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Abstract—The state-dependent parallel channel with differ-
ently scaled states and a common state-cognitive helper is studied,
in which two transmitters wish to send two messages to their
corresponding receivers respectively over two parallel Gaussian
subchannels. The two Gaussian channels are corrupted by the
same but differently scaled states. The state is not known to
the transmitters nor to the receivers, but known to a helper non-
causally, which assists the receivers to cancel the state. Differently
from previous studies that characterized the capacity region only
in the infinite state power regime and under independent state
corruption at the two receivers, this paper investigates the case
under arbitrary state power and with the same but differently
scaled states. An inner bound on the capacity region is derived
and is compared to an outer bound. Then the channel parameters
are partitioned into various cases, and segments on the capacity
region boundary are characterized for each case.

Index Terms—Dirty paper coding, , Gelf’and-Pinsker scheme,
noncausal channel state information, parallel channel.

I. INTRODUCTION

With the development of cellular systems, to support more
users and higher transmission rates, non-orthogonal multi-user
access (NOMA) has been intensively investigated, where in-
terference cancellation is the key issue for the non-orthogonal
transmission. In this paper, we investigate a type of state-
dependent channels with helper, in which the state is not
known to either transmitters or receivers, but is noncausally
known to a state-cognitive helper. This model captures interfer-
ence cancelation in various practical scenarios. For example,
users in a multi-cell systems may be interfered by a base
station located in other cells. Such a base station, being as the
source that causes the interference, clearly knows the infor-
mation of the interference (modeled by state) and can serve
as a helper to help to cancel the interference. Alternatively,
that base station can also convey the interference information
to other base stations via the back haul network so that other
base station can serve as helpers to cancel the interference.
As a comparison, this type of state-dependent models differ
from the original state-dependent channels studied in e.g., [1]
and [2], in that the state-cognitive helper is not informed of
the transmitters’ messages, and hence its state cancellation
strategies are necessarily independent from message encoding
at the transmitters.

The basic state-dependent Gaussian channel with a helper
was introduced by [3], in which the capacity in the infi-
nite power regime was characterized and was shown to be

achievable by lattice coding. The capacity under arbitrary state
power was established for some special cases in [4]. As more
models, some state-dependent MACs also fall into the type
of state-dependent models with state-cognitive helpers. The
state-dependent asymmetric multiple access channel (MAC)
was studied in [5], in which an inner bound was derived
using Gelfand-Pinsker coding for the state-cognitive user, and
using the regular MAC scheme for the uninformed user. In
[6], the MAC with two states and with each state is known
at one transmitter was studied, and the lattice coding was
used to derive achievable regions. In [7], this channel was
further studied with an additional common message shared
between the informed and the uninformed user. New lower
and upper bounds were derived. In a recent work [8] on the
state-dependent MAC, a new outer bound was derived which
is tighter than the previous bounds. In [4], the state-dependent
MAC with an additional helper was studied, and the partial/full
capacity region was characterized under various channel pa-
rameters. In [9], the state-dependent broadcast channel with
a helper was studied, and an achievable rate region was
derived using single-bin dirty paper coding at the helper and
successive cancellation at the receivers. The capacity region
was characterized under certain channel parameters. Moreover,
some state-dependent relay channel models can also be viewed
as an extension of the state-dependent channel with a helper,
where the relay serves the role of the helper by knowing the
state information. In [10], the state-dependent relay channel
with state non-causally available at the relay is considered. An
achievable rate was derived using a combination of decode-
and-forward, Gelfand-Pinsker binning and codeword splitting.
And in [11], additional noiseless cooperation links with finite
capacity were assumed between the transmitter and the relay,
and various coding techniques were explored.

The most relevant work to this paper is [12], in which the
state-dependent parallel channel with a helper was studied, for
the regime with infinite state power and with two receivers
being corrupted by two independent states. A time-sharing
scheme was proved to be capacity achieving under certain
channel parameters. In contrast, in this paper, the two receivers
of the parallel channel are corrupted by the same but differ-
ently scaled states, and the state can take arbitrary power. In
this case, the time-sharing scheme is no longer optimal.

Thus, in this paper, we derive an inner bound on the



Enc 1 + + + Dec 1

Helper

Enc 2 + + + Dec 2

Sn
Xn

0

b a

Zn1

W1 Xn
1 Y n1 Ŵ1
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Fig. 1: The state-dependent parallel channel with a helper.

capacity region using an achievability scheme that integrates
single-bin dirty paper coding and direct state subtraction. We
then compare such an inner bound with an outer bound that
consists of the capacity of point-to-point channel without state
and an outer bound developed in [3] for the point-to-point
state-dependent channel with a helper. The comparison yields
the capacity region for certain ranges of channel parameters.
More specifically, when the helper’s power is above a certain
threshold and the helper’s signal is scaled the same as the state,
we show that the state interference can be fully canceled for
both channels, and thus the capacity region is the same as that
of the corresponding channel without state.

II. CHANNEL MODEL

In this paper, we study the state-dependent parallel net-
work with a state-cognitive helper, in which two transmitters
communicate with two corresponding receivers over a state-
dependent parallel channel. The two receivers are corrupted
by two differently scaled states, respectively. The state infor-
mation is not know to either the transmitters or the receivers,
but to a helper noncausally. Hence, the helper assists these
receivers to cancel the state interference (see Figure 1).

More specifically, the encoder at transmitter i, fi : Mi →
Xni , maps a message mi ∈

{
1, . . . , 2nRi

}
to a codeword xni ,

for i = 1, 2. The inputs xn1 and xn2 are sent respectively
over the two subchannels of the parallel channel. The two
receivers are corrupted by an independent and identically
distributed (i.i.d.) state sequence sn ∈ Sn, which is known
to a common helper noncausally. Hence, the encoder at the
helper, f0 : Sn → Xn0 , maps the state sequence sn ∈ Sn
into a codeword xn0 ∈ Xn0 . The channel transition probability
is given by PY1|X0X1S ·PY2|X0X2S . The decoder at receiver i,
gi : Yni →Mi, maps a received sequence yni into a message
m̂i ∈ Mi, for i = 1, 2. We assume that the messages are
uniformly distributed over the sets M1 and M2. We define
the average probability of error for a length-n code as follows:

Pe =
1

|M1||M2|

M1∑
m1=1

M2∑
m2=1

P {m̂1 6= m1, m̂2 6= m2} . (1)

Definition 1. A rate pair (R1, R2) is said to be achievable
if there exist a sequence of message sets M(n)

1 and M(n)
2

with
∣∣∣M(n)

1

∣∣∣ = 2nR1 and
∣∣∣M(n)

2

∣∣∣ = 2nR2 , and encoder-

decoder tuples
(
f
(n)
0 , f

(n)
1 , f

(n)
2 , g

(n)
1 , g

(n)
2

)
such that the av-

erage probability of error P (n)
e → 0 as n→∞.

Definition 2. We define the capacity region of the channel as
the closure of the set of all achievable rate pairs (R1, R2).

In this paper, we focus on the Gaussian channel, with the
outputs at the two receivers for one channel use given by

Y1 = X0 +X1 + S + Z1 (2a)

Y2 = bX0 +X2 + aS + Z2 (2b)

where Z1 and Z2 are noise variables with Gaussian distribu-
tions Z1 ∼ N (0, 1) and Z2 ∼ N (0, 1), and S is the state
variable with Gaussian distribution S ∼ N (0, Q). Both the
noise variables and the state variable are i.i.d. over channel
uses. The channel inputs X0, X1, and X2 are subject to the av-
erage power constraints 1

n

∑n
i=1X

2
0i ≤ P0, 1

n

∑n
i=1X

2
1i ≤ P1

and 1
n

∑n
i=1X

2
2i ≤ P2 . The constant a represents the channel

gain of the state sequence in the second subchannel compared
to the first subchannel. Similarly, the constant b is the gain
of the helper signal in the second subchannel compared to
that in the first subchannel. Thus our model presents a general
scenario, where the helper’s power and the state power can be
arbitrary.

Our goal is to characterize the capacity region of
the Gaussian channel under various channel parameters
(a, b, P0, P1, P2, Q).

III. MAIN RESULTS

In this section, we first derive inner and outer bounds on
the capacity region for the state-dependent parallel channel
with a helper. Then by comparing the inner and outer bounds,
we characterize the segments on the capacity region boundary
under various different channel parameters. Some proofs are
omitted due to space limitations.

A. Inner and Outer Bounds

We first derive an achievable region for the channel based
on an achievable scheme that integrates direct state cancella-
tion and single-bin dirty paper coding. More specifically, an
auxiliary random variable (represented by U in Proposition
1) is generated to incorporate the state information so that
each receiver jointly decodes the codeword in the bin and the
message sent by the corresponding transmitter. Based on such
an achievable scheme, we derive the following inner bound on
the capacity region for the discrete memoryless channel.

Proposition 1. For the discrete memoryless state-dependent
parallel channel with a helper under the same but differently
scaled states at the two receivers, an inner bound on the
capacity region consists of rate pairs (R1, R2) satisfying:

R1 ≤ min {I(U,X1;Y1)− I(U ;S), I(X1;Y1|U)} (3a)

R2 ≤ min {I(U,X2;Y2)− I(U ;S), I(X2;Y2|U)} (3b)
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PSPU |SPX0|USPX1
PX2

PY1|SX0X1
PY2|SX0X2

.

We note that the first term in each rate of the above bound
is based on the Gelfand-Pinsker binning scheme and joint
decoding of the state and the message. The second term is
based on successive cancellation of the channel state. More
specifically, each receiver first decodes the helper’s signal and
then uses it to cancel the state, and then, the receiver decodes
the desired signal.

Based on the above inner bound for the discrete memoryless
case, we derive the following inner bound for the Gaussian
channel.

Proposition 2. An inner bound on the capacity region for the
state-dependent parallel Gaussian channel with a helper and
under the same but differently scaled state consists of rate
pairs (R1, R2) satisfying:

R1 ≤ min {f1,1(α, β, P1), g1,1(α, β, P1)} (4a)

R2 ≤ min {fa,b(α, β, P2), ga,b(α, β, P2)} (4b)

where, α and β are real constants satisfying |β| ≤
√
P0/Q,

and

fa,b(α, β, P ) =
1

2
log

P ′0
(
b2P ′0 + (a+ bβ)2Q+ P + 1

)
P ′0Q(bα− a− bβ)2 + P ′0 + α2Q

,

(5a)

ga,b(α, β, P ) =

1

2
log

(
1 +

P
(
P ′0 + α2Q

)
P ′0Q(bα− a− bβ)2 + P ′0 + α2Q

)
, (5b)

where P ′0 = P0 − β2Q.

Proof. The proof follows from Proposition 1 by choosing the
following joint Gaussian distribution for the random variables:

X0 = X ′0 + βS, U = X ′0 + αS

X ′0 ∼ N (0, P ′0), X1 ∼ N (0, P1) X2 ∼ N (0, P2)

where X ′0, S,X1, X2 are independent. Furthermore, X0 has
the following power constraint:

P0 ≥EX2
0 = P ′0 + β2Q.

We note that the above choice of the helper’s signal in-
corporates two parts with X ′0 designed using single-bin dirty
paper coding, and βS acting as state subtraction.

We next present an outer bound which applies the point-
to-point channel capacity and the upper bound derived for the
point-to-point channel with a helper in [3].

Lemma 1. An outer bound on the capacity region of the
states-dependent parallel Gaussian channel with a helper
consists of rate pairs (R1, R2) satisfying:

R1 ≤ min

{
1

2
log

(
1 +

P1

P0 + 2ρ0S
√
P0Q+Q+ 1

)
+

1

2
log
(
(1− ρ20S)P0 + 1

)
,

1

2
log (1 + P1)

} (6a)

R2 ≤ min

{
1

2
log

(
1 +

P2

b2P0 + 2abρ0S
√
P0Q+ a2Q+ 1

)
+

1

2
log
(
(1− ρ20S)b2P0 + 1

)
,

1

2
log (1 + P2)

}
(6b)

for some ρ0S that satisfies −1 ≤ ρ0S ≤ 1.

B. Capacity Region Characterization

In this section, we optimize α and β in Proposition 2, and
compare the rate bounds with the outer bounds in Lemma 1
to characterize the points or segments on the capacity region
boundary.

We first define φa,b(ρ0S , P ) and θa,b(ρ0S , P ) as in (7) for
notational convenience.

Since the inner bound in Proposition 2 is not convex, it
is difficult to provide a close form for the jointly optimized
bounds. Therefore, we first optimize the bounds for R1 and R2

respectively, and then provide conditions on channel param-
eters such that these bounds match the outer bound. Based
on the conditions, we partition the channel parameters into
the sets, in which different segments of the capacity region
boundary can be obtained.

We first consider the rate bound for R1 in (4a). By setting

α1 ,
(1 + β1)P ′0
P ′0 + 1

, β1 , ρ∗0S

√
P0

Q

f1,1(α, β, P1) and g1,1(α, β, P1) take the following form

f1,1(α1, β1, P1) = φ1,1(ρ∗0S , P1)

g1,1(α1, β1, P1) = θ1,1(ρ∗0S , P1)

where ρ∗0S ∈ [−1, 1] maximizes φ1,1(ρ0S , P1). In fact, α1

maximizes f1,1(α, β, P1) for fixed β, and β1 maximizes the
function with α = α1.

If φ1,1(ρ∗0S , P1) ≤ θ1,1(ρ∗0S , P1), R1 = φ1,1(ρ∗0S , P1) is
achievable, and this matches the upper bound in (6a). Thus,
one segment of the capacity region is specified by

R1 = φ1,1(ρ∗0S , P1) (8a)
R2 = min{fa,b(α1, β1, P2), ga,b(α1, β1, P2)} (8b)

We further observe that the second term g1.1(α, β, P1) in
(4a) is optimized by setting α = 1 + β, and hence

g1,1(α, α− 1, P1) =
1

2
log(1 + P1).

If g1,1(α, α− 1, P1) ≤ f1,1(α, α− 1, P1), i.e.,

P ′20 ≥ α2Q(P1 + 1− P ′0), (9)

then the inner bound for R1 becomes R1 = 1
2 log(1 + P1),

which is the capacity of the point-to-point channel without
state and matches the outer bound in (6a). Thus one segment
of the capacity is specified by

R1 =
1

2
log(1 + P1) (10a)

R2 = min{fa,b(α, α− 1, P2), ga,b(α, α− 1, P2)}. (10b)



φa,b(ρ0S , P ) =
1

2
log

(
1 +

P

b2P0 + 2abρ0S
√
P0Q+ a2Q+ 1

)
+

1

2
log
(
(1− ρ20S)b2P0 + 1

)
(7a)

θa,b(ρ0S , P ) =
1

2
log

(
1 +

P
(
(1 + b2P0(1− ρ20S))2 + (1− ρ20S)b2P0(a

√
Q+ bρ0S

√
P0)2

)(
a2Q+ 2abρ0S

√
P0Q+ b2P0 + 1

)
(b2(1− ρ20S)P0 + ‘1)

)
(7b)

We then consider the rate bound for R2. Similarly, the fol-
lowing segments on the capacity boundary can be obtained.
If φa,b(ρ∗∗0S , P2) ≤ θa,b(ρ∗∗0S , P2), one segment of the capacity
region boundary is specified by

R1 = min{f1,1(α2, β2, P1), g1,1(α2, β2, P1)} (11a)
R2 = φa,b(ρ

∗∗
0S , P2) (11b)

where

α2 ,
(a+ bβ2)bP ′0
b2P ′0 + 1

, β2 , ρ∗∗0S

√
P0

Q

and ρ∗∗0S ∈ [−1, 1] maximizes φa,b(ρ0S , P2).
Furthermore, if ga,b(α, α−a/b, P2) ≤ fa,b(α, α−a/b, P2),

one segment of the capacity region boundary is specified by

R1 = min
{
f1,1

(
α, α− a

b
, P1

)
, g1,1

(
α, α− a

b
, P1

)}
(12a)

R2 =
1

2
log(1 + P2). (12b)

Summarizing the above analysis, we obtain the following
characterization of segments of the capacity region boundary.

Theorem 1. The channel parameters (a, b, P0, P1, P2, Q) can
be partitioned into the sets A1,B1, C1, where

A1 = {(a, b, P0, P1, P2, Q) : φ1,1(ρ∗0S , P1) ≤ θ1,1(ρ∗0S , P1)}
C1 = {(a, b, P0, P1, P2, Q) : P ′20 ≥ α2Q(P1 + 1− P ′0)

where P ′0 = P0 − (α− 1)2Q, for some α ∈ Ωα}
B1 = (A1 ∪ C1)c.

If (a, b, P0, P1, P2, Q) ∈ A1, then (8a) − (8b) captures one
segment of the capacity region boundary, where the state can-
not be fully cancelled. If (a, b, P0, P1, P2, Q) ∈ C1, then (10a)
− (10b) captures one segment of the capacity region boundary
where the state is fully cancelled. If (a, b, P0, P1, P2, Q) ∈ B1,
then the R1 segment of the capacity region boundary is not
characterized.

The channel parameters (a, b, P0, P1, P2, Q) can also be
partitioned into the sets A2,B2, C2, where

A2 = {(a, b, P0, P1, P2, Q) : φa,b(ρ
∗∗
0S , P2) ≤ θa,b(ρ∗∗0S , P2)}

C2 = {(a, b, P0, P1, P2, Q) : b2P ′20 ≥ α2Q(P2 + 1− b2P ′0)

where P ′0 = P0 −
(
α− a

b

)2
Q, for some α ∈ Ωα}

B2 = (A2 ∪ C2)c.

If (a, b, P0, P1, P2, Q) ∈ A2, then (11a) − (11b) captures
one segment of the capacity region boundary, where the state
cannot be fully cancelled. If (a, b, P0, P1, P2, Q) ∈ C2, then

(12a) − (12b) captures one segment of the capacity boundary
where the state is fully cancelled. If (a, b, P0, P1, P2, Q) ∈ B2,
then the R2 segment of the capacity region boundary is not
characterized.

The above theorem describes two partitions of the channel
parameters, respectively under which segments on the capacity
region boundary corresponding to R1 and R2 can be char-
acterized. Intersection of two sets, each from one partition,
collectively characterizes the entire segments on the capacity
region boundary.

Figure 2 lists all possible intersection of sets that the channel
parameters can belong to. For each case in Figure 2, we use red
solid line to represent the segments on the capacity region that
are characterized in Theorem 1, and we also mark the value of
the capacity that each segment corresponds to as characterized
in Theorem 1.

One interesting example in Theorem 1 is the case with
a = b, in which R1 and R2 are optimized with the same set
of coefficients α and β when P ′20 ≥ α2Q(P1 + 1 − P ′0) and
a2P ′20 ≥ α2Q(P2+1−a2P ′0). Thus, the point-to-point channel
capacity is obtained for both R1 and R2, with state being fully
cancelled. We state this result in the following theorem.

Theorem 2. If a = b, P ′20 ≥ α2Q(P1 + 1 − P ′0) and
a2P ′20 ≥ α2Q(P2+1−a2P ′0) where P ′0 = P0−(α−1)2Q, for
some α ∈ Ωα then the capacity region of the state-dependent
parallel Gaussian channel with a helper and under the same
but differently scaled states contains (R1, R2) satisfying

R1 ≤
1

2
log(1 + P1)

R2 ≤
1

2
log(1 + P2).

C. Numerical Example

We now examine our results via simulations. We set P1 =
P2 = 5, Q = 12, a = 0.5 and b = 0.5. We plot the lower and
upper bounds for the sum rate of R1+R2. We plot three lower
bounds, corresponding to three cases of α, i.e., α1, α = 1 +β
and α2, respectively. In each case we maximize over ρ0S to
maximize the achievable sum rate. We further plot the upper
bound based on Lemma 1, where we also maximize ρ0S . It
can be observed from Figure 3 that lower bound 1 with α =
α1 matches the upper bound well when the helper’s power
is small, whereas lower bound 2 with α = 1 + β matches
the upper bound well when the helper’s power is large. Both
observations corroborate the characterization of the capacity
in Theorem 1.
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Fig. 2: Segments of the capacity region for all cases of channel parameters.
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Fig. 3: Lower and upper bound on the sum capacity for the
state-dependent parallel channel with a helper.

IV. CONCLUSION

In this paper, we have studied the parallel state-dependent
Gaussian channel with a state-cognitive helper and with the
same but differently scaled states. An inner bound was derived
and was compared to an upper bound, and the segments of
the capacity region boundary were characterized for various
channel parameters. Furthermore, if the helper’s signal and the
state are equally scaled, the full rectangular capacity region of
the two point-to-point channels without state can be achieved.
As future work, we will analyze the case with channels being
corrupted by independent states, and characterize the capacity
region for various channel parameters.
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