = Cmac(P; H†1,...,K)

BC region via convex-hull of MAC regions.

Power allocation and optimal receivers (MMSE-DFE) for the reciprocal MAC are easy to compute.

General method: solve the dual MAC and map back the solution to the MIMO BC.

[Yu, IT’06]. Duality: min over noise covariance under diagonal based constraints –
accounts for linear input constraints, i.e. individual powers per antenna.
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MIMO Gaussian Broadcast Channel Capacity Region

[WEINGARTEN-STEINBERG-SHAMAI, IT’06]

Vector EPI e
2
n h(X+Y) ≥ e

2
n h(X) + e

2
n h(Y) tight only for (X, Y) Gaussians,

with proportional covariances! Why not EPI a la Bergmans?

Optimality for given covariance constraint
(

E(XX†) � S
)

.

Optimality for square invertible Hk.

Aligned MIMO BC – canonic form:

yk = x + nk , nk ∼ CN (0, Nk) , k = 1, 2 . . . K .

Enhanced Channel: y′k = x + n′k , k = 1, . . . , K.

The y′k channel is an enhanced version of the yk channel if N′k � Nk ∀k.
Clearly, the capacity of the {y′k} channel is larger
than that of the {yk} channel.
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MIMO Gaussian Broadcast Channel Capacity Region

PROOF IDEA FOR THE NON-DEGRADED GAUSSIAN VECTOR CHANNEL
19'

&

$

%

Proof Idea for the Degraded Gaussian Vector Channel
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DPC rate region of a two user 4× 4 AMBC

Dirty Paper
Coding Region

Rate region of an
Enhanced and Degraded

channel

External point

Supporting Hyperplane

Weingarten, Steinberg, Shamai Technion, November 14, 2005
Step 1: for every point R /∈ Rdpc(S; N1,...,K), there exists an Enhanced aligned degraded MIMO BC
whose DPC region outer bounds the original capacity region and does not contain R.

Step 2: the capacity region of an Aligned degraded MIMO BC coincides with its DPC region,
covariances at the tangential point satisfy equality in vector EPI.
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MIMO Gaussian Broadcast Channel Cellular Downlink

APPLICATION: CELLULAR DOWNLINK – THE WYNER MODEL

[SOMEKH-ZAIDEL-SHAMAI, SPWC’05, ARXIV’07]

Wyner-type Cellular Models Somekh, Zaidel, Shamai - Sum Rate Characterization of Joint Processing

GENERAL SYSTEM MODEL

Cell 0

Cell-Site
0

Cell-Site
1

User k

a0,k
b1,k

Cell-Site
2

Cell-Site
3

Cell 1
Cell 3

a3,r b0,r

User r

A “Wyner-type” multi-cell model with M cells ordered on a circle

Motivation: symmetry properties, more amenable to analytical analysis,
equivalent to linear models for M ≫ 1

A fully synchronous, optimally coded system is assumed, with cell-sites
located at the cells’ boundaries

There are K users in each cell, and a single receive/transmit antenna at
each cell-site

Each user “sees” only the two nearest cell-sites

Models a practical “soft-handoff” scenario at the cells’ boundaries

Benjamin M. Zaidel (IIT) Joint Processing in Cellular Systems NTNU, May 24, 2007 18 / 65

A “Wyner-type” multi-cell model with M cells ordered on a circle.

Motivation: symmetry properties, more amenable to analytical analysis,
equivalent to linear models for M � 1.

A fully synchronous, optimally coded system is assumed, with cell-sites located
at the cells’ boundaries.

There are K users in each cell, and a single receive/transmit antenna at each
cell-site.

Each user “sees” only the two nearest cell-sites.

Models a practical “soft-handoff” scenario at the cells’ boundaries.
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MIMO Gaussian Broadcast Channel Cellular Downlink

DOWNLINK SYSTEM MODEL

The received MK × 1 signal vector, is given by

ydl = H†
Mxdl + ndl .

HM [M×KM] - Channel transfer matrix.

xdl[M×1] - The vector of signals transmitted by the M cell-sites.
An equal individual per-cell-site power constraint is assumed:[
E
{

xdlx†dl

}]
(m,m)

≤ P̄ ∀m.

ndl[MK×1] ∼ Nc(0, IMK) - Circularly symmetric AWGN vector.

Full CSI is available to the joint multi-cell transmitter only.

The mobile receivers are assumed to be cognisant of their own CSI,
and of the employed transmission strategy.
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MIMO Gaussian Broadcast Channel Cellular Downlink

DOWNLINK AVERAGE PER-CELL SUM-RATE CAPACITY

Using MIMO-Broadcast-MAC (minmax) duality [Yu, IT’06] the
average per-cell sum-rate capacity is:

Cdl(P̄) = EHM

 1
M

min
ΛM

max
DM

log
det
(

HMDMH†
M + ΛM

)
det (ΛM)

 .

The optimization is over all nonnegative diagonal matrices:

DM [MK ×MK], s.t. Tr(DM) ≤ 1,

ΛM [M ×M], s.t. Tr (ΛM) ≤ 1/P̄.
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MIMO Gaussian Broadcast Channel Cellular Downlink

DOWNLINK - NO-FADING

For non-fading channels am,k = bm,k = 1, ∀m, k.

- The channel transfer matrix becomes “block-circulant”.

Average per-cell downlink sum-rate capacity (M →∞) is:

Cdl-nf(P̄) = log

(
1 + 2P̄ +

√
1 + 4P̄

2

)
.

- with either average or per cell power constraint and ∀ k.

Other subsequent results:
[Foschini-Huang-Karakayali-Valenzuela-Venkatesan, CISS’05],
[Liang-Goldsmith, GLOBECOM’06],
[Jing-Tse-Hou-Soriaga-Smee-Padovani, ITA’07].

Shlomo Shamai (Technion) Gaussian Broadcast Channel ISIT 2007 41 / 95



MIMO Gaussian Broadcast Channel Cellular Downlink

CELLULAR BROADCAST CHANNEL MODELS: CHALLENGES

Fading Models: Bounds in [Somekh-Zaidel-Shamai, arXiv’07].

∗ Limiting eigenvalue distribution of finite diagonal HH†.

Planar and general Wyner-like fading models.

Limited multi-cell processing: cognition, back-haul rate limitations.
Partial results in [Somekh-Zaidel-Shamai, arXiv’07],
[Lapidoth-Shamai-Wigger, ISIT’07], [Marsch-Fettweis, EW’07],
[Sanderovich-Somekh-Shamai, ISIT’07].

Feedback and impact of inaccurate CSI (to be discussed next).

Shlomo Shamai (Technion) Gaussian Broadcast Channel ISIT 2007 42 / 95



MIMO Gaussian Broadcast Channel Cellular Downlink

CELLULAR BROADCAST CHANNEL MODELS: CHALLENGES

Fading Models: Bounds in [Somekh-Zaidel-Shamai, arXiv’07].

∗ Limiting eigenvalue distribution of finite diagonal HH†.

Planar and general Wyner-like fading models.

Limited multi-cell processing: cognition, back-haul rate limitations.
Partial results in [Somekh-Zaidel-Shamai, arXiv’07],
[Lapidoth-Shamai-Wigger, ISIT’07], [Marsch-Fettweis, EW’07],
[Sanderovich-Somekh-Shamai, ISIT’07].

Feedback and impact of inaccurate CSI (to be discussed next).

Shlomo Shamai (Technion) Gaussian Broadcast Channel ISIT 2007 42 / 95



MIMO Gaussian Broadcast Channel Cellular Downlink

CELLULAR BROADCAST CHANNEL MODELS: CHALLENGES

Fading Models: Bounds in [Somekh-Zaidel-Shamai, arXiv’07].

∗ Limiting eigenvalue distribution of finite diagonal HH†.

Planar and general Wyner-like fading models.

Limited multi-cell processing: cognition, back-haul rate limitations.
Partial results in [Somekh-Zaidel-Shamai, arXiv’07],
[Lapidoth-Shamai-Wigger, ISIT’07], [Marsch-Fettweis, EW’07],
[Sanderovich-Somekh-Shamai, ISIT’07].

Feedback and impact of inaccurate CSI (to be discussed next).

Shlomo Shamai (Technion) Gaussian Broadcast Channel ISIT 2007 42 / 95



MIMO Gaussian Broadcast Channel Cellular Downlink

CELLULAR BROADCAST CHANNEL MODELS: CHALLENGES

Fading Models: Bounds in [Somekh-Zaidel-Shamai, arXiv’07].

∗ Limiting eigenvalue distribution of finite diagonal HH†.

Planar and general Wyner-like fading models.

Limited multi-cell processing: cognition, back-haul rate limitations.
Partial results in [Somekh-Zaidel-Shamai, arXiv’07],
[Lapidoth-Shamai-Wigger, ISIT’07], [Marsch-Fettweis, EW’07],
[Sanderovich-Somekh-Shamai, ISIT’07].

Feedback and impact of inaccurate CSI (to be discussed next).

Shlomo Shamai (Technion) Gaussian Broadcast Channel ISIT 2007 42 / 95



MIMO Gaussian Broadcast Channel Common Rate

CHALLENGES – COMMON RATE

+

+ Decoder 1

Decoder 2

Encoder x

H1
(t×r1)

H2
(t×r2)

n1

n2

yk = Hkx + nk , k = 1, 2 . . . K (K = 2)

y1

y2

M̂1, M̂c

M̂2, M̂c

M1,M2,Mc

nk ∼ N (0, I), Exx† ≤ S

(R1, R2, Rc)

1

What is the capacity region (CC(S)) ?
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MIMO Gaussian Broadcast Channel Common Rate

ACHIEVABLE RATES – [JINDAL-GOLDSMITH, ISIT’04]

Allocate powers Q1 + Q2 + Qc � S (K = 2).

R12(Q1, Q2, Qc) = the set of all (R1, R2, Rc) s.t.

Common Message - Gaussian coding:

Rc ≤ min
i=1,2

{
log

|HiQcHT
i + (Hi(Q1 + Q2)HT

i + I)|
|Hi(Q1 + Q2)HT

i + I|

}

Private Message #2 - Gaussian coding and successive
cancellation decoding:

R2 ≤ log
|H2Q2HT

2 + (H2Q1HT
2 + I)|

|H2Q1HT
2 + I|

Private Message #1 - Dirty paper coding:

R1 ≤ log |H1Q1HT
1 + I|

Shlomo Shamai (Technion) Gaussian Broadcast Channel ISIT 2007 44 / 95



MIMO Gaussian Broadcast Channel Common Rate

ACHIEVABLE RATES – [JINDAL-GOLDSMITH, ISIT’04]

Allocate powers Q1 + Q2 + Qc � S (K = 2).

R12(Q1, Q2, Qc) = the set of all (R1, R2, Rc) s.t.

Common Message - Gaussian coding:

Rc ≤ min
i=1,2

{
log

|HiQcHT
i + (Hi(Q1 + Q2)HT

i + I)|
|Hi(Q1 + Q2)HT

i + I|

}

Private Message #2 - Gaussian coding and successive
cancellation decoding:

R2 ≤ log
|H2Q2HT

2 + (H2Q1HT
2 + I)|

|H2Q1HT
2 + I|

Private Message #1 - Dirty paper coding:

R1 ≤ log |H1Q1HT
1 + I|

Shlomo Shamai (Technion) Gaussian Broadcast Channel ISIT 2007 44 / 95



MIMO Gaussian Broadcast Channel Common Rate

ACHIEVABLE RATES – [JINDAL-GOLDSMITH, ISIT’04]

Allocate powers Q1 + Q2 + Qc � S (K = 2).

R12(Q1, Q2, Qc) = the set of all (R1, R2, Rc) s.t.

Common Message - Gaussian coding:

Rc ≤ min
i=1,2

{
log

|HiQcHT
i + (Hi(Q1 + Q2)HT

i + I)|
|Hi(Q1 + Q2)HT

i + I|

}

Private Message #2 - Gaussian coding and successive
cancellation decoding:

R2 ≤ log
|H2Q2HT

2 + (H2Q1HT
2 + I)|

|H2Q1HT
2 + I|

Private Message #1 - Dirty paper coding:

R1 ≤ log |H1Q1HT
1 + I|

Shlomo Shamai (Technion) Gaussian Broadcast Channel ISIT 2007 44 / 95



MIMO Gaussian Broadcast Channel Common Rate

ACHIEVABLE RATES – [JINDAL-GOLDSMITH, ISIT’04]

Allocate powers Q1 + Q2 + Qc � S (K = 2).

R12(Q1, Q2, Qc) = the set of all (R1, R2, Rc) s.t.

Common Message - Gaussian coding:

Rc ≤ min
i=1,2

{
log

|HiQcHT
i + (Hi(Q1 + Q2)HT

i + I)|
|Hi(Q1 + Q2)HT

i + I|

}

Private Message #2 - Gaussian coding and successive
cancellation decoding:

R2 ≤ log
|H2Q2HT

2 + (H2Q1HT
2 + I)|

|H2Q1HT
2 + I|

Private Message #1 - Dirty paper coding:

R1 ≤ log |H1Q1HT
1 + I|

Shlomo Shamai (Technion) Gaussian Broadcast Channel ISIT 2007 44 / 95



MIMO Gaussian Broadcast Channel Common Rate

ACHIEVABLE RATES – [JINDAL-GOLDSMITH, ISIT’04]

Allocate powers Q1 + Q2 + Qc � S (K = 2).

R12(Q1, Q2, Qc) = the set of all (R1, R2, Rc) s.t.

Common Message - Gaussian coding:

Rc ≤ min
i=1,2

{
log

|HiQcHT
i + (Hi(Q1 + Q2)HT

i + I)|
|Hi(Q1 + Q2)HT

i + I|

}

Private Message #2 - Gaussian coding and successive
cancellation decoding:

R2 ≤ log
|H2Q2HT

2 + (H2Q1HT
2 + I)|

|H2Q1HT
2 + I|

Private Message #1 - Dirty paper coding:

R1 ≤ log |H1Q1HT
1 + I|

Shlomo Shamai (Technion) Gaussian Broadcast Channel ISIT 2007 44 / 95



MIMO Gaussian Broadcast Channel Common Rate

ACHIEVABLE RATES – [JINDAL-GOLDSMITH, ISIT’04]

R12/21(S) =
⋃

Q1�0,Q2�0,Qc�0
Q1+Q2+Qc�S

R12/21(Q1, Q2, Qc)

RC = c.h.
{
R12(S) ∪R21(S)

}
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MIMO Gaussian Broadcast Channel Common Rate

RECENT RESULTS!
[WEINGARTEN-STEINBERG-SHAMAI, ISIT’06]

The degraded message set problem (R1 = 0, or R2 = 0) settled for the
multi-antenna broadcast channel with two users.

Outer bounds suggested and shown to be tight for some parts of the
capacity region!

∗ For max sum-rate with a prescribed common rate.
∗ For the aligned channel and for high common rates, CC = RC.

Challenge: Prove that CC = RC also for Rc ≤ Rth
c , demands more than a

naive implementation of the enhancement principle.
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MIMO Gaussian Broadcast Channel Common Rate

CHALLENGES: THE CMHP-REGION - NO DPC

DPC is required to achieve the capacity region of the MIMO Broadcast Channel!

Suboptimal strategies: beamforming scheduling, linear precoding [Sharif-Hassibi, IT’07].
Nonlinear simplified strategies: vector perturbation & precoding.
[Peel-Hochwald-Swindlehurst, COM’05], [Boccardi-Caire, Allerton’05]

Challenge: What is the optimal region without DPC?

[Cover, IT’75]; [Van der Meullen, IT’75]; [Hajek-Pursley, IT’79],
optimized CMHP region versus [Marton, IT’79].

Optimized beamforming linear (precoding) – not enough.

Common rate may play a factor even if not demanded [Amraoui-Kramer-Shamai, ISIT’03].

Superposition with joint-decoding! not only successive cancelation
[Wajcer-Shamai-Wiesel, ITA’06].
Optimization results not necessarily on a vertex MAC point =⇒ joint decoding.

Transmitter constraints important!
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MIMO Gaussian Broadcast Channel Pseudo/Generalized Inverse

ZERO-FORCING: [WIESEL-ELDAR-SHAMAI, CISS’07]
Throughput – performance

0 1 2 3 4 5 6 7 8 9 10
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

P in [dB]

Th
ro

ug
hp

ut

Per-antenna with pseudo-inverse
Per-antenna with generalized inverse
Total power constraint

Generalized inverses

( )gi pi pi V= + −H H I H H

( ) 1
pi † †

−
=H H HH

generalized 
inverse

pseudo inverse

(V=0)

We assume M>K, and 
that H is full row rank.

gi =HH I

Zero forcing (pseudo-inverse) with per-antenna power constraint, and optimal linear
precoding [Boccardi-Huang, CISS’06, ICASSP’06].

Fixed receivers oriented linear processing [Wiesel-Eldar-Shamai, TSP’06].

Pseudo inverse optimal – total power constraint.

Optimized generalized inverse – per antenna power constraint.
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MIMO Gaussian Broadcast Channel Converse via Extremal Inequalities

MIMO GAUSSIAN BC: CONVERSE VIA EXTREMAL -INEQUALITIES

Alternative converse: Extremal-Inequalities [Liu-Viswanath, IT’07].

max
PX

{
h(X + N1)− µh(X + N2)

}
, µ > 1 .

PX : Cov(X) � S, Cov(N1) = KN1 , Cov(N2) = KN2

=⇒ PX −Gaussian

Characterizing the weighted sum-rate

µ1R1 + µ2R2 , µ1, µ2 ≥ 0

via the (2–users) Marton-Korner (Theorem 5) [Marton, IT’79]
outer bound.

Challenge: Can this be done naturally and in general, via the standard

vector I-MMSE formulism [Guo-Shamai-Verdú] ?
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MIMO GBC-CSI CSI

IMPACT OF CSI

yi = (Ai + Ãi)xi + ny
i

zi = (Hi + H̃i)xi + nz
i

i – time index

2–antenna vector transmitted signal, xi is complex and
average power constrained:

E(|x|2) ≤ snr .

1–antenna scalar receiver signals: yi, zi.

Fading (vector) processes Ai, Ãi, HiH̃i, iid and mutually independent
(a simple case),

E(|A|2) = E(|H|2) = D .

E(|Ã|2) = E(|H̃|2) = ε .

Finite differential entropy proper complex processes: Ãi, H̃i.

ny
i , nz

i independent proper scalar AWGN.

CSI: Ai, Hi – available at the transmitter and receivers.
Ãi, H̃i – available at the receivers only.
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MIMO GBC-CSI CSI - Degrees of Freedom

DEGREES OF FREEDOM

CT(snr) – throughput (sum-rate).

DF = lim
snr→∞

CT(snr)
log(snr) , degrees of freedom, multiplexing gain.

Accurate CSI at transmitter and receivers (ε = 0):
DF = 2 [Caire-Shamai, IT’03].

MIMO (full cooperation at receivers):
DF = 2 [Telatar, ETT’99], also for (D = 0)!

No CSI at transmitter (D = 0): DF = 1 [Caire-Shamai, IT’03].
Equivalent to a scalar channel [Jafar-Goldsmith, IT’03].

snr dependent feedback: ε ∼ snr−1: DF = 2 [Jindal, IT’06].

Opportunistic approaches (fixed K): DF = 0 [Sharif-Hassibi, IT’05].

No CSI anywhere: DF = 0 (even for MIMO – log log(SNR)):
[Lapidoth-Moser, IT’03].
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MIMO GBC-CSI CSI - Degrees of Freedom

Challenge: D and ε fixed and SNR independent.

DF =???

Conjecture: DF = 1 (collapse of degrees of freedom).

Equivalent to a MISO (transmission to one user).

Result: DF ≤ 4/3 [Lapidoth-Shamai-Wigger, Allerton ’05].

Extensions: Ak, Hk, Ãk, H̃k dependent ergodic processes
with memory, and finite conditional (on Ak, Hk)
differential entropies of Ãk and H̃k.
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MIMO GBC-CSI CSI - DOF - Conjecture

CHALLENGE: THE CONJECTURE IN TERMS OF DIFFERENTIAL ENTROPIES

Let X and Y be real random variables of variance P. Let U and V be IID zero-mean
unit-variance Gaussian random variables such that (U, V) are independent of (X, Y).
For any −π ≤ θ < π, let f (θ)(·) denote the density of

(X + U) cos θ + (Y + V) sin θ

and let h(θ) denote the differential entropy:

h(θ) = −
πR
−π

f (θ)(ξ) log f (θ)(ξ) dξ .

hsup
4
= sup
−π≤θ<π

h(θ) .

Let havg denote the average of h(θ) w.r.t. a fixed bounded density fΘ(θ):

havg =

πZ
−π

fΘ(θ)h(θ) dθ .

sup
P>0

sup
X,Y,s.t.:E[X2],E[Y2]<P

{hsup − havg}
?
< ∞ .
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MIMO GBC-CSI Compound BC

COMPOUND BC

TX

x1

x2

xM

y
j
k = H

j
kx + n

j
k

n
j
k ∼ NC(0, 1)

k = 1, . . . , K (groups)
special case: K = 2

j = 1, . . . , Jk

(instances/

users per group)

User 1

User 2

Inst. 1

Inst. 2

Inst. J1

Inst. 1

Inst. 2

Inst. J2

or Groups of users with common messages.
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MIMO GBC-CSI Compound BC

COMPOUND BC – RELATED RESULTS

Degraded compound broadcast channels

- Parallel channels [Diggavi-Tse, ITW’06].
- MIMO-Broadcast

[Weingarten-Liu-Shamai-Steinberg-Viswanath, ISIT’07].
- Strict degradation order:

‘channel 1 better than 2 for any possible realization’.

=⇒ R1 = min
j=1,...J1

log det(I + Hj
1QHj†

1 )

R2 = min
j=1,...J2

log det(I+Hj
2SHj†

2 )

det(I+Hj
2QHj†

2 )

for some covariance Q under the constraint Cov(x) � S.
Multiplexing gain region [Weingarten-Kramer-Shamai, ITA’07].

Scaling laws (large number of users, antennas) in MIMO group-broadcast
channels [Dana-Al Naffouri-Hassibi, ISIT’07].
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MIMO GBC-CSI Compound BC

MULTIPLEXING GAIN REGION

DEFINITION

The multiplexing gain region is the set of all achievable limit points

lim
snr→∞

(
R1(snr)
log snr

,
R2(snr)
log snr

)
= (G1, G2)

The multiplexing gain region is always convex.
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MIMO GBC-CSI Compound BC

EXAMPLE: [WEINGARTEN-KRAMER-SHAMAI, ITA’07]

0 0.5 1 1.5
0

0.5

1

1.5
Outer Bound
Inner Bound

sum-rate MG: 2M

M+1

sum-rate MG: 2J

2J−M+1

Multiplexing Gain Regions for J1 = J2 = J ≥M (single receive antenna)

J1 = J2 = 1

G1

G
2

G2 = 1− 1

M
G1

G2 = 1− J−M+1

J
G1

G1 = 1− 1

M
G2

G1 = 1− J−M+1

J
G2

Tight for J = M!
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MIMO GBC-CSI Compound BC

CHALLENGES: [WEINGARTEN-KRAMER-SHAMAI, ITA’07]

CONJECTURE

If any set of M vectors out of H1
1, H2

1, . . . , HJ1
1 , H1

2, H2
2, . . . , HJ2

2 are
linearly independent, the multiplexing gain region is given by

G1 ≤ 1− max(0, J1 −M + 1)
J1

G2,

G2 ≤ 1− max(0, J2 −M + 1)
J2

G1.

Determine the rate region of the compound MIMO broadcast
channel, with no specific degradation order.
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MIMO GBC-CSI Scaling & Opportunistic Approaches

MULTIUSER SCALING & OPPORTUNISTIC APPROACHES

Multiuser Scaling & Opportunistic Approaches

- Optimal scaling (fixed snr) ∼ M log(N log K) M-transmit antennas,
K-users, N-receive antenna’s per user. [Xie-Georghiades, TWC’06].

- Opportunistic random-beamforming and related strategies
[Viswanath-Tse-Laroia, IT’02], [Sharif-Hassibi, IT’05],
[Baesteh-Khandani, arXiv’07].

Scheduling in multiuser regimes: dual-MAC [Yu-Ree, TCOM’06]
simultaneous transmission to no more than M2 users
(no more than N2 beams per user).
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MIMO GBC-CSI snr Scaling

snr scaling as to achieve full sum-rate

Rs ∼ M log(snr) , snr � 1

within ∆R = log2 b.

−→ ZF requires accuracy in CSI estimation [Jindal, IT’06]

proportional to
(

snr
b−1

)−1
.

=⇒ feedback rate: (M − 1) log
(

snr/(b− 1)
)

.

Mandatory scaling for arbitrary processing
(under certain assumptions)
[Caire-Jindal-Shamai, Asilomar’07].
Efficient feedback schemes accounting for receiver inaccuracies
[Caire-Jindal-Kobayashi-Ravindran, ISIT’07].
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MIMO GBC-CSI Challenges: CSI

CHALLENGES: MIMO GBC-CSI

Optimal (not necessarily ZF based!) non asymptotic VGBC approach in
the realm of imprecise CSI @ transmitter: rate region + common rate!

∗ Does optimal processing relate to ‘writing on fading paper’?
Y = H(X + S) + N, H not fully known @ transmitter,
S interference known @ transmitter un-causally
[Bennatan-Burshtein, Allerton’06].

∗ If so, under which conditions are Costa’s linear relations
U = FX + BS (F, B matrices, X, S independent) optimal?

∗ Common rate (included) =⇒ relations to ‘Carbon Copy’!
[Khisti-Erez-Lapidoth-Wornell, IT’07].

∗ Common rate only – standard compound setting
[Wiesel-Eldar-Shamai, TWC’07].
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Broadcast Channel – Outlook & Challenges The BC Model

HISTORICAL PERSPECTIVE

T. M. Cover, “Broadcast Channels,” IEEE Trans. Inform. Theory,
vol. IT–18, no. 1, pp. 2–14, January 1972.

encoder
channel

decoder-1

decoder-2

Y ∈ Y

PY,Z|X Z ∈ Z (M̂c, M̂z)

(M̂c, M̂y)
(Mc, My, Mz)

X ∈ X

1

(Mc, My, Mz) common/separate messages.

X ∈ X channel input: subjected to input constraints,
e.g. E(X2) ≤ P.

Y ∈ Y, Z ∈ Z – channel outputs.
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Broadcast Channel – Outlook & Challenges Marton Achievable Region

MARTON’S ACHIEVABLE RATE REGION

[Marton, IT’79] (Rc, Ry, Rz) – achievable (Marton Region).

Rc ≤ min
n

I(W; Y), I(W; Z)
o

Rc + Ry ≤ I(W, U; Y)
Rc + Rz ≤ I(W, V; Z)

Rc + Ry + Rz ≤ min
n

I(W; Y), I(W; Z)
o

+ I(U; Y|W) + I(V; Z|W)− I(U; V|W)

PW,V,U,X,Y,Z = PWUVPX|WUVPYZ|X .

∗ [Gelfand-Pinsker, PPI’80] – mentions Rc explicitly.

- Tight =⇒ all special cases mentioned + (MIMO-GBC).

- Coding idea: binning =⇒ auxiliary rv(U, V, W).

- GP is a vertex point
{Rc, Ry, Rz} = {min[I(W; Y), I(W; Z)], I(U; Y|W), I(V; Z|W)− I(V; U|W)}

∗ special case PW,V,U = PWPVPU

=⇒ CMHP region: [Cover, IT’75; Van der Meullen, IT’75; Hajek-Pursley, IT’79].
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Broadcast Channel – Outlook & Challenges Outer Bounds: Nair-El Gamal & Korner-Marton

OUTER REGION

[Nair-El Gamal, IT’07]

(Rc, Ry, Rz)

Rc < min
n

I(W; Y), I(W; Z)
o

Rc + Ry ≤ I(W, U; Y)
Rc + Rz ≤ I(W, V; Z)
Rc + Ry + Rz ≤ I(W, U; Y) + I(V; Z|U, W)
Rc + Ry + Rz ≤ I(W, V; Z) + I(U; Y|V, W) .

for some PUPVPX|U,VPY,Z|X .

[Korner-Marton, Theorem 5, IT’79]

(Ry, Rz)

Ry ≤ I(X; Y)
Rz ≤ I(V; Z)
Ry + Rz ≤ I(X; Y|V) + I(V; Z)

[Korner-Marton, IT’79] =⇒ enhanced region.
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Broadcast Channel – Outlook & Challenges Noiseless Feedback

BROADCAST CHANNELS: NOISELESS FEEDBACK

receiver−2

receiver−1CHANNEL

encoder

Σ

Σ

Σ

(M̂c, M̂y)

(M̂c, M̂z)

Y

Z
n

nz

ny

X

Fz

Fy

(Mc,My,Mz)

1

Capacity is not increased by feedback for physically degraded channels
[El-Gammal, IT’78].

Capacity is increased by double-sided feedback in a Gaussian
(stochastically degraded) channel [Ozarow-Leung-Yan-Chong, IT’84].

Capacity may increase even with one-sided feedback
[Bhaskaran, ISIT’07].
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Broadcast Channel – Outlook & Challenges Generalized Feedback

A NETWORK ORIENTED OUTLOOK

encoder

CHANNEL

decoder−1

decoder−2

D

D

D

(M̂c, M̂z)

(M̂c, M̂y)

X

Y

Z

(Mc, My, Mz)

1

A generalized feedback model, accounts for

- Shannon feedback.
- Receiver cooperation.
- Relaying.
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Broadcast Channel – Outlook & Challenges Receiver Cooperation & Relay

BROADCAST CHANNELS: RECEIVER COOPERATION & RELAY

encoder CHANNEL

receiver−1

receiver−2

D

D

(M̂c, M̂y)

(M̂c, M̂z)

(Mc, My, Mz)

1

Cooperation:

Bounds and capacity regions in certain degraded cases [Liang-Veeravalli, IT’07].
Multi hop receiver (orthogonal) cooperation, bounds and capacity in certain degraded
cases [Dabora-Servetto, IT’06].
Relaying:
Inner and outer bounds for this general model + capacity region in certain cases
[Liang-Kramer, IT’07], [Bhaskaran, EPFL’07].
Iterative decoding of a broadcast (common) message
[Draper-Frey-Kshischang, Allerton’03].
One-shot conferencing [Ng-Maric-Goldsmith-Shamai-Yates, ITW’06].
Broadcast cooperating strategies [Steiner-Sanderovich-Shamai, IT’07].

∗ Unified View [Kramer-Maric-Yates, FnT’07].
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Broadcast Channel – Outlook & Challenges Secrecy

SECRECY

encoder

CHANNEL

decoder−1

decoder−2

(Mc, My, Mz)

(

M̂c, M̂y,
1

n
H(Mz|Y

n)
)

(

M̂c, M̂z,
1

n
H(My|Z

n)
)

X

Y

Z

1

Conditional entropy measures ‘Shannon wise’ confidentiality.

Broadcast channel with confidential message [Csiszar-Korner, IT’78].

Two confidential messages [Liu-Maric-Spasojevic-Yates, Allerton ’06].

Wireless fading channels [Gopala-Lai-El Gamal, IT’07].

Independent parallel channels [Li-Yates-Trappe, Allerton’06].

Fading and parallel channels [Liang-Poor-Shamai, ISIT’07].
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Broadcast Channel – Outlook & Challenges Broadcast Approach

THE BROADCAST APPROACH

In static compound\composite channels the different possible
realizations are treated as different receivers within a broadcast
channel framework [Cover, IT’72].

Fading scalar channels [Shamai, ISIT’97].

MIMO models [Shamai-Steiner, IT’03].

Multiple access fading channels [Shamai, ISIT’00], [Minero-Tse, ISIT’07].

Partial state knowledge @ transmitter [Steiner-Shamai, TWC’07].

Two-Hop relay fading channels [Steiner-Shamai, IT’06].

Broadcast cooperation strategies in broadcast channels
[Steiner-Sanderovich-Shamai, IT’07].
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Broadcast Channel – Outlook & Challenges Refinement & Broadcasting

SOURCE-CHANNEL, DISTORTION, SUCCESSIVE

REFINEMENT & BROADCASTING

The target is to adapt achievable distortion, rather than rate,
to the channel state available @ the receiver end only.

∗ Marriage between successive refinement [Rimoldi, IT’04],
and broadcast approach [Shamai, ISIT’97].

∗ Distortion exponents [Caire-Narayanan, Allerton’05],
[Gunduz-Erkip, Asilomar’05], [Bhattad-Narayanan-Caire, arXiv’07].

∗ Recursive algorithms-expected distortion
[Ng-Gunduz-Goldsmith-Erkip, ISIT’07, ICC’07].

∗ Variational approach (continuous case) + efficient recursive
algorithms [Tian-Steiner-Shamai-Diggavi, ITW’07].
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Broadcast Channel – Outlook & Challenges Joint Source-Channel Coding

JOINT SOURCE-CHANNEL CODING

Distortion region for transmitting source {S} over a broadcast channel
Py1,y2 ,..., yk |X.

- no source channel separation in general.

Gaussian BC: Yk =
√

snrkX + N , k = 1, 2 . . . K.
Gaussian source {S} same bandwidth B (Bandwidth expansion) =1,
S = X optimal!
Analogue is not just an alternative to digital, as in a single user case:
code - or not code [Gatspar-Rimoldi-Vetterli, IT’03], but in fact is a must!

Back to (some) analogue? general B.

- [Mittal-Phamdo, IT’02].
- [Reznic-Feder-Zamir, IT’06]: efficient region for B > 1.
- [Caire-Narayanan, Allerton’05]: efficient region for B < 1.
- [Gunduz-Erkip, Asilomar’05].

Challenge: distortion region over the (Gaussian) source-BC (general B).
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Broadcast Channel – Outlook & Challenges SI @ Receivers

SIDE INFORMATION @ RECEIVERS

=⇒ Coding with different degrees of SI (motivated by: analog signals)
@ broadcast receivers.

- Broadcast interactive Wyner-Ziv and Slepian-Wolf setting.

[Heegard-Berger, IT’85], [Kaspi, IT’94], [Steinberg-Merhav, IT’04]

[Tian-Diggavi, ITA’06], [Wolf, CISS’04], [Tuncel, IT’06]

[Ng-Tian-Goldsmith-Shamai, ITW’07].

Challenges:

Distortion region (not only exponents) on Gaussian source over
Gaussian broadcast channel with bandwidth expansion (B > 1),
and analogue component (SI).
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Broadcast Channel – Outlook & Challenges SI & Receivers

SIDE INFORMATION @ RECEIVERS

broadcast

channel

decoder−1

decoder−2 (M̂c, M̂z)

(M̂c, M̂y)
Y

Z

(Mc,My,Mz)

M̃y

M̃z

1

Applications: Back-relaying =⇒ Two-Way Relaying.

Network coding (butterfly: X = My ⊕Mz, M̃z = Mz, M̃y = My)

[Rankov-Wittneben, ISIT’06], [Xie, CTW’07],
[Oechtering-Schnurr-Bjelakovic-Boche, CISS’07].

Challenges: Achievable and Outer bounds on broadcast channels
with general SI.

- Under which conditions these bound meet:
capacity region with SI not necessarily a harder problem.

∗ Recent results in: [Kramer-Shamai, ITW’07].
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Broadcast Channel – Outlook & Challenges Queues & BC

NETWORK RELATED BROADCAST PROBLEMS

Queues & Broadcast Channels.

Resource

allocation

policy

Buffer state CSIT

Rx 1

Rx 2

Rx K

λ1 : A1(t)

λ2 : A2(t)

λK : AK(t)
K

M

Tx
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Broadcast Channel – Outlook & Challenges Stability & Scheduling

NETWORK RELATED BROADCAST PROBLEMS

Stability & Scheduling

∗ stability region {λ}, for which resource allocation policy
stabilizes queues: {λ} ≡ C (ergodic capacity).

=⇒ optimization of weighted (queue-dependent) rates.
[Neely-Modiano-Rohrs, ATNet’03], [Yeh-Cohen, ISIT’04]
[Boche-Wiczanowski, WC’06].
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Broadcast Channel – Outlook & Challenges Stability & Scheduling

NETWORK RELATED BROADCAST PROBLEMS

Broadcast approach & queues [Steiner-Shamai, CISS’05]
& (ARQ) [Steiner-Shamai, TWC’07].

Delay-Limited Broadcast channel capacity.
Resource (power, bandwidth, scheduling) allocation given rate demands.
[Li-Goldsmith, IT’01], [Jindal, ISIT’06], [Kobayashi-Caire, JSAC’06],
[Seong-Narashimhan-Cioffi, JSAC’06], [Schubert-Boche, FnT’05],
[Mohseni-Chang-Cioffi, JSAC’06], [Michel-Wunder, ISIT’07].

Challenges: General QoS & rate demands.
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Broadcast Channel – Outlook & Challenges Network Related Problems

NETWORK RELATED BROADCAST PROBLEMS

Correlated sources over broadcast channels
[Han-Costa, IT’87], [Choi-Pradhan, CISS’05].

Streaming broadcasting
[Cover, IT’98], [Shulman-Feder, ISIT’00, ITW’02].

∗ Fountain capacity a la [Shamai-Telatar-Verdú, ISIT’06] ?

State-dependent broadcast channels
[Gelfand-Pinsker, ITS (Tashkent) ’84]
[Steinberg, IT’05], [Steinberg-Shamai, ISIT’05]
[Sigurjonsson-Kim, ISIT’05].

∗ capacity region ?

Broadcast channels in the wideband regime: first (power) and second (slope)
order optimality [Lapidoth-Telatar-Urbanke, IT’03], [Caire-Tuninetti-Verdú, IT’04].

Error Exponents with/without feedback?
[Haroutunian-Haroutunian-Harutyunyan, FnT’07].
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Conclusions Conclusions

CONCLUDING COMMENTS

The broadcast channel, in its general interpretation, is now a
central building block in modern communication networks.

=⇒ Motivates a plethora of challenging theoretical problems.
=⇒ Interesting theoretical results and techniques inspire approaches

in practical systems, i.e. linear/nonlinear precoding.

Is it some inspiration and a ‘new look’ that we need to settle the
longstanding problems of the full capacity region? Or is it basic
new tools that we lack (binning is not enough!) and neither are
simple manipulations of Fano’s inequality?

∗ Do classical single letter expressions capture the general
broadcast channel setting?
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Conclusions X-Channel: Generalized Feedback

X-CHANNEL WITH GENERALIZED INPUT/OUTPUT FEEDBACK

Generalizations motivated by a network perspective:

The X-channel:
– (encompasses: broadcast, interference and multiple access channels).

receiver−1

receiver−2

encoder−1

encoder−2
X−CHANNEL

GENERALIZED

INPUT/OUTPUT FEEDBACK

D

D

D

D

(M11, M12)

(M21, M22)

(M̂11, M̂21)

(M̂12, M̂22)

1

Recent results [Maddah-Ali-Motahari-Khandani, ISIT’06], [Devroy-Sherif,
ISIT’07], [Jafar-Shamai, arXiv’06] demonstrate interesting features of
multi-antenna X-channels beyond the special cases of multiple access,
broadcast and interference channels with/without cognitive information @
transmitters even in terms of degrees of freedom.
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