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Capacity Characterization for State-Dependent
Gaussian Channel With a Helper
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Abstract— The state-dependent point-to-point Gaussian chan-
nel with a helper is first studied, in which a transmitter
communicates with a receiver via a state-corrupted channel. The
state is not known to the transmitter nor to the receiver, but
known to a helper noncausally, which then wishes to assist the
receiver to cancel the state. Differently from the previous work
that characterized the capacity only in the infinite state power
regime, this paper explores the general case with arbitrary state
power. A lower bound on the capacity is derived based on an
achievable scheme that integrates direct state subtraction and
single-bin dirty paper coding. By analyzing this lower bound and
further comparing it with the existing upper bounds, the capacity
of the channel is characterized for a wide range of channel
parameters. Such an idea of characterizing the capacity is further
extended to study the two-user state-dependent multiple access
channel with a helper. By comparing the derived inner and outer
bounds, the channel parameters are partitioned into appropriate
cases, and for each case, either segments on the capacity region
boundary or the full capacity region are characterized.

Index Terms— Capacity region, channel state, dirty paper
coding, Gel’fand-Pinsker scheme, noncausal state information,
multiple access channel.

I. INTRODUCTION

HELPER-ASSISTED state-dependent models have been
an active research topic recently. The basic point-to-

point model (see Figure 2) was studied in [1], in which a
transmitter wishes to send the message W to a receiver over
the state-corrupted channel, and a helper knows the state
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information noncausally and wishes to assist the receiver to
cancel state interference. The state information is not known
at the transmitter nor at the receiver. Here, the transmitter that
needs to send the message does not know the state, whereas
the helper that knows the state does not know the message.
Such a mismatched property differentiates this channel from
the traditional state-dependent channel studied in [2] and [3],
where the transmitter knows both the message and the state.
Such a model serves as a building block for a number of more
general channel models studied later on, including the state-
dependent multiple-access channel (MAC) [4], [5], its fur-
ther generalization [6], [7], the state-dependent Z-interference
channel [8], and the state-dependent relay channel [9], [10].

In [1], lower and upper bounds on the capacity for the point-
to-point model were derived with the lower bound based on
lattice coding. However, the capacity was established only in
the asymptotic regime as the state power goes to infinity.
Moreover, further studies of more general models did not
provide further capacity results beyond the infinite state power
regime, when the models are specialized to the point-to-point
model. Thus, the capacity in the regime with finite state power
is left as an open problem for this type of state-dependent
channels with a helper.1

The focus of this paper is on the finite state power regime.
Our main contribution lies in characterization of the capacity
of the point-to-point model for a wide range of channel
parameters, and demonstration of applicability of our idea to
characterize the capacity region of the MAC model either
partially or fully for all parameter regimes. There are two
major challenges here: (1) the achievable schemes proposed
previously may not be sufficiently good for finite state power
regime although they are optimal for infinite state power
regime; and (2) the derived lower bounds on the capacity tend
to have complicated forms to capture correlation of the helper’s
input and the state, and hence are difficult to analyze and
compare with upper bounds which may also have complicated
forms as in [1] and [7].

For the point-to-point model with a helper, our achievable
scheme is based on integration of single-bin dirty paper coding
and direct state subtraction (i.e., the helper directly cancels
partial state in the received output) with optimal trade-off
between the two schemes. Such a scheme is equivalent to
the generalized dirty paper coding used in [10] for the state-

1In fact, the interesting case in the finite power regime is when the helper’s
power is less than the state power. Otherwise, it is straightforward to cancel
the state by setting the helper’s signal to cancel the state.
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dependent relay channel, which assumes that the relay input
and state are correlated. A lower bound on the capacity is
derived based on such a scheme, which takes a complicated
form and involves various parameters (i.e., dirty paper parame-
ter and parameter capturing trade-off between two schemes)
to be optimized. Our major novelty lies in identifying two
regimes to analytically optimize the lower bound so that the
optimizing lower bound matches either the upper bound in [1]
or the capacity of the channel without state. We thus establish
the capacity under these regimes, which turns out to cover a
wide range of channel parameters.

Our capacity result can be summarized as follows. If the
helper’s power is relatively small (compared to the transmit-
ter’s power and state power), then the capacity is characterized
as a function of the state power, the helper’s power and the
transmitter’s power. In particular, the capacity is strictly less
than the capacity of the channel without state, which implies
that there exists no achievable scheme that fully cancels the
state interference. Here, direct state subtraction is necessary
for the achievable scheme to be optimal. On the other hand, if
the helper’s power is larger than a threshold, then the channel
achieves the capacity of the channel without state, which
implies that the state can be fully canceled. Here, single-bin
dirty paper coding is optimal and direct state subtraction is
not necessary. Such characterization of the capacity reduces
to the capacity result for infinite state power regime obtained
in the previous studies [1], [5], [7], [8], [10].

We then generalize our analysis to the state-dependent
Gaussian MAC model with a helper, in which two transmitters
send two independent messages to a common state-corrupted
receiver. As in the point-to-point channel, the state sequence
is not known at the transmitters nor at the receiver, but is
noncausally known to a helper, which wishes to assist the
receiver to cancel the state. We first derive an outer bound on
the capacity region, which not only consists of the natural outer
bound given by the capacity region of the channel without
state, but also consists of bounds that capture the impact of
the helper’s power and the state power on the transmission
rates, similarly to the upper bound in [1] for the point-to-point
channel. We then derive an inner bound based on a scheme that
integrates direct state cancellation and single-bin dirty paper
coding. Since the inner and outer bounds are both charac-
terized in complicated forms, direct comparison of the two
regions is challenging. We thus first compare the bounds on
the individual rates and sum rate separately, and characterize
conditions on the channel parameters such that each individual
rate and the sum rate separately achieves its corresponding
outer bound. In this way, we characterize separate segments
on the capacity region boundary. Intersections of conditions
for the individual and sum rates then collectively characterize
channel parameters under which multiple segments on the
capacity boundary are obtained. Based on such an idea, we
partition the channel parameters into appropriate cases, and
characterize segments on the capacity region boundary for
all these cases. Among these cases, we characterize the full
capacity region for one case, which achieves the capacity
region of the Gaussian MAC without state, i.e., the state
is fully canceled. Such a case suggests that if the helper’s

power is large enough, then the state can always be canceled.
However, if the helper’s power is below a threshold, the helper
can assist to fully cancel the state only when the state power
is small enough.

A. Related Work

As mentioned earlier, the point-to-point model we study was
initially studied in [1]. A number of more general models were
then further studied, which include the point-to-point channel
as a special case. More specifically, in [4] and [5], the state-
dependent multiple-access channel (MAC) was studied, which
can be viewed as the point-to-point model with the helper also
having its own message to the receiver. Two more general
state-dependent MACs were studied in [6] and [7], which can
be viewed as the MAC model in [4] and [5] respectively with
the helper further knowing the transmitter’s message and with
one more state corruption known at the transmitter. In [8],
the state-dependent Z-interference channel was studied, which
can be viewed as the point-to-point model with the helper also
having a message to its own receiver. In [9] and [10], the state-
dependent relay channel was studied, which can be viewed
as the point-to-point model with the helper also receiving
information from the transmitter and serving as a relay. When
these models reduce to the point-to-point model here, the
results in [5], [7], [8], and [10] characterize the capacity of the
Gaussian channel as the state power goes to infinity as in [1].
In particular, the achievable scheme in [7] is based on lattice
coding similar to [1], and the scheme in [5], [8], and [10]
can be viewed as single-bin dirty paper coding (i.e., a special
case of dirty paper coding [2], [3] with only one bin). In this
paper, our focus is to characterize the capacity for the finite
state power regime.

Various state-dependent MAC models were studied previ-
ously, which are related but different from the MAC model
with a helper studied in this paper. State-dependent MAC
models with state causally or strictly causally known at the
transmitter were studied in [11]–[15], whereas our model
assumes that the state is noncausally known at the helper.
The two-user MAC with state noncausally known at the
transmitters has been previously studied in various cases.
References [16] and [17] studied the MAC model with state
noncausally known at both transmitters, while [4], [5] assumed
that the state is known only to one transmitter. Reference [6]
studied the cognitive MAC model in which one transmitter
also knows the other transmitter’s message in addition to the
noncausal state information. Furthermore, [7], [18] studied the
model with the receiver being corrupted by two independent
states and each state is known noncausally to one transmitter.
In all these two-user MAC models with noncausal state infor-
mation, at least one transmitter knows the state information,
and can hence encode messages by incorporating the state
information. Our MAC model is different in that only an
additional helper knows the state information and assists to
cancel the state.

B. Practical Motivation

The type of state-dependent models with a helper can arise
from a new perspective of interference cancelation in wireless
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Fig. 1. A practical example of the MAC model with a helper.

networks. The idea can be illustrated via a simple MAC exam-
ple (see Fig. 1). Consider multiple-access communications in
a picocell located inside a macrocell of a cellular network.
It is typical that a macrocell user causes interference to the
picocell users. The macrocell user itself knows the interference
that it causes to the picocell users noncausally because such
interference is in fact the signal that this user sends to its
own receiver (i.e., the base station in the macrocell). Thus,
the interference is referred to as dirty interference (i.e., the
noncausal state sequence in our model) and is denoted as Sn

in Fig. 1. The macrocell user is then able to exploit such
interference (i.e., state) information and send a help signal
(denoted by X0 in Fig. 1) to assist the picocell receiver to
cancel the interference. In this way, a user can assist to cancel
the interference that itself causes to other users by exploiting
its knowledge about the interference. Although the help signal
X0 may also cause interference to the macrocell base station,
as long as the power of X0 is much less than the power of S,
there is still significant gain in throughput. In fact, our results
in this paper demonstrate that the interfering user can use a
relatively small amount of power to completely cancel the
interference that it causes to other users (e.g., the picocell
users in our previous example) even if the interference is as
large as infinite.

C. Organization

The rest of the paper is organized as follows. In Section II,
we present the point-to-point channel model and our character-
ization of the capacity for various channel parameters of this
channel. In Section III, we present the MAC model and our
characterization of the capacity for various parameter regimes
of this channel. In Section IV, we conclude the paper with
several remarks.

II. POINT-TO-POINT CHANNEL WITH A HELPER

A. Channel Model

We consider the state-dependent channel with a helper
(see Fig. 2), in which a transmitter sends a message to a
receiver over the state-dependent channel, and a helper that
knows the state sequence noncausally wishes to assist the
transmission by canceling the state. More specifically, the
transmitter has an encoder f : W → X n , which maps a

Fig. 2. The state-dependent channel with a helper.

message w ∈ W to a codeword xn ∈ X n . The input xn is
transmitted over the channel, which is corrupted by an inde-
pendent and identically distributed (i.i.d.) state sequence Sn .
The state sequence is assumed to be known at neither the
transmitter nor the receiver, but at a helper noncausally. Thus,
the encoder at the helper, f0 : Sn → X n

0 , maps a state
sequence sn ∈ Sn to a codeword xn

0 ∈ X n
0 and sends it over

the channel. The channel is characterized by the transition
probability distribution PY |X0,X,S . The decoder at the receiver,
g : Yn → W , maps a received sequence yn into a message
ŵ ∈ W .

We assume that the message is uniformly distributed over
the set W , and define the average probability of error for a
length-n code as follows.

Pe = 1

|W|
|W |∑

w=1

Pr{ŵ �= w}. (1)

A rate R is achievable if there exist a sequence of message
sets W(n) with |W(n)| = 2nR and encoder-decoder tuples
( f (n)

0 , f (n), g(n)) such that the average probability of error
P(n)

e → 0 as n → ∞. We define the capacity of the channel
to be supremum of all achievable rates R.

In this paper, we focus on the state-dependent Gaussian
channel, with input-output relationship for one channel use
given by

Y = X0 + X + S + N (2)

where the noise variable N and the state variable S are
Gaussian distributed with distributions N ∼ N (0, 1) and
S ∼ N (0, Q), and both variables are i.i.d. over channel uses.
The channel inputs X0 and X are subject to the average power
constraints

1

n

n∑

i=1

X2
0i ≤ P0 and

1

n

n∑

i=1

X2
i ≤ P. (3)

B. Achievable Scheme and Lower Bound

We adopt an achievable scheme that integrates (1) precoding
state into a help signal using single-bin dirty paper coding
and (2) directly subtracting state. The single-bin dirty paper
coding is a special case of dirty paper coding with only one
bin, because the bin number corresponds to the message index
in dirty paper coding, and here the helper does not know the
message to be sent. It has been shown in previous studies that
only single-bin dirty paper coding is sufficient to achieve the
capacity in the infinite state power regime. This is reasonable
because direct state subtraction is not useful when the state
power is infinite. However, for the finite state power regime,
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direct state subtraction can be more efficient and hence should
be included in the achievable scheme. In order to achieve the
best performance, the achievable scheme should include the
two coding schemes with the best trade-off, which results
the following achievable rate.

Proposition 1: For the state-dependent Gaussian channel
with a helper, the following rate is achievable

R ≤ max
(α,β) s.t .

−
√

P0
Q ≤β≤

√
P0
Q

min{R1(α, β), R2(α, β)}, (4)

where

R1(α, β) = 1

2
log

P ′
0(P ′

0 + (1 + β)2 Q + P + 1)

P ′
0 Q(α − 1 − β)2 + P ′

0 + α2 Q
, (5a)

R2(α, β) = 1

2
log

(
1 + P(P ′

0 + α2 Q)

P ′
0 Q(α − 1 − β)2 + P ′

0 + α2 Q

)
,

(5b)

and P ′
0 = P0 − β2 Q.

Proposition 1 is consistent with the achievable rate derived
for the state-dependent relay channel in [10] with the noise
power on the source to relay link set to infinity. However,
the rate expression in [10] is much more complicated due to
existence of the relay. It appears to mask the crucial elements
required in obtaining the capacity results in the present model.
For this reason, we provide a simple proof of achievability that
emphasizes the interplay between state subtraction and dirty-
paper coding. We would also like to note that the optimality
results presented herein (in Section II-C) are new, and were
not known previously to the best of our knowledge.

Proof: We first derive an achievable rate based on single-
bin Gel’fand-Pinsker binning scheme for the discrete memo-
ryless state-dependent channel. For a given distribution PU S ,
a number of un is generated using the marginal distribution
PU , so that for any sn , there exists a un that is jointly
typical with sn . The helper’s input xn

0 is then created based
on PX0|SU . The transmitter’s input xn is created based on PX .
The receiver jointly decodes both un and xn . The following
lemma characterizes the achievable rate based on the above
scheme.

Lemma 1: For the state-dependent point-to-point channel
with a helper, the following rate is achievable

R ≤ min{I (U X; Y ) − I (U ; S), I (X; Y |U)} (6)

for some distribution PX0U S PX PY |X0 X S.
The above rate can also be derived from [8, Proposition 2] by
setting X ′

0 = φ. Detailed proof is relegated to Appendix IV.
Proposition 1 then follows by evaluating the mutual infor-

mation terms in (6) based on the following joint Gaussian
distribution for the random variables

X0 = X00 + βS

U = X00 + αS (7)

where X00 is independent of S and X00 ∼ N (0, P ′
0) with

P ′
0 = P0 − β2 Q and −

√
P0
Q ≤ β ≤

√
P0
Q . �

We note that in (7), the helper’s input X0 contains two parts
with X00 designed using single-bin dirty paper coding, and

βS serving for state subtraction. The parameter β captures
the trade-off between the two schemes. Furthermore, the
achievable rate in (6) can be intuitively understood as follows.
The first term

I (U, X; Y ) − I (U ; S) = I (U, X; Y ) − I (U, X; S),

where (U, X) play the role of the auxiliary variable in
Gel’fand-Pinsker scheme. The second term

I (X; Y |U) = I (U, X; Y ) − I (U ; Y )

can be interpreted as coding via (U, X) but paying the price
needed to convey U to the receiver.

The achievable rate in Proposition 1 is optimized over α
and β. The optimization is a max-min problem, i.e., maxi-
mization of minimum of R1(α, β) and R2(α, β). In general,
such optimization cannot be solved analytically with close-
form expressions. In order to obtain further insights of such
a lower bound, we consider two special cases in which
the optimization is solved analytically and the correspond-
ing achievable rate turns out to achieve the capacity as we
present in Section II-C. The idea is to optimize R1(α, β) and
R2(α, β) separately. For example, when R1(α, β) is optimized,
if R2(α, β) at the optimizing values of α and β is greater
than the optimal R1(α, β), then the corresponding optimal
R1(α, β) is achievable. The same argument is applicable to
optimizing R2(α, β) instead. Such an idea yields the following
two corollaries on the achievable rate.

Corollary 1: For the state-dependent Gaussian channel
with a helper, the following rate R is achievable

R = max−1≤ρ0S≤1
min{R1(ρ0S), R2(ρ0S)} (8)

where
R1(ρ0S)

= 1

2
log

(
1 + P

Q + 2ρ0S
√

P0 Q + P0 + 1

)

+1

2
log(1 + P0 − ρ2

0S P0) (9a)

R2(ρ0S) = 1

2
log

(
1+ P((1+ P0(1−ρ2

0S))
2 + (1−ρ2

0S)P0(
√

Q+ρ0S
√

P0)
2)

(Q + 2ρ0S
√

P0 Q + P0 + 1)(1 + P0 − ρ2
0S P0)

)
.

(9b)
Proof: It can be shown that R1(α, β) is optimized by

α = (1+β)P ′
0

P ′
0+1 . We further set β = ρ0S

√
P0
Q to better illustrate

the result, where −1 ≤ ρ0S ≤ 1. Corollary 1 then follows by
substituting α and β into (5a) and (5b). �

Corollary 2: For the state-dependent Gaussian channel
with a helper, the following rate R is achievable

R = min

{
1

2
log

P ′
0(P ′

0 + α2 Q + P + 1)

P ′
0 + α2 Q

,
1

2
log(1 + P)

}
.

(10)

for some α ∈ �α = {α : 1 −
√

P0
Q ≤ α ≤ 1 +

√
P0
Q }.

Proof: It can be shown that R2(α, β) is optimized by
setting β = α − 1. Corollary 2 then follows by substituting β
into (5a) and (5b). �
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C. Capacity Characterization

In order to characterize the capacity, we first present two
useful upper bounds on the capacity. In [1], the following
upper bound on the capacity was derived.

Lemma 2: The capacity of the state-dependent Gaussian
channel with a helper is upper bounded as

C ≤ max−1≤ρ0S≤1

1

2
log

(
1 + P

Q + 2ρ0S
√

P0 Q + P0 + 1

)

+1

2
log(1 + P0 − ρ2

0S P0). (11)
It is also clear that the capacity of the channel between the
transmitter and receiver without state serves as an upper bound
on the capacity of the state-dependent channel.

Lemma 3: The capacity of the state-dependent Gaussian
channel with a helper is upper bounded as

C ≤ 1
2 log(1 + P). (12)

By comparing the achievable rate in Corollary 1 with the
upper bound in Lemma 2, we characterize the capacity for
various channel parameters in the following theorem.

Theorem 1: For the state-dependent Gaussian channel with
a helper, suppose ρ∗

0S maximizes R1(ρ0S) in (9a).
If the channel parameters satisfy the following condition:

R1(ρ
∗
0S) ≤ R2(ρ

∗
0S), (13)

where R2(ρ0S) is given in (9b), then the channel capacity
C = R1(ρ

∗
0S).

Proof: Due to Corollary 1 and the condition (13), R1(ρ
∗
0S)

is achievable. Since such an achievable rate matches the upper
bound in Lemma 2, it is thus the capacity of the channel. �
We note that for channels that satisfy the condition (13), the
capacity R1(ρ

∗
0S) is less than the capacity of the channel

without the state. Thus, in such cases, the state interference
cannot be fully canceled by any scheme.

Furthermore, by comparing the achievable rate in Corol-
lary 2 with the upper bound in Lemma 3, we further charac-
terize the capacity for an additional set of channel parameters.

Theorem 2: For the state-dependent Gaussian channel with
a helper, if the channel parameters satisfy the following
condition:

P ′2
0 ≥ α2 Q(P + 1 − P ′

0) (14)

where P ′
0 = P0 − (α − 1)2 Q holds for some α ∈ �α =

{α : 1 −
√

P0
Q ≤ α ≤ 1 +

√
P0
Q }, then the channel capacity

C = 1
2 log(1 + P).

Proof: Due to Corollary 2 and the condition (14), the
rate 1

2 log(1 + P) is achievable. Since such an achievable rate
matches the upper bound in Lemma 3, it is thus the capacity
of the channel. �
It is clear that under the condition (14), the state-dependent
channel achieves the capacity of the channel without state.
Thus, the state can be fully cancelled even if the state-cognitive
node (i.e., the helper) does not know the message.

We further note that as the state power Q goes to infin-
ity, Theorems 1 and 2 collectively characterize the capacity
established in the previous studies [1], [5], [7], [8], [10].

Fig. 3. Lower and upper bounds on the capacity for the state-dependent
channel with a helper.

Fig. 4. Ranges of parameters for which the capacity is characterized.

D. Numerical Result

In this section, we demonstrate our characterization of the
capacity via numerical plots.

In Fig. 3, we fix P = 5, and Q = 12, and plot the lower
bounds in Corollaries 1 and 2 and the upper bounds in Lemmas
2 and 3 as functions of the helper’s power P0. It can be seen
that the lower bound 1 in Corollary 1 matches the upper bound
1 in Lemma 2 when P0 ≤ 2.5, which corresponds to the
capacity characterization in Theorem 1, and the lower bound
2 in Corollary 2 matches the upper bound 2 in Lemma 3 when
P0 ≥ 4.5, which corresponds to the capacity characterization
in Theorem 2. The numerical result also suggests that when
P0 is small, the channel capacity is limited by the helper’s
power and increases as the helper’s power P0 increases.
However, as P0 becomes large enough, the channel capacity
is determined only by the transmitter’s power P , in which
case the state is perfectly canceled. We further note that the
channel capacity without state can even be achieved when
P0 < Q (e.g., 4.5 ≤ P0 ≤ 10). This implies that for these
cases, the state is fully cancelled not only by state subtraction,
but also by precoding the state via single-bin dirty paper
coding. We finally note that a better achievable rate can be
achieved by the convex envelop of the two lower bounds,
which does not yield further capacity result and is not shown
in Fig. 3.

In Fig. 4, we fix P = 5, and plot the range of the
channel parameters (Q, P0) for which we characterize the
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Fig. 5. The state-dependent MAC with a helper.

capacity. Each point in the figure corresponds to one para-
meter pair (Q, P0). The upper shaded area corresponds to
channel parameters that satisfy (14), i.e., P0 is large enough
compared to Q, and hence the capacity of the channel without
state can be achieved. The lower shaded area corresponds to
channel parameters that satisfy (13), and hence the capac-
ity is characterized by a function of not only P , but also
P0 and Q.

III. MAC WITH A HELPER

A. Channel Model

We consider the state-dependent MAC with a helper
(as shown in Fig. 5), in which transmitter 1 sends a mes-
sage W1, and transmitter 2 sends a message W2 to the
receiver. The encoder fk : W → X n

k at transmitter k
maps a message wk ∈ Wk to a codeword xn

k ∈ X n
k for

k = 1, 2. The two inputs xn
1 and xn

2 are transmitted over
the MAC to a receiver, which is corrupted by an i.i.d.
state sequence Sn . The state sequence is known to neither
the transmitters nor the receiver, but is known to a helper
noncausally. Hence, the helper assists the receiver to cancel
the state interference. The encoder f0 : Sn → X n

0 at the
helper maps the state sequence sn ∈ Sn into a codeword xn

0 ∈
X n

0 . The channel transition probability is given by PY |X0 X1 X2 S .
The decoder g : Yn → (W1,W2) at the receiver maps
the received sequence yn into two messages ŵk ∈ Wk for
k = 1, 2.

The average probability of error for a length-n code is
defined as

P(n)
e = 1

|W1||W2|
|W1|∑

w1=1

|W2|∑

w2=1

Pr{(ŵ1, ŵ2) �= (w1, w2)}.

(15)

A rate pair (R1, R2) is achievable if there exist a sequence of
message sets W(n)

k with |W(n)
k | = 2nRk for k = 1, 2, and

encoder-decoder tuples ( f (n)
0 , f (n)

1 , f (n)
2 , g(n)) such that the

average error probability P(n)
e → 0 as n → ∞. We define the

capacity region to be the closure of the set of all achievable
rate pairs (R1, R2).

We focus on the state-dependent Gaussian channel with the
output at the receiver for one channel use given by

Y = X0 + X1 + X2 + S + N (16)

where the noise variables N ∼ N (0, 1), and S ∼
N (0, Q). Both the noise variables and the state variable

are i.i.d. over channel uses. The channel inputs X0, X1
and X2 are subject to the average power constraints P0, P1
and P2.

Our goal is to characterize the capacity region of
the Gaussian channel under various channel parameters
(P0, P1, P2, Q).

B. Outer and Inner Bounds

We first provide an outer bound on the capacity region as
follows, in which the first terms in the “min” improve the
corresponding bounds give in [19].

Proposition 2: An outer bound on the capacity region of the
state-dependent Gaussian MAC with a helper consists of rate
pairs (R1, R2) satisfying:

R1 ≤ min
{1

2
log(1 + P1

Q + 2ρ0S
√

P0 Q + P0 + 1
)

+1

2
log(1 + P0 − ρ2

0S P0),
1

2
log(1 + P1)

}
(17a)

R2 ≤ min
{1

2
log(1 + P2

Q + 2ρ0S
√

P0 Q + P0 + 1
)

+1

2
log(1 + P0 − ρ2

0S P0),
1

2
log(1 + P2)

}
(17b)

R1 + R2 ≤ min
{1

2
log(1 + P1 + P2

Q + 2ρ0S
√

P0 Q + P0 + 1
)

+1

2
log(1 + P0 − ρ2

0S P0),
1

2
log(1 + P1 + P2)

}

(17c)

for some ρ0S that satisfies −1 ≤ ρ0S ≤ 1.
Proof: See Appendix B. �

The second terms in the “min” in (17a)-(17c) capture the
capacity region of the Gaussian MAC without state. If these
bounds dominate the outer bound, then it is possible to design
achievable schemes to fully cancel the state. Otherwise, if
the first terms in the “min” in (17a)-(17c) dominate the outer
bound, then the state cannot be fully canceled by any scheme,
and the capacity region of the state-dependent MAC is smaller
than that of the MAC without state.

We next derive an achievable region for the channel based
on an achievable scheme that integrates direct state cance-
lation and single-bin dirty paper coding. In particular, since
the helper does not know the messages, dirty paper coding
naturally involves only one bin. More specifically, an aux-
iliary random variable (represented by U in Proposition 3)
is generated to incorporate the state information so that the
receiver decodes such variable first to cancel the state and
then decode the transmitters’ information. Based on such an
achievable scheme, we derive the following inner bound on
the capacity region.

Proposition 3: For the discrete memoryless state-dependent
MAC with a helper, an inner bound on the capacity region
consists of rate pairs (R1, R2) satisfying:

R1 ≤ min{I (X1; Y |X2, U), I (U, X1; Y |X2)− I (U ; S)}
(18a)

R2 ≤ min{I (X2; Y |X1, U), I (U, X2; Y |X1)− I (U ; S)}
(18b)
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R1+ R2 ≤ min{I (X1, X2; Y |U), I (U, X1, X2; Y )− I (U ; S)}
(18c)

for some distribution PS PU |S PX0|U S PX1 PX2 PY |S X0 X1 X2 .
Proof: See Appendix C. �

Based on the above inner bound, we derive the following
inner bound for the Gaussian channel.

Proposition 4: For the state-dependent Gaussian MAC with
a helper, an inner bound on the capacity region consists of rate
pairs (R1, R2) satisfying:

R1 ≤ min{ f (α, β, P1), g(α, β, P1)} (19a)

R2 ≤ min{ f (α, β, P2), g(α, β, P2)} (19b)

R1 + R2 ≤ min{ f (α, β, P1 + P2), g(α, β, P1 + P2)} (19c)

for some real constants α and β satisfying −
√

P0
Q ≤ β ≤

√
P0
Q .

In the above bounds,

f (α, β, P) = 1

2
log

P ′
0(P ′

0 + (1 + β)2 Q + P + 1)

P ′
0 Q(α − 1 − β)2 + P ′

0 + α2 Q
, (20)

g(α, β, P) = 1

2
log

(
1 + P(P ′

0 + α2 Q)

P ′
0 Q(α − 1 − β)2 + P ′

0 + α2 Q

)
,

(21)

where P ′
0 = P0 − β2 Q.

Proof: The region follows from Proposition 3 by choosing
the joint Gaussian distribution for random variables as follows:

U = X ′
0 + αS, X0 = X ′

0 + βS,

X ′
0 ∼ N (0, P ′

0), X1 ∼ N (0, P1), X2 ∼ N (0, P2)

where X ′
0, X1, X2, S are independent. The constraint on β

follows due to the power constraint on X0. �
We note that the above construction of the input X0 of
the helper reflects two state cancelation schemes: the term
βS represents direct cancelation of some state power in the
output of the receiver; and the variable X ′

0 is used for dirty
paper coding via generation of the state-correlated auxiliary
variable U . Hence, the parameter β controls the balance of
two schemes in the integrated scheme, and can be optimized
to achieve the best performance. This scheme is also equivalent
to the one with U = X0 +αS, where X0 and S are correlated.
While such approaches have been considered in the literature
(see e.g., [4]), we believe that selecting U and X0 succes-
sively provides a more operational meaning to the correlation
structure.

C. Capacity Characterization

By comparing the inner and outer bounds provided in
Section III-B, we characterize the capacity region or segments
on the capacity boundary in various channel cases. Our idea
is to separately analyze the bounds (19a)-(19c) in the inner
bound and characterize conditions on the channel parameters
(P0, P1, P2, Q) under which these bounds respectively meet
the bounds (17a)-(17c) in the outer bound. In such cases, the
corresponding segment on the capacity region is characterized.

We first consider the bound on R1 in (19a). Let

α1 = (1 + β1)P ′
0

P ′
0 + 1

, β1 = ρ∗
0S

√
P0

Q
. (22)

Then f (α, β, P1) takes the following form

f (α1, β1, P1) = 1

2
log

(
1 + P1

Q + 2ρ∗
0S

√
P0 Q + P0 + 1

)

+1

2
log(1 + P0 − ρ∗2

0S P0) (23)

where ρ∗
0S ∈ [−1, 1] maximizes

1

2
log

(
1+ P1

Q+2ρ0S
√

P0 Q+ P0+1

)+ 1

2
log(1+ P0 − ρ2

0S P0).

In fact, α1 is set to maximize f (α, β, P1) for fixed β, and β1
is set to maximize the function with α being replaced by α1.
If f (α1, β1, P1) ≤ g(α1, β1, P1), then R1 = f (α1, β1, P1) is
achievable, and this meets the outer bound (the first term in
“min” in (17a)). Thus, one segment of the capacity region is
specified by R1 = f (α1, β1, P1).

Furthermore, we set β = α − 1 and then obtain:

g(α, α − 1, P1) = 1
2 log(1 + P1). (24)

If g(α, α − 1, P1) ≤ f (α, α − 1, P1), i.e., P ′2
0 ≥ α2 Q(P1 +

1− P ′
0) where P ′

0 = P0 −(α−1)2 Q holds for some α ∈ �α =
{α : 1 −

√
P0
Q ≤ α ≤ 1 +

√
P0
Q }, then R1 = 1

2 log(1 + P1) is
achievable, and this meets the outer bound (the second term
in “min” in (17a)). This also equals the maximum rate for R1
when the channel is not corrupted by state. Thus, one segment
of the capacity region is specified by R1 = 1

2 log(1 + P1).
Similarly, following the above arguments, segments on the

capacity region boundary corresponding to bounds on R2 and
R1 + R2 can be characterized.

Summarizing the above analysis, we obtain the following
characterization of segments of the capacity region boundary.

Theorem 3: The channel parameters (P0, P1, P2, Q) can be
partitioned into the sets A1,B1, C1, where

A1 = {(P0, P1, P2, Q) : f (α1, β1, P1)≤g(α1, β1, P1)}
C1 = {(P0, P1, P2, Q) : P ′2

0 ≥ α2 Q(P1 + 1 − P ′
0)

where P ′
0 = P0 − (α − 1)2 Q, for some α ∈ �α}

B1 = (A1 ∪ C1)
c.

If (P0, P1, P2, Q) ∈ A1, then R1 = f (α1, β1, P1) cap-
tures one segment of the capacity region boundary, where
the state cannot be fully canceled. If (P0, P1, P2, Q) ∈ C1,
then R1 = 1

2 log(1 + P1) captures one segment of the
capacity region boundary, where the state is fully canceled.
If (P0, P1, P2, Q) ∈ B1, R1 segment of the capacity region
boundary is not characterized.

The channel parameters (P0, P1, P2, Q) can alternatively
be partitioned into the sets A2,B2, C2, where

A2 = {(P0, P1, P2, Q) : f (α2, β2, P2)≤g(α2, β2, P2)}
C2 = {(P0, P1, P2, Q) : P ′2

0 ≥ α2 Q(P2 + 1 − P ′
0)

where P ′
0 = P0 − (α − 1)2 Q, for some α ∈ �α}

B2 = (A2 ∪ C2)
c,

where α2, β2 are defined similarly to (22) with P1 being
replaced by P2. If (P0, P1, P2, Q) ∈ A2, then R2 =
f (α2, β2, P2) captures one segment of the capacity region
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Fig. 6. Segments of the capacity region for all cases of channel parameters.

boundary, where the state cannot be fully canceled. If
(P0, P1, P2, Q) ∈ C2, then R2 = 1

2 log(1 + P2) captures one
segment of the capacity region boundary, where the state is
fully canceled.

Furthermore, the channel parameters (P0, P1, P2, Q) can
also be partitioned into the sets A3,B3, C3, where

A3 = {(P0, P1, P2, Q) :
f (α3, β3, P1 + P2) ≤ g(α3, β3, P1 + P2)}

C3 = {(P0, P1, P2, Q) : P ′2
0 ≥ α2 Q(P1 + P2 + 1 − P ′

0)

where P ′
0 = P0 − (α − 1)2 Q, for some α ∈ �α}

B3 = (A3 ∪ C3)
c,

where α3, β3 are defined similarly to (22) with P1 being
replaced by P1 + P2. If (P0, P1, P2, Q) ∈ A3, then R1 +

R2 = f (α3, β3, P1 + P2) captures one segment of the
sum capacity, where the state cannot be fully canceled.
If (P0, P1, P2, Q) ∈ C3, then R1 + R2 = 1

2 log(1 + P1 + P2)
captures one segment of the sum capacity, where the state is
fully canceled.

The above theorem describes three partitions of the chan-
nel parameters respectively characterizing segments on the
capacity region corresponding to R1, R2 and R1 + R2. Then
intersection of three sets (with each from one partition)
collectively characterizes all segments on the capacity region
boundary. For example, if a given channel parameter tuple
satisfies (P0, P1, P2, Q) ∈ (C1

⋂ C2
⋂A3), then following

Theorem 3, line segments characterized by R1 = 1
2 log(1+P1),

R2 = 1
2 log(1+ P2), and R1 + R2 = f (α3, β3, P1 + P2) are on

the capacity region boundary. Since parameters α and β that
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achieve these segments are not the same, the intersection of
these segments are not on the capacity region boundary.

Fig. 6 lists all possible intersections of sets that the channel
parameters can belong to. In principle, there should be 33 = 27
cases. We further note that if (P0, P1, P2, Q) ∈ C3, they must
belong to C1 and C2. Hence, the total number of cases becomes
32 × 2 + 1 = 19. For each case in Fig. 6, we use the solid red
lines to represent the segments on the capacity region that are
characterized in Theorem 3, and we also mark the value of the
capacity that each segment corresponds to as characterized in
Theorem 3.

We note that for several cases, segments on the capac-
ity region boundary are characterized to be strictly inside
the capacity region of the MAC without the state, i.e., the
state cannot be fully canceled. For example, for cases with
(P0, P1, P2, Q) ∈ (A1

⋂A2
⋂A3) and (A1

⋂ C2
⋂A3),

sum capacity segments are characterized to be smaller than
the sum capacity of the MAC without state. These cases
include mostly channel parameters with finite Q, and thus
contain much larger sets of channel parameters than [19] that
characterizes such sum capacity segment only for infinite Q.

We further note an interesting case (the last case in Fig. 6),
for which the capacity region is fully characterized. We state
this result in the following theorem.

Theorem 4: If (P0, P1, P2, Q) ∈ (C1
⋂ C2

⋂ C3), i.e.,

P ′2
0 ≥ α2 Q(P1 + P2 + 1 − P ′

0), (25)

whereP ′
0 = P0 − (α − 1)2 Q, for some α ∈ �α then the

capacity region of the state-dependent Gaussian MAC contains
(R1, R2) satisfying

R1 ≤ 1

2
log(1 + P1)

R2 ≤ 1

2
log(1 + P2)

R1 + R2 ≤ 1

2
log(1 + P1 + P2)

which achieves the capacity region of the Gaussian MAC
without state.

Theorem 4 implies that the state is fully canceled if the
channel parameters satisfy the condition (25). We further note
two special sets of channel parameters in this case. First, if
P0 ≥ Q, then α = 0 ∈ �α and the condition clearly holds.
This is not surprising because the helper has enough power to
directly cancel the state. Secondly, if P1 + P2 + 1 ≤ P0 < Q,
then the condition holds for α = 1 ∈ �α for arbitrarily
large Q. This implies that if the helper’s power is above a
certain threshold, then the state can always be canceled for
arbitrary state power Q (even for infinite Q).

IV. CONCLUSION

In this paper, we studied the state-dependent point-to-point
channel with a helper. Our achievable scheme is based on inte-
gration of state subtraction and single-bin dirty paper coding.
By analyzing the corresponding lower bound on the capacity,
and comparing to the existing upper bounds, we characterize
the capacity for various channel parameters. We anticipate
that our way of analyzing the lower bound and characterizing

the capacity can be applied to characterizing the capacity for
other state-dependent networks. We further point out a closely
related problem of state masking [20], state amplification [21],
assisted interference suppression [22], [23], which has a sim-
ilar goal of minimizing the impact of the state on the output.
It will be interesting to explore if the understanding here can
shed any insight on state masking.

APPENDIX A

PROOF OF LEMMA 1

We use random codes and fix the following joint
distribution:

PSU X0 XY0 = PS PU |S PX0|U S

·PX PY |X0 X S.

Let T n
ε (PSU X0 XY ) denote the strongly joint ε-typical set

(see, e.g., [24, Sec. 10.6], [25, Sec. 1.3] for definition)
based on the above distribution. For a given sequence xn , let
T n

ε (PU |X |xn) denote the set of sequences un such that (un, xn)
is jointly typical based on the distribution PXU .

1) Codebook Generation

• Generate 2nR̃ i.i.d. codewords un(t) according to
P(un) = ∏n

i=1 PU (ui ) for the fixed marginal proba-
bility PU as defined, in which t ∈ [1, 2nR̃]. · · · , 2nR1

• Generate 2nR i.i.d. codewords xn(w) according to
P(xn) = ∏n

i=1 PX (xi) for the fixed marginal prob-
ability PX as defined, in which w ∈ [1, 2nR].

2) Encoding

• Encoder at the helper: For given sn , select t̃ such
that (un(t̃), sn) ∈ T n

ε (PS PU |S). If un(t̃) cannot be
found, set t̃ = 1. Then map (sn, un(t̃)) into xn

0 =
f (n)
0 (sn, un(t̃)). Based on the rate distortion type of

argument [24, Sec. 10.5] or the Covering Lemma
[26, Sec. 3.7], it can be shown that such un(t̃) exists
with high probability for large n if

R̃ > I (U ; S). (26)

• Encoder at the transmitter: Given w, map w into
xn(w).

3) Decoding

• Decoder: Given yn , find a pair (t̂, ŵ) such that
(un(t̂), xn(ŵ), yn) ∈ T n

ε (PU XY ). If no or more than
one such pair can be found, then declare an error.
It can be shown that decoding is successful with
small probability of error for sufficiently large n if
the following conditions are satisfied

R ≤ I (X; Y |U), (27)

R̃ ≤ I (U ; Y |X), (28)

R + R̃ ≤ I (U X; Y ). (29)

We note that (28) corresponds to the decoding error for
the index t , which is not the message of interest. Hence, the
bound (28) can be removed. Hence, combining (26), (27),
and (29), and eliminating R̃, we obtain the desired achievable
rate in Lemma 1.
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APPENDIX B

PROOF OF PROPOSITION 2

The second bounds in “min” in (17a)-(17c) follow from the
capacity of the Gaussian MAC without state. The remaining
bounds arise due to capability of the helper for assisting state
cancelation and are derived as follows.

Consider a (2nR1, 2nR2 , n) code with an average error prob-
ability P(n)

e . The probability distribution on W1 × W2 × Sn ×
Xn

0 × Xn
1 × Xn

2 × Y n is given by

PW1W2 Sn Xn
1 Xn

2 Xn
0 Y n = PW1 PW2

[
n∏

i=1

PSi

]
PXn

1 |W1

PXn
2 |W2 PXn

0 |Sn

n∏

i=1

PYi |X1i X2i X0i Si . (30)

By Fano’s inequality, we have

H (W1W2|Y n) ≤ n(R1 + R2)P(n)
e + 1 = nδn (31)

where δn → 0 as n → +∞.
We first bound R1 based on Fano’s inequality as follows:

n R1 ≤ I (W1; Y n) + nδn

≤ I (Xn
1 ; Y n) + nδn

= H (Xn
1) − H (Xn

1 |Y n) + nδn

(a)≤ H (Xn
1 |Xn

2 ) − H (Xn
1 |Xn

2 Y n) + nδn

= I (Xn
1 ; Y n|Xn

2) + nδn

= H (Y n|Xn
2) − H (Y n|Xn

1 Xn
2 )] + nδn

= H (Y n|Xn
2) − H (SnY n |Xn

1 Xn
2 )

+ H (Sn|Xn
1 Xn

2 Y n) + nδn

= H (Y n|Xn
2) − H (Y n|Sn Xn

1 Xn
2 ) − H (Sn|Xn

1 Xn
2 )

+ H (Sn|Xn
1 Xn

2 Y n) + nδn

≤ H (Y n|Xn
2) − H (Y n|Sn Xn

0 Xn
1 Xn

2 ) − H (Sn)

+ H (Sn|Xn
1 Xn

2 Y n) + nδn

(b)≤
n∑

i=1

[H (Yi |X2i ) − H (Yi |Si X0i X1i X2i ) − H (Si )

+ H (Si |X1i X2i Yi )] + nδn (32)

where (a) follows because Xn
1 and Xn

2 are independent, and
(b) follows because Sn is an i.i.d. sequence.

We bound the first term in the above equation as

1

n

n∑

i=1

h(Yi |X2i )

≤ 1

2n

n∑

i=1

log 2πe(V ar(X1i + X0i + Si + Ni ))

= 1

2n

n∑

i=1

log 2πe(V ar(X1i) + V ar(X0i + Si ) + V ar(Ni ))

≤ 1

2n

n∑

i=1

log 2πe
(

E[X2
1i ] + E[X2

0i ] + 2E(X0i Si )

+ E[S2
i ] + E[N2

i ])
)

≤ 1

2
log 2πe

(
1

n

n∑

i=1

E[X2
1i ] + 1

n

n∑

i=1

E[X2
0i ]

+ 2

n

n∑

i=1

E(X0i Si ) + 1

n

n∑

i=1

E[S2
i ] + 1

n

n∑

i=1

E[N2
i ])

)

≤ 1

2
log 2πe

(
P1 + P0 + Q + 1 + 2

n

n∑

i=1

E(X0i Si )

)

≤ 1

2
log 2πe

(
P1 + P0 + Q + 1 + 2ρ0s

√
P0 Q

)
(33)

where ρ0s = 1
n
√

P0 Q

∑n
i=1 E(X0i Si ).

It is easy to obtain bounds on the second and third terms
in (32) as follows.

1

n

n∑

i=1

H (Yi |Si X0i X1i X2i ) = 1

2
log 2πe (34)

1

n

n∑

i=1

H (Si ) = 1

2
log 2πeQ (35)

We next bound the last term in (32) as follows.

1

n

n∑

i=1

h(Si |X1i X2i Yi )

= 1

n

n∑

i=1

h(Si |X0i + Si + Ni )

≤ 1

n

n∑

i=1

h(Si − α(X0i + Si + Ni )|X0i + Si + Ni )

≤ 1

n

n∑

i=1

h(Si − α(X0i + Si + Ni ))

= 1

2
log 2πe(α2 P0 + (1 − α)2 Q

− 2α(1 − α)ρ0s

√
P0 Q + α2)

= 1

2
log 2πe

(
Q + (P0 − ρ2

0S P0)Q)

Q + 2ρ0S
√

P0 Q + P0 + 1

)
(36)

where the last equation follows by setting α =
ρ0s

√
P0 Q+Q

1+P0+Q+2ρ0s
√

P0 Q
so that Si − α(X0i + Si + Ni ) and

X0i + Si + Ni are uncorrelated.
Combining the above four bounds, we obtain the following

upper bound on R1.

R1 ≤ 1

2
log 2πe(1 + P0 + P1 + Q + 2ρ0s

√
P0 Q)

− 1

2
log 2πe − 1

2
log 2πeQ

+ 1

2
log 2πe

(
Q + (P0 − ρ2

0S P0)Q)

Q + 2ρ0S
√

P0 Q + P0 + 1

)

≤ 1

2
log(1 + P1

Q + 2ρ0S
√

P0 Q + P0 + 1
)

+ 1

2
log(1 + P0 − ρ2

0S P0) (37)
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Similarly, we can derive an upper bound for R2 as

R2 ≤ 1

2
log(1 + P2

Q + 2ρ0S
√

P0 Q + P0 + 1
)

+ 1

2
log(1 + P0 − ρ2

0S P0). (38)

We further bound R1 + R2 following similar arguments. We
highlight some important steps below.

n(R1 + R2) ≤ I (W1W2; Y n) + nδn

≤ I (Xn
1 Xn

2 ; Y n) + nδn

= H (Y n) − H (Y n|Xn
1 Xn

2 ) + nδn

= H (Y n) − H (SnY n|Xn
1 Xn

2 )

+ H (Sn|Xn
1 Xn

2 Y n) + nδn

= H (Y n) − H (Y n|Sn Xn
1 Xn

2 ) − H (Sn|Xn
1 Xn

2 )

+ H (Sn|Xn
1 Xn

2 Y n) + nδn

≤ H (Y n) − H (Y n|Sn Xn
0 Xn

1 Xn
2 ) − H (Sn)

+ H (Sn|Xn
1 Xn

2 Y n) + nδn

≤
n∑

i=1

[H (Yi) − H (Yi |Si X0i X1i X2i ) − H (Si)

+ H (Si |X1i X2i Yi )] + nδn (39)

The first term in (39) can be bounded as follows.

1

n

n∑

i=1

h(Yi ) ≤ 1

2n

n∑

i=1

log 2πe(V ar(X1i + X2i

+ X0i + Si + Ni ))

= 1

2n

n∑

i=1

log 2πe(V ar(X1i) + V ar(X2i )

+ V ar(X0i + Si ) + V ar(Ni ))

≤ 1

2n

n∑

i=1

log 2πe
(

E[X2
1i ] + E[X2

2i ] + E[X2
0i ]

+ 2E(X0i Si ) + E[S2
i ] + E[N2

i ])
)

≤ 1

2
log 2πe

(
1

n

n∑

i=1

E[X2
1i ] + 1

n

n∑

i=1

E[X2
2i ]

+ 1

n

n∑

i=1

E[X2
0i ] + 2

n

n∑

i=1

E(X0i Si )

+ 1

n

n∑

i=1

E[S2
i ] + 1

n

n∑

i=1

E[N2
i ])

)

≤ 1

2
log 2πe

(
P1 + P2 + Q + 1 + 2ρ0s

√
P0 Q

)

(40)

Other bounds in (39) can be bounded in the way as in (34),
(35), and (36). Combining these bounds with (40), we obtain
the following desired upper bound on R1 + R2.

R1 + R2 ≤ 1

2
log

(
1 + P1 + P2

Q + 2ρ0S
√

P0 Q + P0 + 1

)

+ 1

2
log(1 + P0 − ρ2

0S P0) (41)

APPENDIX C

PROOF OF PROPOSITION 3

We use random codes and fix the following joint distribu-
tion:

PSU X0 X1 X2Y = PSU PX0|SU PX1 PX2 PY |S X0 X1 X2 .

Let T n
ε (PSU X0 X1 X2Y ) denote the strongly joint ε-typical set

based on the above distribution. For a given sequence xn , let
T n

ε (PU |X |xn) denote the set of sequences un such that (un, xn)
is jointly typical based on the distribution PXU .

1) Codebook Generation:

• Generate 2nR̃ codewords un(v) with i.i.d. com-
ponents based on PU . Index these codewords by
v = 1, . . . , 2nR̃ .

• Generate 2nR1 codewords xn
1 (w1) with i.i.d. com-

ponents based on PX1 . Index these codewords by
w1 = 1, . . . , 2nR1 .

• Generate 2nR2 codewords xn
2 (w2) with i.i.d. com-

ponents based on PX2 . Index these codewords by
w2 = 1, . . . , 2nR2 .

2) Encoding:

• Helper: Given sn , find ṽ, such that (un(ṽ), sn) ∈
T n

ε (PSU ). It can be shown that for large n, such ṽ
exists with high probability if

R̃ � I (S; U). (42)

Then given (un(ṽ), sn), generate xn
0 with i.i.d. com-

ponents based on PX0|SU for transmission.
• Transmitter 1: Given w1, map w1 into xn

1 (w1) for
transmission.

• Transmitter 2: Given w2, map w2 into xn
2 (w2) for

transmission.

3) Decoding:

• Given yn , find (v̂, ŵ1, ŵ2) such that
(un(v̂), xn

1 (ŵ1), xn
2 (ŵ2), yn) ∈ T n

ε (PU X1 X2Y ).
If no or more than one (ŵ1, ŵ2) can be found,
declare an error.

It can be shown that for sufficiently large n, decoding is correct
with high probability if

R1 ≤ I (X1; Y |X2, U)

R̃ + R1 ≤ I (U, X1; Y |X2)

R2 ≤ I (X2; Y |X1, U)

R̃ + R2 ≤ I (U, X2; Y |X1)

R1 + R2 ≤ I (X1, X2; Y |U)

R̃ + R1 + R2 ≤ I (U, X1, X2; Y )

We note that the event that multiple v̂ with only single
pair (ŵ1, ŵ2) satisfy the above decoding requirement is not
counted as an error event, because the index v is not the
decoding requirement. Finally, combining the above bounds
with (42) yields the desired achievable region.
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