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• Base Stations (BSs), macro/pico, 
operate as radio units (RUs)  
[Alcatel-Lucent][China][Rost et al ‘14][Agiwal et al ‘16]. 

• Baseband processing takes place in the “cloud”.  
– Baseband processing includes 

encoding/decoding of 
the messages of 
Mobile Stations (MSs), 
(i.e., User Equipment (UEs)). 

• Fronthaul links carry  
complex (IQ) baseband  
signals. 

• Network utilization of low 
data traffic instances for 
caching. 

Cloud/Fog Radio Access Networks 
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Cloud Radio Access Networks 

Advantages: 

•Low-cost deployment of BSs 

•Effective interference mitigation via joint baseband 
processing 

 

Key challenge: Effective transfer of the IQ signals on the 
fronthaul links [Andrews et al JSAC’14] 
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Cloud Radio Access Networks 
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• Common public radio interface (CPRI) standard based on 
analog-to-digital (ADC)/digital-to-analog converter (DAC)  
[CPRI][IDC] 

 

 

 

 

 

 

 

 

 

… Need for fronthaul compression 

• “Death by Starvation?: backhaul and 5G,” [Lundqvist, CTN-Sep. 2015] 
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Basic Settings 

• Assuming flat-fading channel, the received signal at RU    is given by 
 
 
 
where 

 

 

 

 

• The fronthaul capacity     is normalized to the bandwidth of the 
uplink channel. 

– For any coding block of    symbols,       bits can be transmitted on the    
  th fronthaul link. 
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Point-to-Point Compression 

• A standard way of modeling the compression at RU    is to adopt 
the Gaussian direct “test channel” [ElGamal-Kim ’11, Ch. 3] 

 
 
 
 
where                         represents the quantization noise. 

 

• If the fronthaul capacity      satisfies 
 
 
 
it is possible to design a compression strategy that realizes the given 
quantization error covariance      . 
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[Sanderovich et al ’09] [dCoso-Simoens ’09] [Zhou-Yu ’11]  
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• Using Wyner-Ziv compression, a given quantization error matrix 
       is attainable if the fronthaul capacity        satisfies 

 

 

 

 

• After the quantized IQ signals                 are recovered, the CU 
then performs joint decoding of the signal      sent by all MSs.  

– The uplink sum-rate is given by 

Distributed Fronthaul Compression 
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• Joint decompression and decoding  
[Sanderovich et al ‘09][Lim et al ‘11][Yassaee-Aref ‘11] 

– Potentially larger rates can be achieved with joint decompression and 
decoding (JDD) at the central unit [Sanderovich et al ‘08][Sanderovich et al ‘09]. 

• Now often seen as an instance of noisy network coding [Lim et al ‘11]. 

• Optimal oblivious processing [Aguerri et al ‘17]. 

Distributed Fronthaul Compression 
[Sanderovich et al ’09] [dCoso-Simoens ’09] [Zhou-Yu ’11]  
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• Sum-rate maximization problem with fronthaul capacity constraints is 
generally challenging. 

• In [Park et al TVT’13], a block-coordinate optimization approach was 
proposed for successive WZ decompression case. 

– One optimizes the covariance matrices                      following the 
same order    employed for decompression. 

– At the   th step, for fixed (already optimized) covariances                    , 
the covariance         is obtained by solving 

Distributed Fronthaul Compression 
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• Optimal WZ compressor [dCoso-Simoens ’09] 

 

 

 

 

 

 

 

 

– Unitary transform          decorrelates the received signal streams when 
conditioned on the side information signals                             . 

– Stream-wise multiplication by                        represents the 
compression rate allocation among the streams. 

– Statistical independence among quantization noises                  
implies that the signals are compressed separately. 
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• Compute-and-forward (CoF) [Nazer et al ‘09] 

– The same codebook is used both for channel encoding at all MSs and 
for quantization at RUs. 
 

– Each RU decodes an appropriate (modulo-)sum, with integer weights, of 
the codewords transmitted by MSs. 

• And then sends a bit stream on the fronthaul link that identifies the decoded 
codeword within the lattice code. 

 

– Upon receiving a sufficient number of linear combinations, the CU can 
invert the resulting linear system and recover the transmitted codewords. 
 

– For single-antenna uplink system with            and                     , 
achievable rate per MS is given by 
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• Three-cell SISO circular Wyner model 
 

 



Numerical Example 



CU 
- Each cell contains a single-antenna and 

a single-antenna RU. 

- Inter-cell interference takes place only 

between adjacent cells. 

- The intra-cell and inter-cell channel gains 

are given by 1 and     , respectively. 

- All RUs have a fronthaul capacity of     . 


C
C

C
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• Compare the following schemes 
– Single-cell processing 

• Each RU decodes the signal of the in-cell MS by treating all other MSs’ 
signals as noise. 

– Point-to-point fronthaul compression 

• Each RU compresses the received baseband signal and the quantized 
signals are decompressed in parallel at the control unit. 

– Distributed fronthaul compression [dCoso-Simoens ‘09] 

• Each RU performs Wyner-Ziv coding on the received baseband signal 
and the quantized signals are successively recovered at the control unit. 

• Joint Decompression and Decoding (noisy network coding [Sanderovich et al ‘08]) 

– Compute-and-forward [Hong-Caire ‘11] 

• Each RU performs structured coding. 

– Oblivious processing upper bound 
• RUs cooperate and optimal compression is done over      fronthaul link. 

– Cutset upper bound [Simeone et al ‘12] 

Numerical Example 
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Numerical Example 
=1/ 2 and  b H3 it/s/ zC 

- The performance advantage of 

distributed compression over 

point-to-point compression  

increases as SNR grows larger. 

-  At high SNR, the correlation of 

the received signals at RUs 

becomes more pronounced. 

- Compute-and-Forward 

- At low SNR, its performance  

coincides with single-cell 

processing. 

- RUs tend to decode trivial 

combinations. 

- At high SNR, the fronthaul 

capacity is the main performance 

bottleneck, so CoF shows the 

best performance. 
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Numerical Example 
=1/ 2 and  b H3 it/s/ zC 

- Distributed compression 

- Joint decompression and 

decoding does not provide much 

gain compared to separate 

decompression and decoding. 

- This is because there is not 

much room to improve with 

oblivious processing at the RUs. 
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Numerical Example 
105lo=1/ 2  and  bit/ / zg s HC P 

- When      increases as log(snr), CoF 

is not the best for high SNR. 

- i.e., if      does not limit the  

performance, the oblivious 

compression technique will be 

advantageous than CoF. 
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• In multihop fronthaul networks, 
each RU may have multiple incoming 
and outgoing fronthaul links. 
 

• For example, RU 6 in the figure 
has two incoming and single  
outgoing links. 

 

• Two different operations, 
routing and in-network 
processing, were compared 
in [Park et al TVT’15]. 

Cloud Radio Access Networks 
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Directed Acyclic Graph 

• Multihop fronthaul network modeled as a  
directed acyclic graph (DAG) [Koetter-Medard ‘03] 
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Compression 
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Routing 

• The bits received on the incoming links are simply forwarded on the 
outgoing links without any addition processing. 

• This approach requires the optimization of standard flow variables that 
define the allocation of fronthaul capacity to different bit streams. 

– In [Park et al TVT‘15], the problem was addressed via the Majorization 
Minimization (MM) algorithm [Beck-Teboulle ‘11]. 
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In-Network Processing 

• In a dense deployment of RUs, an RU may be connected to a large number 
of nearby RUs, all of which receive correlated baseband signals. 

• It is possible to combine the correlated baseband signals at the RU in order 
to reduce redundancy. 

     [Park et al TVT‘15] 
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In-Network Processing 
     [Park et al TVT‘15] 

• In in-network processing, the RU must first decompress the received 
bit streams. 

 

• The decompressed baseband signals are linearly processed, along 
with the IQ signal received locally by the RU. 

 

• The in-network processed signal must be recompressed before 
being sent on the outgoing fronthaul links. 

– The effect of the resulting quantization noise must be counterbalanced 
by the advantage of in-network processing. 

 

• The optimization of both routing and in-network processing 
was addressed in [Park et al TVT’15]. 
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4 MSs,  average received per-antenna SNR of 20 dB 
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In-network processing

Routing
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Numerical Results 

- The performance gain of in-network 

processing over routing becomes 

more pronounced as the number 

of RUs in the first layer increases. 

 

- As the density of the RUs’  

deployment increases, it is desirable 

for each RU in layer 2 perform 

in-network processing. 

 

- In-network processing is more 

advantageous when the fronthaul 

links have larger capacity, as the 

distortion introduced by the 

recompression step becomes  

smaller. 

N
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System Model 

• The signal     received by MS    in the downlink 

 

 

 

 

 

 

 

 

• Per-RU power constraint: 
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Point-to-Point Compression 
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Baseband signals for different RUs are separately compressed. 

     [Simeone et al ‘09] 

- For precoding, both linear precoding [Huh et al ‘10] and  

non-linear dirty-paper coding [Costa ‘83] can be considered. 
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Quantization is performed at the central 

unit using the forward test channel 

 

 

where 

• Compressed dirty-paper coding (CDPC) [Simeone et al ‘09] 

Asymmetric Wyner model Downlink: 
Independent Compression 

2 2 2 2 2

per-cell

1 (1 ) 1 2(1 ) (1 )
log

2

P P P
R

         
 
 
 

,m m mX X Q 

System model 

- With constrained backhaul links, we obtain 

 a modified broadcast channel (BC) with  

the added quantization noises. 

- Per-cell sum-rate 
 

 

 

 

 

where      is the effective SNR at the MSs 

decreased from      to P
P

 2
.

1 (1 ) / (2 1) 1C

P
P

P


   

: DPC precoding output,

: quantization noise with ~ (0, / 2 ),

: cell-index, thus is independent over the index .

m

C

m m

m

X

Q Q P

m Q m

CN

28 of 64 pages 



Multivariate Compression 
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     [Park et al TSP‘13] 

Baseband signals for different RUs are jointly compressed. 
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Multivariate Compression 
• Multivariate compression produces compressed signals with 

correlated quantization noises 

• Noise correlation enables finer control of effect quantization at the 
MSs 
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Multivariate Compression 
Lemma 
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[ElGamal-Kim ’11, Ch. 9] 
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• Linear precoding (DPC treated in a similar way) 
 

• Gaussian test channel: 
 

 

• The compressed signal                       is given as 

 

     

    with                                      and 

 

 

 

 (Independent compression is a special case with                       .) 

 
 
 
 
 
 

Multivariate Compression 
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• Weighted sum-rate maximization 
 
 
 
 
 
 
 
where 

 

 

 

 

 

• Difference-of-convex (DC) problem: Local optimum via MM algorithm 

Optimization 
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• Reverse compute-and-forward (RCoF) [Hong-Caire ‘13] 
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• Reverse compute-and-forward (RCoF) [Hong-Caire ‘13] 

– Downlink counterpart of the compute-and-forward (CoF) scheme 
proposed for the uplink in [Nazer et al ‘09]. 

• Exchange the role of BSs and MSs and use CoF in reverse direction. 

– System model 

•   , for all {1, , }.B M iN N L C C i L    L

Central 

encoder 

BS 1 

BS L 

C

C

MS 1 

MS L 

1h

Lh

1z

Lz
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• Reverse compute-and-forward (RCoF) [Hong-Caire ‘13] (ctd’) 

 

 

 

 

 

 

 

 

– The same lattice code is used by each BS. 

– Each MS   estimates a function                   by decoding on the lattice 
code. 

– Achievable rate per MS is given by 
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• Three-cell SISO circular Wyner model 
 

 



Numerical Example 



CU 
- Each cell contains one single-antenna RU 

and one single-antenna MS. 

- Inter-cell interference takes place only 

between adjacent cells. 

- The intra-cell and inter-cell channel gains 

are given by 1 and     , respectively. 

- All RUs have a fronthaul capacity of     . 


C C
C

C
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Numerical Example 
20 dB and =0.5P 

0 2 4 6 8 10 12 14 
0 

1 

2 

3 

4 

5 

6 

C [bits/s/Hz] 

p
e

r-
c
e

ll 
s
u

m
-r

a
te

 [
b

it
s
/s

/H
z
] 

Cut-set upper bound 

Multivariate compression 

Point-to-point compression 

DPC precoding 

Compute-and-forward 

Linear precoding 

Single-cell processing 

- Multivariate compression is significantly 

 advantageous for both linear and DPC 

 precoding. 

- RCoF remains the most effective  

 approach in the regime of moderate  

 fronthaul capacity    , although 

 multivariate compression allows to 

 compensate for most of the rate loss of 

 standard DPC precoding in the low- 

 fronthaul regime. 

- The curve of RCoF flattens before the 

 others do, since it is limited by the  

 integer approximation penalty when the  

 fronthaul capacity is large enough. 

C
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• An illustration of the downlink of multi-cluster cloud radio 
access network 

Inter-Cluster Multivariate Fronthaul Design 

39 of 64 pages 

     [Park et al WCL‘14] 
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• Problem of maximizing weighted sum-rate across multiple 
clusters is a DC problem. 

– The MM approach can be applied to obtain a stationary point [Park et al WCL‘14]. 

Inter-Cluster Multivariate Fronthaul Design 

40 of 64 pages 

     [Park et al WCL‘14] 

- Baseline schemes: 

- Inter-cluster TDMA 

: Activate only a single cluster 

- Intra-cluster design 

: Each cluster is designed  

assuming there is no incoming 

and outgoing inter-cluster 

interference signals. 

 

- Inter-cluster design provides 

significant gains compared to 

inter-cluster TDMA and intra-cluster 

design. 

 

- Advantage of multivariate  

compression is most pronounced 

for inter-cluster design. 
Two clusters, two RUs and UEs per cluster, 

single-antenna at RUs and UEs and fronthaul capacity of 2 bps/Hz 
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• Video-on-demand is driving wireless traffic growth. 

• Predicted to account for almost ¾ traffic by 2019 [Cisco ‘16]. 

• Slowly-changing content popularity is predictable [Pedarsani et al ‘13]. 

Edge Caching 
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• Fog radio access networks (F-RAN) enhances C-RAN by edge 
processing or edge caching at enhanced remote radio heads 
(eRRHs) [MPeng et al arXiv’15][China ‘15][Bi et al ‘16]. 
 

• Advantages over 
C-RAN 

– Centralized interference 
management 

– Reduced fronthaul 
overhead 

– Low latency 

– Higher spectral 
efficiency 

Fog Radio Access Networks 
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eRRH: enhanced RRH 

: cache 

BBU: baseband unit 



System Model 
44 of 64 pages 
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• Phase I. Pre-fetching phase 

 

 

 

 

 

 

– Pre-fetching strategy: What to cache 

Design Space 
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• Phase II. Delivery phase 

 

 

 

 

 

 

– Pre-fetching strategy: What to cache 

 

– Fronthauling mode: What to transmit on the fronthaul links 
• Hard-/Soft-transfer mode 

– Edge transmission strategy: How to transmit on the 
wireless channel 

Design Space 

45 of 64 pages 

Pre-fetching 

Transmission intervals 



• Some pioneering works 

– Receiver-end caching [MAli-Niesen ‘14][MAli-Niesen ‘15] 

– Edge-caching (a.k.a. femto-caching) [Golrezaei et al ‘13] 
  

• Information-theoretic analysis 

– DoF analysis of cache-aided IA [Naderializadeh et al ‘16] 

– Latency tradeoffs in cache-aided wireless networks [Sengupta et al ‘16] 
  

• Pre-fetching phase design 

– Coded caching [Ugur et al ‘15] 

– Fronthaul-aware caching [XPeng et al ‘15], mobility-aware caching [Wang et al ‘16] 

– Stochastic geometry-based analysis of hybrid caching [Chen et al ‘16] 

  

• Delivery phase design 

– Joint design of beamforming and eRRH clustering [Tao et al ‘16] 

– Optimization under hard/soft-transfer fronthauling modes  
[Park-Simeone-Shamai arXiv‘16][Park-Simeone-Shamai SPAWC‘16] 

State-of-the-Art 
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• DoF analysis under the assumption of 
– Single-antenna at each enhanced remote radio head (eRRH) and user equipment (UE), 

i.e., 

– No fronthaul connection between baseband unit (BBU) and eRRHs, i.e.,  

– In addition to edge caching, on-device caching at UEs is also considered. 

• Each UE    can pre-fetch      files. 

 

• Lower/upper bounds on sum-DoF 

 

 
 

– Within a factor of 2 characterization 

– Achievable scheme 
• Collaborative zero-forcing (ZF) at eRRHs 

• Known interference cancellation at UEs 

– Equal contribution of edge and 
on-device caching 

Cache-aided Interference Alignment 
48 of 64 pages 
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• Normalized Delivery Time (NDT) analysis under 
– Single-antenna at each eRRH and UE, i.e., 

– Fronthaul capacity scaling with SNR    , i.e., 

 
where NDT is defined as 

 

• Two approaches are considered for front-wireless transmission 
– Serial fronthaul-wireless transmission 

– Pipelined fronthaul-wireless transmission 

 

• An example of 

– Serial fronthaul/wireless 

• For small fronthaul capacity and  
large caching capacity, cloud  
processing at BBU is not useful. 

– Parallel fronthaul/wireless 

• Cloud processing is always useful. 

Latency Tradeoffs 
49 of 64 pages 
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• Fronthaul-aware pre-fetching 

– Design goal 

• Minimization of average download delay 

– Numerical results 
• Proposed caching outperforms 

conventional pre-fetching policies 
(MPC: Most Popular Cache, LCD: Largest Cache Diversity). 

  

 

 

• Mobility-aware pre-fetching 

– Design goal 

• Minimization of cache failure probability 

• Under coded/uncoded caching 

– Numerical results 
• Mobility-aware design can significantly reduce 

the cache failure probability as compared to 
conventional approach. 

 

Design of Pre-Fetching Policy 
51 of 64 pages 

[XPeng et al ‘15][Wang et al ‘16] 

[XPeng et al ‘15] 

[Wang et al ‘16] 

[XPeng et al ‘15] 

[Wang et al ‘16] 



• Joint design of cooperative beamforming and eRRH 
clustering 
– With the goal of minimizing compound cost function: 

 
 
 

where 

 

 

 

– Optimization process 

• Step 1. Smoothened l0-norm approximation and Semi-definite 
relaxation (SDR) 

• Step 2. Concave-convex procedure (CCCP) based algorithm 

Design of Delivery Phase 
52 of 64 pages 

[Tao et al ‘16][Park-Simeone-Shamai arXiv‘16][Park-Simeone-Shamai SPAWC’16] 

[Tao et al ‘16] 

total fronthaul powerC C C 

fronthaul

power

: Fronthaul cost;

: eRRH transmission power;

: Balancing factor .

C
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• Joint design of cloud and edge processing 
– First studied in                            

with follow-up work 

 

– Design goals 

• Maximizing minimum delivery rate of requested files on the wireless 
channels 

– Subject fixed fronthaul capacity constraints 
 

• Minimizing delivery latency of requested files                               , 
which is given as the sum of 

– Fronthaul latency from BBU to eRRHs 

– Edge latency from eRRHs to UEs 
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• Joint design of cloud and edge processing 
 

– Arbitrary fixed pre-fetching strategies are assumed. 

– Modeling of pre-fetching strategy 

54 of 64 pages 
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[Park-Simeone-Shamai arXiv’16] [Park-Simeone-Shamai SPAWC‘16] 

Design of Delivery Phase 
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• Joint design of cloud and edge processing 
 

– Two different fronthauling modes are considered: 

55 of 64 pages 
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[Park-Simeone-Shamai arXiv’16] [Park-Simeone-Shamai SPAWC‘16] 

Design of Delivery Phase 

i) Hard-transfer fronthauling 

– Fronthaul links are used to transfer 
hard information of files that are 
not cached by eRRHs. 

ii) Soft-transfer fronthauling 

– Fronthaul links are used to transfer 
an encoded and quantized version 
of files that are not cached by 
eRRHs. 



• Joint design of cloud and edge processing 
 

– Numerical results (delivery rate maximization) 
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[Park-Simeone-Shamai arXiv’16] [Park-Simeone-Shamai SPAWC‘16] 

Design of Delivery Phase 

[Park-Simeone-Shamai arXiv’16] 

- A smaller caching capacity can be 
compensated by a larger fronthaul 
capacity    . 
 

- For small    , it is desirable to keep  
the cluster size of hard-transfer mode 
small. 
 

- Soft-transfer mode outperforms the 
hard-transfer mode when the  
fronthaul capacity    is small. 
 

- Hybrid fronthauling scheme shows 
relative gains as compared to the 
hard/soft-transfer schemes. 

( : Maximum cluster size for each file)FN
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• Joint design of cloud and edge processing 
 

– Numerical results (delivery latency minimization) 
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Design of Delivery Phase 

[Park-Simeone-Shamai SPAWC’16] 

- Again, the soft-transfer mode 
outperforms the hard-transfer 
mode when     is small. 
 

- As     decreases, the contribution to 
the latency due to fronthaul transmission 
grows more rapidly than the edge 
latency. 

- Soft-transfer mode seems more  
efficient in the use of fronthaul 
resources 

- by means of baseband 
compression 

C

C
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• Survey of fronthaul designs of Cloud-RAN (C-RAN) inspired by 
network information theory 

 

• Multiterminal compression (distributed compression, multivariate 
compression) and structured coding (compute-and-forward) 

– Multiterminal compression is advantageous over point-to-point 
compression when SNR is large due to increased correlation among the 
baseband signals at RUs. 
 

– Structured coding outperforms all the other schemes in the regime of 
high SNR where fronthaul capacity becomes a main performance 
bottleneck. 

 

– When     scales as           , oblivious coding approaches are 
advantageous over CoF based structured codes. 

Concluding Remarks 
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• Routing and in-network processing for multihop fronthaul networks 

- In the presence of a dense deployment of RUs, it is desirable for RUs to 
perform in-network processing of the bit streams received from a large 
number of incoming fronthaul links. 

 

• Fog-RAN (F-RAN) 

– For joint design of cloud and edge processing, the soft-transfer mode 
outperforms the hard-trasnfer mode when the fronthaul links have small 
capacity due to the more efficient use of fronthaul resources. 

Concluding Remarks 
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• Interesting open problems 

– Impact of CSI quality 

• The control has a different (worse) CSI quality than the distributed RUs. 

• Some related works found in [Park et al TSP’13][Marsch-Fettweis ‘09][Hoydis et al ‘11]. 

• Unreliable fronthaul links [Karasik et al ’13], joint transfer of CSI and baseband 
signals [Kang et al TWC‘14],  
stochastic optimization of precoding and fronthaul compression for the 

downlink of C-RAN with time-varying channels [Kang et al arXiv‘14]  
 

– Improved outer bounds over the cut-set bound 

• Uplink [Wu et al ‘17], downlink [Yang et al ‘16] 

 

– Broadcast approach [Shamai-Steiner ‘03][Verdu-Shamai ‘10] 

• The overall system can be regarded as a broadcast channel with different fading 
states among the MSs. 

• We assume partly known CSI at the cloud processor for this application. 

Concluding Remarks 
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• Interesting open problems (ctd’) 

– Combination of structured codes [Nazer et al ‘09][Hong-Caire ‘13],  
partial decoding [Sanderovich et al ‘09][dCoso-Ibars ‘09], hybrid compression and 
message sharing [Patil-Yu ‘14], multivariate processing [Park et al TSP’13] and 
other relevant approaches as those emerging from noisy network coding 
as well as network information theory (diamond MA networks  
[Liu-Kang ‘14]). 
 

– Different cloud based fronthaul constrained topologies 
clustered cooperation: [Katz-Zaidel-Shamai ‘14][Jain-Kim-Giannakis ‘14] 
[MPeng et al WC‘15], and energy efficiency measures [Dai-Yu ‘16] 

 

– Investigation of fronthaul network with multiple control units 
 

– Structured coding: 
Schemes robust to non-integrality limitations  
[Nazer et al ‘09][Hong-Caire ‘13] and 
Integer forcing techniques and uplink-downlink duality concepts  
[He-Nazer-Shamai ‘14] 

Concluding Remarks 
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• Interesting open problems (ctd’) 

– Linear vs. non-linear precoding in cloud wireless networks with multi RU, 
BS, MS and CU. Optimality vs. Robustness. 

 

– Optimal allocation of layer-1 functionalities, such as synchronization and 
channel estimation, between RUs and control unit 
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  Cloud radio access networks (C-RANs) emerge as appealing architectures for next-
generation wireless/cellular systems  whereby the processing/decoding is migrated 
from the local base-stations/radio units (RUs) to a control/central units (CU) in the 
"cloud". Fog radio access networks (F-RAN) address the case where the RUs are 
enhanced by having the ability of local caching of popular contents. The network 
operates via fronthaul digital links connecting the CU and the RUs. In this talk, we will 
address basic information theoretic aspects  of such networks, with emphasis of simple 
oblivious processing. Theoretical results illustrate the considerable performance gains 
to be expected for different cellular models. Some interesting theoretical directions 
conclude the presentation. 
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