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On Communication Through a Gaussian Channel
With an MMSE Disturbance Constraint

Alex Dytso, Ronit Bustin, Member, IEEE, Daniela Tuninetti, Natasha Devroye,
H. Vincent Poor, Fellow, IEEE, and Shlomo Shamai (Shitz)

Abstract— This paper considers a Gaussian channel with one
transmitter and two receivers. The goal is to maximize the
communication rate at the intended/primary receiver subject to a
disturbance constraint at the unintended/secondary receiver. The
disturbance is measured in terms of the minimum mean square
error (MMSE) of the interference that the transmission to the
primary receiver inflicts on the secondary receiver. This paper
presents a new upper bound for the problem of maximizing
the mutual information subject to an MMSE constraint. The
new bound holds for vector inputs of any length and recovers a
previously known limiting (when the length of the vector input
tends to infinity) expression from the work of Bustin et al. The
key technical novelty is a new upper bound on the MMSE. This
bound allows one to bound the MMSE for all signal-to-noise
ratio (SNR) values below a certain SNR at which the MMSE is
known (which corresponds to the disturbance constraint). The
bound also complements the “single-crossing point property” of
the MMSE that upper bounds the MMSE for all SNR values
above a certain value at which the MMSE value is known. The
MMSE upper bound provides a refined characterization of the
phase-transition phenomenon, which manifests, in the limit as
the length of the vector input goes to infinity, as a discontinuity
of the MMSE for the problem at hand. For vector inputs of
size n = 1, a matching lower bound, to within an additive gap
of order O(log log(1/MMSE)) (where MMSE is the disturbance
constraint), is shown by means of the mixed inputs technique
recently introduced by Dytso et al.

Index Terms— MMSE, discrete inputs.
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I. INTRODUCTION

A. Problem Definition: the Max-I Problem

CONSIDER a Gaussian noise channel with one transmitter
and two receivers:

Y = √
snr X + Z, (1a)

Ysnr0 = √
snr0 X + Z0, (1b)

where Z, Z0, X, Y and Ysnr0 ∈ R
n ; Z, Z0 ∼ N (0, I); and X

and (Z, Z0) are independent.1 When it will be necessary to
stress the SNR at Y in (1a) we will denote it by Ysnr.

We denote the mutual information between the input X and
output Y as

I (X; Y) = I (X, snr) := E

[
log

(
pY|X(Y|X)

pY(Y)

)]
. (2)

We also denote the mutual information normalized by n as

In(X, snr) := 1

n
I (X, snr). (3)

We denote the minimum mean squared error (MMSE) in
estimating X from Y as

mmse(X|Y) = mmse(X, snr) := 1

n
Tr (E [Cov(X|Y)]) , (4)

where Cov(X|Y) is the conditional covariance matrix of X
given Y and is defined as

Cov(X|Y) := E

[
(X − E[X|Y]) (X − E[X|Y])T |Y

]
.

Moreover, since the distribution of the noise is fixed, the
quantities I (X; Y) and mmse(X|Y) are completely determined
by X and snr, and there is no ambiguity in using the notation
I (X, snr) and mmse(X, snr).

We consider a scenario in which a message, encoded as X,
must be decoded at the primary receiver Ysnr while it is also
seen at the unintended/secondary receiver for which it is an
interferer, as shown in Fig. 1.

We assume that there is only one message for the primary
receiver, and the primary transmitter inflicts interference (dis-
turbance) on a secondary receiver. The primary transmitter
wishes to maximize its communication rate, while subject to
a constraint on the disturbance it inflicts on the secondary
receiver. The disturbance is measured in terms of the MMSE.
Intuitively, the MMSE disturbance constraint quantifies the

1Since there is no cooperation between receivers the capacity depends
on pY1,Y2|X only thorough the marginals pY1|X and pY2|X.
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Fig. 1. Channel model.

remaining interference after partial interference cancellation
or soft-decoding has been performed [2], [3]. Now consider
the following problem:

Definition 1 (Max-I Problem): For some β ∈ [0, 1]
Cn(snr, snr0, β) := sup

X
In(X, snr), (5a)

s.t.
1

n
Tr
(
E[XXT]) ≤ 1, power constraint, (5b)

and mmse(X, snr0) ≤ β

1 + βsnr0
, MMSE constraint.

(5c)

The subscript n in Cn(snr, snr0, β) emphasizes that we con-
sider length n inputs X ∈ R

n . Clearly Cn(snr, snr0, β) is a
non-decreasing function of n.

The scenario depicted in Fig. 1 is captured when n → ∞
in the Max-I problem, in which case the objective function
has a meaning of reliable achievable rate. In [2, Theorem 3]
the capacity of the channel in Fig. 1 was properly defined
and it was shown to be equal to limn→∞ Cn(snr, snr0, β) =
C∞(snr, snr0, β) where

C∞(snr, snr0, β)

= lim
n→∞ Cn(snr, snr0, β),

=
{

1
2 log(1 + snr), snr ≤ snr0,
1
2 log(1 + βsnr) + 1

2 log
(

1 + snr0(1−β)
1+βsnr0

)
, snr ≥ snr0,

= 1

2
log+

(
1 + βsnr
1 + βsnr0

)
+ 1

2
log (1 + min(snr, snr0)) , (6)

which is achieved by using superposition coding with Gaussian
codebooks. Fig. 2 shows a plot of C∞(snr, snr0, β) in (6)
normalized by the capacity of the point-to-point channel
1
2 log(1 + snr). The region snr ≤ snr0 (the flat part of the
curve) is where the MMSE constraint is inactive since the
channel with snr0 can decode the interference and guarantee
zero MMSE. The regime snr ≥ snr0 (the curvy part of the
curve) is where the receiver with snr0 can no longer decode
the interference and the MMSE constraint becomes active,
which in practice is the more interesting regime because the
secondary receiver experiences ‘weak interference’ that cannot
be fully decoded (recall that in this regime superposition
coding appears to be the best achievable strategy for the two-
user Gaussian interference channel (G-IC), but it is unknown
whether it achieves capacity [4]).

The scenario modeled by the Max-I problem is motivated
by the two-user G-IC, whose capacity is known only for some

Fig. 2. Plot of C∞(snr,snr0,β)
1
2 log(1+snr)

vs. snr in dB, for β = 0.01 and snr0 =
5 = 6.989 dB.

special cases. The following strategies are commonly used to
manage interference in the G-IC:

1) Interference is Treated as Gaussian Noise: In this
approach the interference is not explicitly decoded.
Treating interference as noise with Gaussian codebooks
has been shown to be sum-capacity optimal in the so-
called very-weak interference regime [5]–[7].

2) Partial Interference Cancellation: By using the
Han-Kobayashi (HK) achievable scheme [8], part of
the interfering message is jointly decoded with part
of the desired signal. Then the decoded part of the
interference is subtracted from the received signal, and
the remaining part of the desired signal is decoded
while the remaining part of the interference is treated
as Gaussian noise. With Gaussian codebooks, this
approach has been shown to be capacity achieving in
the strong interference regime [9] and optimal within
1/2 bit per channel per user otherwise [4].

3) Soft-Decoding/Estimation: The unintended receiver
employs soft-decoding of part of the interference. This
is enabled by using non-Gaussian inputs and designing
the decoders that treat interference as noise by tak-
ing into account the correct (non-Gaussian) distribution
of the interference. Such scenarios were considered
in [10]–[12], and shown to be optimal to within either a
constant or a O(log log(snr)) gap for all regimes in [13].

Even though the Max-I problem is somewhat simplified,
compared to the G-IC, it can serve as an important building
block towards characterizing the capacity of the G-IC [2], [3],
especially in light of the known (but currently uncomputable)
capacity limit expression [14]

CIC∞ = lim
n→∞ co

⋃
PX1X2=PX1 PX2

{
0 ≤ R1 ≤ In(X1; Y1)
0 ≤ R2 ≤ In(X2; Y2)

}
, (7)

where co denotes the convex closure operation. Moreover,
observe that for any finite n we have that the capacity region
can be inner bounded by

CIC
n ⊂ CIC∞, (8)
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where

CIC
n = co

⋃
PX1X2 =PX1 PX2

{
0 ≤ R1 ≤ In(X1; Y1)
0 ≤ R2 ≤ In(X2; Y2)

}
. (9)

The inner bound CIC
n will be referred to as the treating-

interference-as-noise inner bound. Finding the input distrib-
utions PX1 and PX2 that exhaust the achievable region in CIC

n
is an important open problem. Recently, for the special case
of n = 1, CIC

1 has been shown to be within a constant or
O(log log(snr)) from the capacity CIC∞ [13]. Therefore, the
Max-I problem, denoted by Cn(snr, snr0, β) in (5), can serve
as an important step in characterizing the structure of optimal
input distributions for CIC

n . We also note that in [3, Sec. VI.3]
and [2, Sec. VIII] it was conjectured that the optimal input
for C1(snr, snr0, β) is discrete. For other recent works on
optimizing the treating interference as noise region in (9), we
refer the reader to [11], [12], [15]–[17] and the references
therein.

The importance of studying models of communication
systems with disturbance constraints has been recognized
previously. For example, Bandemer and El Gamal [18] studied
the following problem related to the Max-I problem in (5).

Definition 2 (Bandemer et al. Problem): For some R ≥ 0

In(snr, snr0, R) := max
X

In(X, snr), (10a)

s.t.
1

n
Tr
(
E[XXT]) ≤ 1, power constraint, (10b)

and In(X, snr0) ≤ R, disturbance constraint. (10c)

In [18] it was shown that the optimal solution for
In(snr, snr0, R), for any n, is attained by X ∼ N (0, αI)
where α = min

(
1, e2R−1

snr0

)
; here α is such that the most

stringent constraint between (10b) and (10c) is satisfied with
equality. In other words, the optimal input is independent and
identically distributed (i.i.d.) Gaussian with power reduced
such that the disturbance constraint in (10c) is not violated.

Measuring the disturbance with the mutual information
as in (10), in contrast to the MMSE as in (5), suggests
that it is always optimal to use Gaussian codebooks with
reduced power without any rate splitting. Moreover, while the
mutual information constraint in (10) limits the amount of
information transmitted to the unintended receiver, it may not
be the best choice for modeling the interference, since any
information that can be reliably decoded by the unintended
receiver is not really interference. For this reason, and since the
MMSE constraint accounts for the interference and ‘depicts’
the key role of rate splitting, it has been argued in [2] and [3]
that the Max-I problem in (5) with the MMSE disturbance
constraint is a more suitable building block to study the G-IC.

We also refer the reader to [19] where, in the context of
discrete memoryless channels, the disturbance constraint was
modeled by controlling the type (i.e., empirical distribution) of
the interference at the secondary user. Moreover, the authors
of [19] were able to characterize the tradeoff between the
rate and the type of the induced interference by exactly
characterizing the capacity region of the problem at hand.

B. The I-MMSE Identity

The basis for the analysis of the Max-I problem in [2] is
the fundamental relationship between information theory and
estimation theory, also known as the Guo, Shamai and Verdú
I-MMSE relationship.

Proposition 1 (I-MMSE Relationship [20, Th. 1]): The
I-MMSE relationship is given by the derivative relationship

d

dsnr
In(X, snr) = 1

2
mmse(X, snr), (11a)

or the integral relationship

In(X, snr) = 1

2

∫ snr

0
mmse(X, γ )dγ. (11b)

Observe that the Max-I problem in (5) and the one in (10)
have the same objective function but have different con-
straints. The relationship between the constraints in (5c)
and (10c) can be explained as follows. The constraint in (5c)
imposes a maximum value on the function mmse(X, snr) at
snr = snr0, while the constraint in (10c), via the integral
I-MMSE relationship in (11), imposes a constraint on
the area below the function mmse(X, snr) in the range
snr ∈ [0, snr0].

C. Bounds on the MMSE

Upper bounds on the MMSE are useful, thanks to the
I-MMSE relationship, as tools to derive converse results, and
have been used in [21]–[24] to name a few. The key bound
to show the converse result for C∞(snr, snr0, β) are the
linear MMSE (LMMSE) upper bound and single-crossing point
property (SCPP) bound presented next.

Proposition 2 (LMMSE Bound [20]): For any X and
snr > 0 it holds that

mmse(X, snr) ≤ 1

snr
. (12a)

If 1
n Tr

(
E[XXT]) ≤ σ 2, then for any snr ≥ 0

mmse(X, snr) ≤ σ 2

1 + σ 2snr
, (12b)

where equality in (12b) is achieved iff X ∼ N (0, σ 2I).
Another important bound for the MMSE is the SCPP bound

developed in [22] for n = 1 and extended in [23] to any n ≥ 1.
Proposition 3 (SCPP [23]): For any fixed X, suppose that

mmse(X, snr0) = β
1+βsnr0

, for some fixed β ≥ 0. Then for all
snr ∈ [snr0,∞) we have that

mmse(X, snr) ≤ β

1 + βsnr
, (13a)

and for all snr ∈ [0, snr0)

mmse(X, snr) ≥ β

1 + βsnr
. (13b)

In words, Proposition 3 means that if we know that the value
of MMSE at snr0 is given by mmse(X, snr) = β

1+βsnr0
then

for all higher SNR values (snr0 ≤ snr) we have the upper
bound in (13a) and for all lower SNR values (snr ≤ snr0) we
have the lower bound in (13b).
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D. Max-MMSE Problem

Motivated by the I-MMSE relationship the approach of [2]
was to examine the limiting behavior of the following opti-
mization problem.

Definition 3 (Max-MMSE Problem): For some β ∈ [0, 1]
Mn(snr, snr0, β) := sup

X
mmse(X, snr), (14a)

s.t.
1

n
Tr
(
E[XXT]) ≤ 1, power constraint, (14b)

and mmse(X, snr0) ≤ β

1 + βsnr0
, MMSE constraint.

(14c)

The authors of [2] and [25] proved that

M∞(snr, snr0, β) = lim
n→∞ Mn(snr, snr0, β)

=
{

1
1+snr , snr < snr0,

β
1+βsnr , snr ≥ snr0,

(15)

achieved by superposition coding with Gaussian codebooks.
Clearly there is a discontinuity in (15) at snr = snr0 for
β < 1. This fact is a well known property of the MMSE, and
it is referred to as a phase transition [25]. For other recent links
between random codes, the MMSE and statistical physics the
reader is referred to [26].

The LMMSE bound provides the converse solution for
M∞(snr, snr0, β) in (15) in the regime snr ≤ snr0.
An interesting observation is that in this regime the knowledge
of the MMSE at snr0 is not used. The SCPP bound provides
the converse in the regime snr ≤ snr0 and, unlike the LMMSE
bound, does use the knowledge of the value of MMSE at snr0.

We note that, through the I-MMSE relation, integration of
M∞(γ, snr0, β) over γ ∈ [0, snr] gives C∞(snr, snr0, β).
However, the solution of the Max-MMSE problem provides
an upper bound on the Max-I problem (for every n including
in the limit as n → ∞), through the I-MMSE relationship.
The reason is that in the Max-MMSE problem one maxi-
mizes the integrand in the I-MMSE relationship for every
γ, and the maximizing input may be a different distribu-
tion for each γ. The surprising result is that in the limit
as n → ∞ we have equality, meaning that in the limit
there exists an input that attains the Max-MMSE solution for
every γ.

One of the main objectives of this paper is to
develop bounds on Mn(snr, snr0, β) and then use the
I-MMSE relationship to bound Cn(snr, snr0, β). Clearly,
Mn(snr, snr0, β) ≤ M∞(snr, snr0, β) for all finite n. Observe
that the Max-MMSE problem in (14) and the Max-I problem
in (5) have different objective functions but have the same
constraints. This is also a good place to point out that neither
the Max-MMSE or the Max-I problem falls under the category
of convex optimization. This follows from the fact that the
MMSE is a strictly concave function in the input distribu-
tion [27]. Therefore, the set of input distributions, defined
by (14b) and (14c), over which we are optimizing, might not
be convex. It is also a good place to show that the set of
permissible input distribution is not empty.

Proposition 4: There exists an input distribution X with
maximum power as in (5b) and (14b) that satisfies the MMSE
constraint in (5c) and (14c) for any snr0 > 0 and any β > 0.

Proof: See Appendix A. �
Note that Proposition 3 gives a solution to the Max-MMSE

problem in (14) for snr ≥ snr0 and any n ≥ 1 as follows:

Mn(snr, snr0, β) = β

1 + βsnr
, for snr ≥ snr0, (16)

achieved by X ∼ N (0, βI).
However, for the case snr ≤ snr0 the LMMSE bound in

(12b) is no longer tight. Therefore, in the rest of the paper,
the treatment of the Max-MMSE problem will focus only on
the regime snr ≤ snr0. We refer to the upper bounds in the
regime snr ≤ snr0 as the complementary SCPP bounds.

The phase transition phenomenon can only be observed as
n → ∞, and for any finite n the LMMSE bound on the MMSE
at snr ≤ snr0 must be sharpened, as the MMSE constraint at
snr0 must restrict the input in such a way that would effect
the MMSE performance at snr ≤ snr0. It is also well known
that, for any finite n, mmse(X, snr) is a continuous function of
snr [22]. Therefore, Mn(snr, snr0, β) must be of the following
form:

Mn(snr, snr0, β) =

⎧⎪⎨
⎪⎩

1
1+snr , snr ≤ snrL ,

Tn(snr, snr0, β), snrL ≤ snr ≤ snr0,
β

1+βsnr , snr0 ≤ snr,

(17)

for some snrL . In this paper we seek to characterize snrL

in (17) and the continuous function Tn(snr, snr0, β) such that

Tn(snrL, snr0, β) = 1

1 + snrL
, (18a)

Tn(snr0, snr0, β) = β

1 + βsnr0
, (18b)

and give scaling bounds on the width of the phase transition
region defined as

Wn := snr0 − snrL . (19)

In other words, the objective is to understand the behavior of
the MMSE phase transitions for arbitrary finite n by obtaining
complementary upper bounds on the SCPP.

E. Contributions and Paper Outline

The main contributions of the paper are as follows.
In Section II we summarize our main results:

• Theorem 1, our main technical result, provides new upper
bounds for the Max-MMSE problem for arbitrary n that
complement the SCPP bound.

• Proposition 6 provides a lower bound on the width of the
phase transition region defined in (19) of the order of 1

n .
• Proposition 7 provides a new upper bound for the Max-I

problem for arbitrary n.
• Proposition 10 shows that, for the case of n = 1,

superposition of discrete and Gaussian inputs, termed
mixed inputs in [13], achieves the proposed upper bound
on the Max-I problem from Proposition 7 to within an
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Fig. 3. Comparing mutual informations and MMSE’s for binary phase shift keying (BPSK) and Gaussian inputs. Fig. 3b clearly shows the multiplicative
loss of BPSK, for both mutual information and MMSE, compared to a Gaussian input. (a) Unnormalized plot. (b) Normalized plot (dashed red and dotted
blue lines overlap).

additive gap of order log log 1
mmse(X,snr0) . We note that

strictly speaking the gap result is only a constant with
respect to snr but not snr0.

• Proposition 11 shows that, as n → ∞, superposition of a
lattice constellation and Gaussian inputs exactly achieves
the upper bound on the Max-I problem, recovering the
result of [2].

• Section II-F discusses how the result can be extended to
an arbitrary finite n.

In Section III we develop bounds on the derivative of MMSE,
which we use to prove Theorem 1:

• Proposition 17 considerably refines existing bounds on
the derivative of MMSE for n = 1 and generalizes them
to any n.

• In Section III-A, by using Proposition 17, we prove
Theorem 1.

Most proofs can be found in the appendix.

F. Notation

Throughout the paper we adopt the following notational
conventions: deterministic scalar quantities are denoted by
lowercase letters and deterministic vector quantities are
denoted by lowercase bold letters; matrices are denoted by
bold uppercase letters; random variables are denoted by
uppercase letters and random vectors are denoted by bold
uppercase letters; all logarithms are taken to the base e; we
denote the support of a random variable A by supp(A);
X ∼ PAM (N) denotes the pulse-amplitude modulation (PAM)
constellation, i.e., the uniform probability mass function over
a zero-mean equally spaced constellation with |supp(X)| =
N points, minimum distance dmin(X), and therefore average
energy E[X2] = d2

min(X)
N2−1

12 ; the ordering notation A 
 B
implies that A−B is a positive semidefinite matrix; for x ∈ R

n

the Euclidian norm is denoted by ‖x‖; we denote the Fisher
information matrix of the random vector A by J(A); for x ∈ R

we let [x]+ := max(x, 0) and log+(x) := [log(x)]+; we use
the Landau notation f (x) = O(g(x)) to mean that for some
c > 0 there exists an x0 such that f (x) ≤ cg(x) for all

x ≥ x0; we denote the upper incomplete gamma function and
the gamma function, respectively, as

� (x; a) :=
∫ ∞

a
t x−1e−t dt, x ∈ R, a ∈ R

+, (20a)

� (x) := � (x; 0) . (20b)

G. On the Presentation of Results

Throughout the paper we will plot normalized quantities,
where the normalization is with respect to the same quantity
when the input is N (0, I). For example, for the mutual
information In(X, snr) in (3) we will plot

d(X, snr) := In(X, snr)
1
2 log(1 + snr)

, (21)

while for the MMSE in (4) we will plot

D(X, snr) := mmse(X, snr)
1

1+snr

= (1 + snr) · mmse(X, snr).

(22)

In particular, at high snr the quantity in (21) is commonly
referred to as the degrees of freedom [28] and the quan-
tity in (22) as the MMSE dimension [29]. Moreover, it is
well known that under the block-power constraint in (5b), a
Gaussian input maximizes both the mutual information and the
MMSE [30], and thus the quantities d(X, snr) and D(X, snr)
have natural meanings as the multiplicative losses of the input
X compared to the Gaussian input. Fig. 3 compares normalized
and unnormalized quantities.

II. MAIN RESULTS

A. Max-MMSE Problem: Upper Bounds on Mn(snr, snr0, β)

We start by giving bounds on the phase transition
region of Mn(snr, snr0, β) defined in (17). The bound in
Theorem 1 is referred to as the D-bound because it was
derived through the technique of bounding the derivative of
the MMSE.
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Fig. 4. Bounds on Mn(snr, snr0, β) vs. snr. (a) For n = 1, snr0 = 5 and β = 0.01. (b) For several values of n, snr0 = 5 and β = 0.05.

Theorem 1 (D-Bound): For any X and 0 < snr ≤ snr0, let
mmse(X, snr0) = β

1+βsnr0
for some β ∈ [0, 1]; then we have

mmse(X, snr) ≤ mmse(X, snr0)+kn

(
1

snr
− 1

snr0

)
−�,

(23a)

kn ≤ n + 2, � = 0. (23b)

If X is such that 1
n Tr

(
E[XXT]) ≤ 1 then

� := �(23c) =
∫ snr0

snr

1

γ 2(1 + γ )2 dγ = 2 log

(
1 + snr0

1 + snr

)

− 2 log
(snr0

snr

)
+ 1

1 + snr
− 1

1 + snr0
+ 1

snr
− 1

snr0
.

(23c)

Proof: See Section III-A. �
Since, the bound in Theorem 1 holds for any X we also get

the following bound.
Proposition 5: For snr ≤ snr0

Mn(snr, snr0, β) ≤ β

1 + βsnr0
+ kn

(
1

snr
− 1

snr0

)
− �.

(24)

The bound on Mn(snr, snr0, β) in (24) is depicted in
Fig. 4a, where

• the red solid line is the M∞(snr, snr0, β) upper bound
on M1(snr, snr0, β), and

• the blue dashed-dotted line is the new upper bound on
M1(snr, snr0, β) from Theorem 1.

Observe that the new bound in (24) provides a continuous
upper bound on M1(snr, snr0, β) which is tighter than the
trivial upper bound given by M∞(snr, snr0, β).

We next show how fast the phase transition region shrinks
with n as n → ∞.

Proposition 6: The bound in (23a), with � = 0, from
Theorem 1 intersects with the LMMSE bound in (12a) from
Proposition 2 at

snrL ≥ snr0
1+βsnr0
kn

kn −1 +βsnr0
= O

((
1 − 1

n

)
snr0

)
. (25a)

Thus, the width of the phase transition region is upper
bounded, for kn in (23b), by

Wn ≤ 1
kn−1

snr0
kn

kn −1 +βsnr0
= O

( 1
n

)
. (25b)

Proof: See Appendix B. �
In Proposition 6 we found the intersection between the

LMMSE bound 1
snr in (12a) and the bound in (23a) from

Theorem 1. Unfortunately, for the power constraint case,
the intersection of the LMMSE bound 1

1+snr in (12b) and
the bound in (23c) cannot be found analytically. However,
the solution can be computed efficiently by using numerical
methods. Moreover, the asymptotic behavior of the width of
the phase transition region is still given by O

( 1
n

)
. The bound

in Theorem 1 for several values of n is shown in Fig. 4b,
where

• the solid red line is the M∞(snr, snr0, β) bound on
Mn(snr, snr0, β), and

• the blue lines are the bounds on Mn(snr, snr0, β) from
Theorem 1 for n = 1, 3, 15 and 70.

We observe that the new bound provides a refined
characterization of the phase transition phenomenon for
finite n and, in particular, it recovers the bound in (15)
as n → ∞.

B. Max-I Problem: Upper Bounds on Cn(snr, snr0, β)

By using Theorem 1 (with the finite power assumption) to
bound Tn(t, snr0, β) we get the following upper bounds on
Cn(snr, snr0, β).

Proposition 7: For any 0 ≤ snr0, β ∈ [0, 1], and snrL

given in (25), we have that for snr0 ≤ snr

Cn(snr, snr0, β) ≤ C∞(snr, snr0, β) − �(26a), (27a)

and for snr0 ≥ snr

Cn(snr, snr0, β) ≤ C∞(snr, snr0, β) − �(26b), (27b)

where �(26a) and �(26b) are given in (26) shown at the bottom
of the next page.

Proof: Using the previous novel bound on
Mn(snr, snr0, β) in Theorem 1 we can find new upper
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bounds on Cn(snr, snr0, β) by integration

Cn(snr, snr0, β) ≤ 1

2

∫ snr

0
Mn(t, snr0, β)dt

= 1

2
log(1+snrL)+ 1

2

∫ snr0

snrL

Tn(t, snr0, β)dt

+1

2
log

(
1+βsnr

1 + βsnr0

)
, for snr0 ≤ snr,

(28)

and

Cn(snr, snr0, β)

≤ 1

2

∫ snr

0
Mn(t, snr0, β)dt

≤ 1

2
log(1 + min(snrL, snr))

+ 1

2

∫ snr

min(snrL ,snr)
Tn(t, snr0, β)dt, for snr0 ≥snr. (29)

We only show steps leading to (27a) and (26a), as shown
at the bottom of this page, since the proof of (27b) and (26b)
follows similarly. From (28) we have that

Cn(snr, snr0, β)

≤ 1

2
log(1 + snrL) + 1

2

∫ snr0

snrL

Tn(t, snr0, β)dt

+ 1

2
log

(
1 + βsnr
1 + βsnr0

)

= C∞(snr, snr0, β) − 1

2
log

(
1 + snr0

1 + snrL

)

+ 1

2

∫ snr0

snrL

Tn(t, snr0, β)dt . (30)

Next by using Theorem 1 (30) can be bounded as follows:∫ snr0

snrL

Tn(t, snr0, β)dt ≤
∫ snr0

snrL

β

1+βsnr0
+kn

(
1

t
− 1

snr0

)
dt

−
∫ snr0

snrL

∫ snr0

t

1

γ 2(1 + γ )2 dγ dt, (31)

where the integration of (31) leads to (26a). This concludes
the proof. �

Fig. 5 compares the bounds on Cn(snr, snr0, β) from
Proposition 7 with C∞(snr, snr0, β) in (6) for several values
of n. The figure shows how the new bounds in Proposition 7
improve on the trivial C∞(snr, snr0, β) bound for finite n.

Fig. 5. Bounds on Cn(snr, snr0, β) from Proposition 7 vs. snr, for β = 0.1
and snr0 = 5 = 6.9897 dB.

C. Max-MMSE Problem: Achievability of M1(snr, snr0, β)

In this section we propose an input that will be used in the
achievable strategy for both the Max-I problem and the Max-
MMSE problem. This input is referred to as a mixed input [13]
and is defined as

Xmix := √
1 − δXD + √

δXG , δ ∈ [0, 1] : (32)

XG ∼ N (0, I), E[‖XD‖2] ≤ n,
1

n
H (XD) < ∞, (33)

where XG and XD are independent. The parameter δ and the
distribution of XD are to be optimized over. The input Xmix
exhibits a decomposition property via which the MMSE and
the mutual information can be written as the sum of the MMSE
and the mutual information of the XD and XG components,
albeit at different SNR values.

Proposition 8: For Xmix defined in (32) we have that

I (Xmix, snr) = I

(
XD,

snr(1 − δ)

1 + δsnr

)
+ I (XG , snr δ), (34a)

mmse(Xmix, snr) = 1 − δ

(1 + snrδ)2 mmse

(
XD,

snr(1 − δ)

1 + δsnr

)

+ δ mmse(XG , snr δ). (34b)

Proof: See Appendix C. �
Observe that Proposition 8 implies that, in order for mixed

inputs (with δ < 1) to comply with the MMSE constraint

0 ≤ �(26a) = 1

2
log

(
1 + snr0

1 + snrL

)
− 1

2

β(snr0 − snrL)

1 + βsnr0
− (n + 2)

2
log

(
snr0

snrL

)
+ (n + 2)(snr0 − snrL)

2snr0

+ 1

2

(
(2snrL + 1) log

(
snr0(1 + snrL)

snrL(1 + snr0)

)
− snr0 − snrL

1 + snr0
− snr0 − snrL

snr0

)
= O

(
1

n

)
, (26a)

0 ≤ �(26b) = 1

2
log

(
1 + snr

1 + min(snrL , snr)

)
− β(snr − min(snrL, snr))

2(1 + βsnr0)
− (n + 2)

2
log

(
snr

min(snrL, snr)

)

+ (n + 2)(snr − min(snrL, snr))
2snr0

+ 1

2

(
(2 min(snrL , snr) + 1) log

(
1 + min(snrL , snr)

min(snrL, snr)

)
− (2snr + 1) log

(
1 + snr

snr

)

+ 2(snr − min(snrL, snr)) log

(
1 + snr0

snr0

)
−snr − min(snrL , snr)

snr0
− snr − min(snrL , snr)

1 + snr0

)
= O

(
1

n

)
. (26b)
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Fig. 6. Upper and lower bounds on M1(snr, snr0, β) vs. snr, for β = 0.01
and snr0 = 10.

in (5c) and (14c), the MMSE of XD must satisfy

mmse

(
XD,

snr0(1 − δ)

1 + δsnr0

)
≤ (β − δ)(1 + δsnr0)

(1 − δ)(1 + βsnr0)
. (35)

The bound in (35) will be helpful in choosing the parameter δ
later on.

When X D is a scalar discrete random variable with
supp(X D) = N we use the following bounds from
[31, Appendix C] and [13, Remark 2].

Proposition 9 [13], [31]: For a discrete random variable
X D such that pi = Pr(X D = xi ), for i ∈ [1 : N], we have
that

mmse(X D, snr) ≤ d2
max

N∑
i=1

pie− snr
8 d2

i , (36a)

I (X D, snr) ≥ H (X D) − 1

2
log
(π

6

)

− 1

2
log

(
1 + 12

d2
min

mmse(X D, snr)

)
, (36b)

where

d
 := min
xi∈supp(X D):i �=


|x
 − xi |, (36c)

dmin := min

∈[1:N] d
, (36d)

dmax := max
xk,xi∈supp(X D)

|xk − xi |. (36e)

Proposition 8 and Proposition 9 are particularly useful
because they will allow us to design the Gaussian and discrete
components of the mixed input independently.

Fig. 6 shows upper and lower bounds on M1(snr, snr0, β)
where we show the following:

• The M∞(snr, snr0, β) upper bound in (15) (solid
red line);

• The upper bound from Theorem 1 in (23c) with finite
power (dashed cyan line);

• The Gaussian-only input lower bound (solid green line),
with X ∼ N (0, β), where the power has been reduced to
meet the MMSE constraint;

• The mixed input lower bound (blue dashed line), with
the input in (32). To obtain this bound we used
Proposition 8 where we optimized over X D for δ =
β snr0

1+snr0
. The choice of δ is motivated by the scaling

property of the MMSE, that is, δmmse(XG , snrδ) =
mmse(

√
δXG , snr), and the constraint on the discrete

component in (35). That is, we chose δ such that the
power of XG is approximately β while the MMSE
constraint on X D in (35) is not equal to zero. The
input X D used in Fig. 6 was found by a local search
algorithm on the space of distributions with N = 3,
and resulted in X D = [−1.8412,−1.7386, 0.5594] with
PX = [0.1111, 0.1274, 0.7615], which we do not claim
to be optimal;

• The discrete-only input lower bound (Discrete 1,
brown dashed-dotted line), with X D = [−1.8412,
−1.7386, 0.5594] and PX = [0.1111, 0.1274, 0.7615],
that is, the same discrete part of the above mentioned
mixed input. This is done for completeness, and to
compare the performance of the MMSE of the discrete
component of the mixed input with and without the
Gaussian component; and

• The discrete-only input lower bound (Discrete 2, dotted
magenta line), with X D = [−1.4689,−1.1634, 0.7838]
and PX = [0.1282, 0.2542, 0.6176], which was found by
using a local search algorithm on the space of discrete-
only distributions with N = 3 points.

The choice of N = 3 is motivated by the fact that it requires
roughly N = 
√1 + snr0� points for the PAM input to
approximately achieve capacity of the point-to-point channel
with SNR value snr0. On the one hand, Fig. 6 shows that,
for snr ≥ snr0, a Gaussian-only input with power reduced
to β maximizes M1(snr, snr0, β) in agreement with the
SCPP bound (green line). On the other hand, for
snr ≤ snr0, we see that discrete-only inputs (brown dashed-
dotted line and magenta dotted line) achieve higher MMSE
values than a Gaussian-only input with reduced power. Inter-
estingly, unlike Gaussian-only inputs, discrete-only inputs do
not have to reduce power in order to meet the MMSE
constraint. The reason discrete-only inputs can use full power,
as per the power constraint only, is because their MMSE
decreases fast enough (exponentially in SNR, as seen in (36a))
to comply with the MMSE constraint. However, for snr ≥
snr0, the behavior of the MMSE of discrete-only inputs, as
opposed to mixed inputs, prevents it from being optimal; this is
due to their exponential tail behavior in (36a). The mixed input
(blue dashed line) gets the best of both (Gaussian-only and
discrete-only) worlds: it has the behavior of Gaussian-only
inputs for snr ≥ snr0 (without any reduction in power) and
the behavior of discrete-only inputs for snr ≤ snr0. This
behavior of mixed inputs turns out to be important for the
Max-I problem, where we need to choose an input that has
the largest area under the MMSE curve.

Finally, Fig. 6 shows the achievable MMSE with another
discrete-only input (Discrete 2, dotted magenta line) that
achieves higher MMSE than the mixed input for snr ≤ snr0
but lower than the mixed input for snr ≥ snr0. This is again
due to the tail behavior of the MMSE of discrete inputs. The
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TABLE I

PARAMETERS OF THE MIXED INPUT IN (32) USED IN THE PROOF OF PROPOSITION 10

reason this second discrete input is not used as a component
of the mixed input is because this choice would violate the
MMSE constraint on X D in (35). Note that the difference
between Discrete 1 and Discrete 2 is that, Discrete 1 was
found as an optimal discrete component of a mixed input
(i.e., δ = β snr0

1+snr0
), while Discrete 2 was found as

an optimal discrete input without a Gaussian component
(i.e., δ = 0).

The insight gained from analyzing different lower bounds
on M1(snr, snr0, β) will be crucial to show an approximately
optimal input for C1(snr, snr0, β), which we consider next.

D. Max-I Problem: Achievability of C1(snr, snr0, β)

In this section we demonstrate that an inner bound on
C1(snr, snr0, β) with the mixed input in (32) is to within an
additive gap of the outer bound in Proposition 7. The case
n > 1 is more involved and will be treated in Section II-E
and Section II-F.

Proposition 10: A lower bound on C1(snr, snr0, β) with
the mixed input in (32), with X D ∼ PAM(N) and with
input parameters as specified in Table I, is to within
O
(

log log( 1
mmse(X,snr0)

)
)

of the outer bound in Proposition 7

with the exact gap value given by

snr ≥ snr0 ≥1 : C1(snr, snr0, β) − I1(Xmix, snr)≤gap1,1,

(37a)

snr0 ≥ snr≥1 : C1(snr, snr0, β) − I1(Xmix, snr)≤gap1,2,

(37b)

snr ≤ 1 : C1(snr, snr0, β)− I1(Xmix, snr)≤gap1,3, (37c)

where

gap1,1 = 1

2
log

(
2

3
log

(
24(1 + (1−β)snr0

β

)
+ 6β

1 + βsnr0

)

+ 1

2
log

(
4π

3

)
−�(26a), (37d)

gap1,2 = 1

2
log

(
1 + 2

3
log

(
12(1 + βsnr0)

β

))

+ 1

2
log

(
4π

6

)
− �(26b), (37e)

gap1,3 = 1

2
log(2), (37f)

and �(26a) and �(26b) are given in (26a) and (26b),
respectively.

Proof See Appendix D. �
Please note that the gap result in Proposition 10 is constant

in snr (i.e., independent of snr) but not in snr0.

Fig. 7. Upper and lower bounds on Cn=1(snr, snr0, β) from Proposition 7
vs. snr, for β = 0.001 and snr0 = 60 = 17.6815 dB.

Fig. 7 compares the inner bounds on C1(snr, snr0, β),
normalized by the point-to-point capacity 1

2 log(1+snr), with
mixed inputs (dashed magenta line) in Proposition 10 to

• The C∞(snr, snr0, β) upper bound in (6), (solid red line);
• The upper bound from Proposition 7 (dashed blue line);

and
• The inner bound with X ∼ N (0, β), where the reduction

in power is necessary to satisfy the MMSE constraint
mmse(X, snr0) ≤ β

1+βsnr0
(dotted green line).

Fig. 7 shows that Gaussian inputs are sub-optimal and that
mixed inputs achieve large degrees of freedom compared to
Gaussian inputs. Interestingly, in the regime snr ≤ snr0, it is
approximately optimal to set δ = 0, that is, only the discrete
part of the mixed input is used. This in particular supports
the conjecture in [2] that discrete inputs may be optimal
for n = 1 and snr ≤ snr0. For the case snr ≥ snr0 our
results partially refute the conjecture by excluding the possi-
bility of discrete inputs with finitely many points from being
optimal.

Next we focus on the case of n → ∞.

E. Max-I Problem: Achievability for C∞(snr, snr0, β)

Before examining the general case of n > 1 we first focus
on the easier case of n → ∞. To extend our achievable
result for n = 1 to n > 1 we need to extend the bounds in
Proposition 9. The extension of the bounds in Proposition 9
was recently done in [32] and is given next.

Proposition 11 [32]: For any discrete random vector
XD ∈ R

n we have that

mmse(XD, snr) ≤ d2
max(XD)

n
P(n)

e (snr), (38a)



522 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 1, JANUARY 2018

where P(n)
e is the probability of decoding error

P(n)
e (snr) = P[XD �= X̂D]. (38b)

For the mutual information we have

In(XD, snr) ≥ 1

n
H (XD) − G1(XD, snr) − G2, (38c)

where

G1(XD, snr) = 1

2
log

(
1 + 4(2 + n) · mmse(XD, snr)

d2
min(XD)

)
,

(38d)

G2 ≤ 1

2
log

(
2e

n
�

2
n

(n

2
+ 1
))

= O

(
1

n
log (n)

)
. (38e)

The bound in (38c) is called the Ozarow-Wyner bound [33].
For recent applications of the bound in (38c) to non-Gaussian
and MIMO channels the reader is referred to [34]–[36].

By using Proposition 11 and mimicking the proof of
Proposition 10 we have the following:

Proposition 12: For

snr0 ≤ snr : Cn(snr, snr0, β) − In(Xmix, snr) ≤ gapn,1,

(39a)

where XD and δ are chosen to satisfy the MMSE constraint
in (5c), we have that

gapn,1 = gape,1 + G1

(
XD,

snr(1 − δ)

1 + δsnr

)
+ G2 − �(26a),

(39b)

gape,1 = 1

2
log

(
1 + snr0(1 − β)

1 + βsnr0

)
− 1

n
H (XD)

+ 1

2
log

(
1+βsnr
1+δsnr

)
. (39c)

For

snr ≤ snr0 : Cn(snr, snr0, β) − In(XD, snr) ≤ gapn,2,

(39d)

where XD (note that we have set δ = 0 in Xmix) is chosen to
satisfy the MMSE constraint in (5c), we have that

gapn,2 = gape,2 + G1 (XD, snr) + G2 − �(26a), (39e)

gape,2 = 1

2
log (1 + snr) − 1

n
H (XD). (39f)

Proof: The proof follows by taking the difference
between the upper bound in Proposition 7 and the inner bound
in Proposition 8 where the In(XD, γ ) term has been lower
bounded using Proposition 11. �

We see that the key term in Proposition 12 is G1 (XD, γ ) in
(39b) and (39e). This is so because gape,i in (39b) and (39f)
depends only on the size of the support of XD but not on the
support itself (i.e., the positions of the points are irrelevant).
Moreover, G2 and �(26a) are bounded and vanish for large n.
However, unlike gape,i , G2 and �(26a), the term G1 (XD, γ )
is highly sensitive to the geometry of the input XD through

TABLE II

PARAMETERS OF THE MIXED INPUT IN (32) USED
IN THE PROOF OF PROPOSITION 13

the minimum distance and the MMSE. In particular, by using
the bound in (38a) we have that

e2G1(XD,γ ) ≤ 1 + 4(2 + n)d2
max(XD)

n · d2
min(XD)

P(n)
e (γ ). (40)

Next we show that if the geometry of XD has a lat-
tice structure then we can achieve the upper bound in (6)
as n → ∞.

Proposition 13: By taking the XD part of Xmix to be a
lattice constellation with input parameters given in Table II
we have that

lim
n→∞ gapn,i = 0, i ∈ [1 : 2]. (41)

That is, as n → ∞ the mixed input achieves the capacity
upper bound in (6).

Proof: Let XD be a lattice constellation with a codebook
given by C and dmax = 2

√
n. From [37] we know that for any

γ > 0 there exists XD such that

lim
n→∞

1

n
H (XD) = 1

2
log |C| = 1

2
log(1 + γ ), (42)

lim
n→∞ P(n)

e (γ ) = 0. (43)

Therefore, for the case of snr ≤ snr0 by using Proposition 12
and inputs as in Table II, by (40) and (43) we have that

lim
n→∞ G1(XD, snr) = 0. (44)

Moreover, by using the fact that the MMSE is a decreasing
function of snr and the bound in (38a) we have that

lim
n→∞ mmse(XD, snr0)

≤ lim
n→∞ mmse(XD, snr)

≤ lim
n→∞

d2
max(XD)

n
P(n)

e (snr) = 0, (45)

which implies that the MMSE constraint in (5c) is always
satisfied. This demonstrates that limn→∞ gapn,1 = 0.

Using similar reasoning for the case of snr ≥ snr0 we know
that there exists XD with input parameters specified in Table II
such that

lim
n→∞ P(n)

e

(
snr0(1 − δ)

1 + δsnr0

)
= 0, (46)

where in (43) we have taken γ = snr0(1−δ)
1+δsnr0

. Moreover, since
snr ≥ snr0 we have that

lim
n→∞ P(n)

e

(
snr(1 − δ)

1 + δsnr

)
≤ lim

n→∞ P(n)
e

(
snr0(1 − δ)

1 + δsnr0

)
= 0,

(47)
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and therefore by the bounds in (38a) and (40) we have that

lim
n→∞ mmse

(
XD,

snr0(1 − δ)

1 + δsnr0

)
= 0, (48)

lim
n→∞ G1

(
XD,

snr(1 − δ)

1 + δsnr

)
= 0, (49)

this implies that the MMSE constraint in (5c) is satisfied and
demonstrates that limn→∞ gapn,2 = 0. This concludes the
proof. �

The above result demonstrates that when XD has a lattice
structure, the upper bound C∞(snr, snr0, β) is achievable.
The result in Proposition 13 also gives an alternative proof
of the result in [2].

F. Max-I Problem: Achievability for Cn(snr, snr0, β)

In this section we discuss how our results can be extended
to an arbitrary and finite n. For simplicity we focus only on
the case snr0 ≥ snr. To that end we will need the following
bound on the MMSE from [32].

Proposition 14 [32, Proposition 14]: For any XD

mmse(XD, snr) ≤ d2
max(XD)

n
P(n)

e (snr), (50a)

P(n)
e (snr) ≤ Q̄

(
n

2
; snr d2

min(XD)

8

)
, (50b)

where

Q̄(x; a) := � (x; a)

� (x)
. (50c)

In particular, by using the bounds in (40) and (50) we have
that

e2G1(XD,snr)

≤ 1 + 4(n + 2)d2
max(XD)

n d2
min(XD)

Q̄

(
n

2
; snr d2

min(XD)

8

)
. (51)

By recalling the following well known limits [38] on Q̄(x, a)
for any p ∈ R:

lim
x→∞ x p Q̄ (x; (1 + ε)x) = lim

x→∞ x p � (x; (1 + ε)x)

� (x)
= 0,

(52a)

lim
x→∞ Q̄ (x; (1 − ε)x) = lim

x→∞
� (x; (1 − ε)x)

� (x)
= 1,

(52b)

we see that in order to force G1(XD, snr) in (38d) to be
small, it is sufficient to simultaneously satisfy the following
two constraints:

d2
max(XD)

n · d2
min(XD)

= O(n p), p ∈ R, (53)

n

2
≤ snr d2

min(XD)

8
. (54)

Remark 1: Note that unlike the case of n = 1, for the case
n > 1, using a cubic constellation, which is the Cartesian
product of a PAM constellation with itself n-times, will not

work well. This is so because if X D ∼ PAM(N), then for XD,
which is an n fold Cartesian product of X D, we have that

dmin(XD) = dmin(X D),

dmax(XD) = √
n(N − 1)dmin(X D),

which implies that dmin(XD) is independent of n and we
cannot satisfy the condition in (54). The above discussion
suggests that a lattice structure on XD as in Proposition 13
might be necessary to satisfy the condition in (54).

Proposition 15 (Minkowski-Hlawka-Sigel Theorem [37]):
For every n and N, there exists a lattice constellation XD

in R
n of size N contained in the ball of radius r centered at

the origin such that

dmin(XD) ≥ r

N
2
n

. (55)

From Proposition 15 it is not hard to see that by taking
r = √

n, to comply with the power constraint, we have
that

dmin(XD) ≥
√

n

N
2
n

, (56)

and therefore, with an appropriately chosen N we can
satisfy (54) and make G1(XD, snr) in (38d) as small as
we want. This intuition is made clear in the following
result.

Proposition 16: There exits an input Xmix with

N = 
(c snr)
n
2 �, δ = 0, d2

max(XD) ≤ 4n, (57a)

where c is chosen to satisfy

4Q̄
(n

2
; n

8c

)
≤ 4Q̄

(n

2
; n snr0

8 snrc

)
≤ β

1 + βsnr0
, (57b)

such that for 1 ≤ snr ≤ snr0

gap1 ≤ gape,1 + G1(XD, snr) + G2, (57c)

gape,1 ≤ 1

2
log (2) + log(2)

n
− 1

2
log(c), (57d)

G1(XD, snr) ≤ 1

2
log

(
1 + 16(2 + n) c snr Q̄

( n
2 ; n

8c

)
n

)
.

(57e)
Proof: The choice of c in (57b) ensures that the

MMSE constraint in (5c) is satisfied. Using Proposition 12
we have that

gape,1 = 1

2
log (1 + snr) − 1

n
H (XD)

= 1

2
log (1 + snr) − 1

n
log(
(c snr)

n
2 �)

a)≤ 1

2
log

(
1 + snr

snr

)
− 1

2
log(c) + log(2)

n

b)≤ 1

2
log (2) − 1

2
log(c) + log(2)

n
,

where the inequalities follow from: a) using the bound 
x� ≥
x
2 for x ≥ 1; and b) using 1+snr

snr ≥ 2 for snr ≥ 1.
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Fig. 8. Plot of the gap1 in Proposition 16 vs. block length n for
snr = 5, snr0 = 10 and β = 0.5.

Moreover,

e2G1(XD,snr)

≤ 1 + 4(n + 2)d2
max(XD)

n d2
min(XD)

Q̄

(
n

2
; snr d2

min(XD)

8

)

a)≤ 1 + 16(n + 2) c snr
n

Q̄

(
n

2
; snr d2

min(XD)

8

)

b)≤ 1 + 16(n + 2) c snr
n

Q̄
(n

2
; n

8c

)
,

where the inequalities follow from: a) using the fact that
d2

max(XD) = 4n and the lower bound on dmin(XD) in Propo-
sition 15; and b) using the facts that Q̄ (x; y) is a decreasing

function of y and that
snr d2

min(XD)
8 ≥ n

8c by Proposition 15.
This concludes the proof. �
A plot of gap1 in Proposition 16 is given in Fig. 8. It is

interesting to note that Proposition 16 recovers only a weaker
version (i.e., the gap is not zero) of Proposition 13.

Corollary 1: As n → ∞ for 1 ≤ snr ≤ snr0

lim
n→∞ gapn,1 = 1

2
log(8) ≈ 1.039. (58)

Proof: The proof follows by taking c = 1
4 in Proposi-

tion 16 and using the limits in (52), from which we have that
limn→∞ gapn,1 = 1

2 log(8). �
Remark 2: The reason why the result in Corollary 1 does

not match that of Proposition 13 exactly but only to within a
gap is because the MMSE bound in (50) is not tight enough.
With a more careful bounding of the MMSE one can improve
the bound in (50) to

P(n)
e (snr) ≤ min

r
Q̄

(
n

2
; r2

2

)
+ P

[
NB

(
Z

snr ,r
) > 1

]
, (59)

where NB(Z,r) is the number of points in the support of XD that

fall into the ball B
(

Z
snr , r

)
centered at Z

snr and with radius r .
However, for any given constellation XD the second term

P

[
NB

(
Z

snr ,r
) > 1

]
can be quite difficult to analyze. To avoid

this complication we chose a sub-optimal value of r = dmin(XD)
2

so that P

[
NB

(
Z

snr ,r
) > 1

]
= 0.

III. PROPERTIES OF THE FIRST DERIVATIVE OF MMSE

A key element in the proof of the SCPP in Proposition 3
was the characterization of the first derivative of the
MMSE as

−dmmse(X, snr)
dsnr

= 1

n
Tr
(
E

[
Cov2(X|Y)

])

:= 1

n
Tr
(
E

[
Cov2(X, snr)

])
, (60)

which was given in [22, Proposition 9] for n = 1 and
in [23, Lemma 3] for n ≥ 1. The first derivative in (60) turns
out to be instrumental in proving Theorem 1 as well.

For ease of presentation, in the rest of this section,
instead of focusing on the derivative we will focus on
Tr
(
E[Cov2(X|Y)]). The quantity Tr

(
E[Cov2(X|Y)]) is well

defined for any X. Moreover, for the case of n = 1 it has been
shown [22, Proposition 5] that

E

[
Cov2(X |Y )

]
≤ k1

snr2 , where k1 ≤ 3 · 24. (61)

Before using (60) in the proof of Theorem 1, we will need
to sharpen the existing constant for n = 1 in (61) (given by
k1 ≤ 3 · 24) and generalize the bound to any n ≥ 1, which to
the best of our knowledge has not been considered before.

Proposition 17: For any X and snr > 0 we have

1

n
Tr
(
E[Cov2(X|Y)]

)
≤ kn

snr2 , (62a)

where

kn ≤ n(n + 2) − n mmse(ZZT|Y) − Tr
(
J2(Y)

)
n

≤ n + 2.

(62b)

Proof: See Appendix E. �
In Proposition 17 the bound on k1 in (61) has been tightened

from k1 ≤ 3 · 24 in (61) to k1 ≤ 3. This improvement will
result in tighter bounds in what follows.

The following tightens kn for power constrained inputs.
Proposition 18: If X is such that 1

n Tr
(
E
[
XXT

]) ≤ 1, then

Tr(J2(Y)) ≥ n

(1 + snr)2 . (63)

Equality in (63) is achieved when X ∼ N (0, I).
Proof: See Appendix F. �

Observe that, by using the bound in (62) from Proposi-
tion 17 together with the lower bound on the Fisher informa-
tion in Proposition 18, the bound on the constant kn in (62b)
can be tightened to

kn ≤
n(n + 2) − n

(1+snr)2

n
= n + 2 − 1

(1 + snr)2 . (64)

We are now ready to prove our main result.

A. Proof of Theorem 1

The proof of Theorem 1 relies on the fact that the MMSE is
an infinitely differentiable function of snr [22, Proposition 7]
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and therefore can be written as the difference of two MMSE
functions using the fundamental theorem of calculus

mmse(X, snr) − mmse(X, snr0)

= −
∫ snr0

snr
mmse′(X, γ )dγ

a)=
∫ snr0

snr

1

n
Tr
(
E[Cov2(X, γ )]

)
dγ

b)≤
∫ snr0

snr

(n + 2)

γ 2 dγ = (n + 2)

(
1

snr
− 1

snr0

)
− �,� = 0,

where the (in)-equalities follow by using: a) (60), and b) the
bound in Proposition 17 with kn ≤ n+2. If we further assume
that X has finite power, instead of bounding kn ≤ n + 2, we
can use (64), to obtain

0 ≤ � = �(23c) = ∫ snr0
snr

1
γ 2(1+γ )2 dγ.

This concludes the proof of Theorem 1.

IV. CONCLUSION

In this paper we have considered a Gaussian channel with
one transmitter and two receivers in which the maximization
of the input-output mutual information at the primary/intended
receiver is subject to a disturbance constraint measured by the
MMSE at the secondary/unintended receiver. We have derived
new upper bounds on the input-output mutual information of
this channel that hold for vector inputs of any length. For
the case of scalar inputs we have demonstrated a matching
lower bound that is to within an additive gap of the order
O
(

log log 1
mmse(X,snr0)

)
of the upper bound. We also demon-

strated how our result can be generalized to vector inputs.
At the heart of our proof is a new upper bound on the MMSE
that complements the SCPP of the MMSE and might be of
independent interest.

We would also like to mention that the bound on the phase
transition region in Proposition 6 has been recently improved
in [32] from O( 1

n ) to O( 1√
n
) by using a notion of minimum

mean p-th error that generalizes the notion of MMSE.
An interesting future direction would be to relate
Cn(snr0, snr, β), which does not have an operational
meaning of capacity, to non-asymptotic information theory
results [39].

APPENDIX A
PROOF OF PROPOSITION 4

For the case of n = 1 consider an input distribution
given by

Xa = [−a, 0, a], PXa =
[

1

2a2 , 1 − 1

a2 ,
1

2a2

]
, (65)

for any a ≥ 1. Note that for the input distribution in (65)
E[X2

a] = 1 for any a. The MMSE of Xa can be upper bounded
by

mmse(Xa, snr) ≤ min

(
1, 4(a2 + 1)e− a2snr

8

)
, (66)

where the upper bound in (66) follows by applying the
upper bound in Proposition 9 together with the bound

mmse(Xa, snr) ≤ E[X2
a] = 1. Therefore, by choosing a large

enough, any MMSE constraint can be met while transmitting
at full power.

The case of n > 1 is straightforward generalization using
the bound in (50). This concludes the proof.

APPENDIX B
PROOF OF PROPOSITION 6

In order to find the point of intersection snrL between (12a)
and (23a) we must solve the following equation:

1

snr
− kn

snr
+ kn

snr0
− β

1 + βsnr0
= 0 ⇒ 1

snr
− kn

snr
+ A = 0

where A = kn
snr0

− β
1+βsnr0

contains all quantities that do not
depend on snr. By solving for snr we find that

snrL = kn − 1

A

= snr0(1 + βsnr0)(kn − 1)

kn + (kn − 1)βsnr0

= snr0
1 + βsnr0
kn

kn−1 + βsnr0
,

and the width of the phase transition is given by

snr0 − snrL = snr0

(
1 − 1 + βsnr0

kn
kn−1 + βsnr0

)

= 1

kn − 1

snr0
kn

kn−1 + βsnr0
,

as claimed in (25b). This concludes the proof.

APPENDIX C
PROOF OF PROPOSITION 8

We first show the decomposition for mutual information
with mixed inputs in (32)

I (Xmix, snr) = I (Xmix; Y ) = I (XG , X D; Y )

= I (X D; Y ) + I (XG ; Y |X D)

= I

(
X D,

snr(1 − δ)

1 + δsnr

)
+ I (XG , snrδ). (67)

Next we take the derivative of both sides of (67) with
respect to snr. On the left side we get d

dsnr I (Xmix, snr) =
1
2 mmse(Xmix, snr) and on the right we get

mmse(Xmix, snr)

= 2
d

dsnr
I

(
X D,

snr(1 − δ)

1 + δsnr

)
+ 2

d

dsnr
I (XG , snrδ)

= mmse

(
X D,

snr(1 − δ)

1 + δsnr

)
· d

dsnr

(
snr(1 − δ)

1 + δsnr

)

+ mmse(XG , snrδ) · d

dsnr
(snrδ)

= 1 − δ

(1 + δsnr)2 mmse

(
X D,

snr(1 − δ)

1 + δsnr

)

+ mmse(XG , snrδ)δ

= 1 − δ

(1 + δsnr)2 mmse

(
X D,

snr(1 − δ)

1 + δsnr

)
+ δ

1 + δsnr
,

as claimed in (34). This concludes the proof.
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APPENDIX D
PROOF OF PROPOSITION 10

By letting X D ∼ PAM(N), given the bound in Proposition 9
and the requirement in (35) we further constrain the MMSE
of X D to satisfy

mmse

(
X D,

snr0(1 − δ)

1 + δsnr0

)
≤ d2

maxe−
snr0(1−δ)
1+δsnr0

8 d2
min

≤ (1 + snr0δ)(β − δ)

(1 − δ)(1 + βsnr0)
, (68)

which ensures that the MMSE constraint in (5c) is met. Since,
the minimum distance of PAM is given by d2

min = 12
N2−1

,
solving for N we have that

N ≤
⌊√

1 + c1
(1 − δ)snr0

1 + δsnr0

⌋
, (69a)

c1 = 3

2 log+
(

d2
max(1−δ)(1+βsnr0)
(1+snr0δ)(β−δ)

)

≤ 3

2 log+
(

12(1−δ)(1+βsnr0)
(1+snr0δ)(β−δ)

) , (69b)

where the last inequality is due to the fact that for PAM

d2
max = (N − 1)2d2

min = 12
(N − 1)2

N2 − 1
=12

N − 1

N + 1
≤12. (70)

For the case of snr0 ≤ snr we choose the number of points
to satisfy (69) with equality and choose δ = β snr0

1+snr0
:= βc2.

Next we compute the gap between the outer bound in
Proposition 7 with the achievable mutual information of a
mixed input in Proposition 8, where I

(
X D, snr(1−δ)

1+δsnr

)
is lower

bounded by Proposition 9.
We obtain

gap1 + �(26a)

= C∞ − I

(
X D,

snr(1 − δ)

1 + δsnr

)
− I (XG , snr δ)

= C∞ −
(

log(N) − 1

2
log
(π

6

)

−1

2
log

(
1 + 12

d2
min

mmse

(
X D,

snr(1 − δ)

1 + δsnr

)))

− 1

2
log(1 + δsnr)

a)≤ C∞ −
(

1

2
log

(
1 + c1

(1 − δ)snr0

1 + δsnr0

)
− log(2)

− 1

2
log
(π

6

)

− 1

2
log

(
1 + 12

d2
min

mmse

(
X D,

snr(1 − δ)

1 + δsnr

))

+1

2
log(1 + δsnr)

)

= 1

2
log

(
1 + snr0(1−β)

1+βsnr0

1 + c1
(1−δ)snr0
1+δsnr0

)
+ 1

2
log

(
1 + βsnr
1 + δsnr

)

+ 1

2
log

(
1 + 12

d2
min

mmse

(
X D,

snr(1 − δ)

1 + δsnr

))

+ 1

2
log

(
4π

6

)
, (71)

where inequality in a) follows from getting an extra one bit
gap from dropping the floor operation.

We next bound each term in (71) individually. The first term
in (71) can be bounded as follows:

1

2
log

(
1 + snr0(1−β)

1+βsnr0

1 + c1
(1−δ)snr0
1+δsnr0

)

= 1

2
log

(
(1 + snr0)(1+1c2βsnr0)

(1+βsnr0)(1+c1snr0+βc2snr0−βc1c2snr0)

)

b)≤ 1

2
log

(
(1 + snr0)(1 + c2βsnr0)

(1 + βsnr0)(1 + c1snr0 + βc2snr0 − βc1snr0)

)

= 1

2
log

(
(1 + snr0)(1 + c2βsnr0)

(1 + βsnr0)(1 + (1 − β)c1snr0 + βc2snr0)

)

c)≤ 1

2
log

(
(1 + snr0)

(1 + (1 − β)c1snr0 + βc2snr0)

)

d)≤ 1

2
log

(
max

(
(1 + snr0)

(1 + c1snr0)
,

(1 + snr0)

(1 + c2snr0)

))

e)≤ 1

2
log

(
max

(
1

c1
, 2

))
, (72)

where the inequalities follow from the facts: b) c2 = snr0
1+snr0

≤
1; c) 1+c2βsnr0

1+βsnr0
≤ 1 since c2 ≤ 1; d) the denominator term

1 + (1 − β)c1snr0 + βc2snr0 achieves its minimum at either
β = 0 or β = 1; and e) (1+snr0)

(1+c2snr0)
≤ 1

c2
= 1+snr0

snr0
≤ 2 for

snr0 ≥ 1.
The second term in (71) can be bounded as follows:

1
2 log

(
1+βsnr
1+δsnr

)
≤ 1

2 log
(

1+snr0
snr0

)
≤ 1

2 log (2) , (73)

where the inequalities follow from using δ = β snr0
1+snr0

and
1+βsnr
1+δsnr ≤ β

δ = 1+snr0
snr0

≤ 2 for snr ≥ snr0 ≥ 1.
The third term in (71) can be bounded as follows:

1

2
log

(
1 + 12

d2
min

mmse

(
X D,

snr(1 − δ)

1 + δsnr

))

f )≤ 1

2
log

(
1 + 12

d2
min

mmse

(
X D,

snr0(1 − δ)

1 + δsnr0

))

g)≤ 1

2
log

(
1 + c1

(1 − δ)snr0

1 + δsnr0
mmse

(
X D,

snr0(1 − δ)

1 + δsnr0

))

h)≤ 1

2
log

(
1 + c1

(β − δ)snr0

1 + βsnr0

)

i)≤ 1

2
log

(
1 + c1

β

1 + βsnr0

)
, (74)

where the (in)-equalities follow from: f) the fact that the
MMSE is a decreasing function of SNR and snr(1−δ)

1+δsnr ≥
snr0(1−δ)
1+δsnr0

; g) using the bound on d2
min = 12

N2−1
from (69);
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h) using the bound in (68); and i) using δ = βsnr0
1+snr0

≤ β and

therefore (β − δ)snr0 = β snr0
1+snr0

≤ β.
By combining the bounds in (72), (73), and (74) we get

2(gap2 + �(26a))

≤ log

(
max

(
1

c1
, 2

))
+ log

(
4π

3

)

+ log

(
1 + c1

β

1 + βsnr0

)

= log

(
max

(
1

c1
, 2

)
+ 2 max (1, 2c1)

β

1 + βsnr0

)

+ log

(
4π

3

)

j )≤ log

(
max

(
1

c1
, 2

)
+ 6

β

1 + βsnr0

)
+ 1

2
log

(
4π

3

)

k)= log

⎛
⎝max

⎛
⎝2 log

(
12(1−δ)(1+βsnr0)
(1+snr0δ)(β−δ)

)
3

, 2

⎞
⎠+ 6β

1 + βsnr0

⎞
⎠

+ log

(
4π

3

)

l)≤ log

⎛
⎝max

⎛
⎝2 log

(
24(1+(1−β)snr0

β

)
3

, 2

⎞
⎠+ 6β

1 + βsnr0

⎞
⎠

+ log

(
4π

3

)

m)= log

(
2

3
log

(
24(1 + (1 − β)snr0

β

)
+ 6

β

1 + βsnr0

)

+ log

(
4π

3

)
,

where the inequalities follow from: j) the fact that c1 ≤ 3
2 ;

k) using the value of c1 in (69); l) using δ = β snr0
1+snr0

and
1+βsnr0
1+δsnr0

≤ 1+snr0
snr0

≤ 2 for snr0 ≥ 1; and m) the fact that

max

(
2 log

(
24(1+βsnr0)

β

)
3 , 2

)
= 2 log

(
24(1+βsnr0)

β

)
3 .

This concludes the proof of the gap result for the snr ≥ snr0
regime.

We next focus on the 1 ≤ snr ≤ snr0 regime. We use only
the discrete part of the mixed input and set δ = 0. From (69)
we have that the input parameters must satisfy

N ≤
⌊√

1 + c3snr0

⌋
, (75a)

c3 ≤ 3

2 log
(

12(1+βsnr0)
β

) , (75b)

in order to comply with the MMSE constraint in (5c). How-
ever, instead of choosing the number of points as in (75) we
choose it to be

N = ⌊√1 + c3snr
⌋ ≤ ⌊√1 + c3snr0

⌋
. (76)

The reason for this choice will be apparent from the gap
derivation next.

Similarly to the previous case, we compute the gap between
the outer bound in Proposition 7 and the achievable mutual

information of the mixed input in Proposition 8, where
I (X D, snr) is lower bounded using Proposition 9. We have,

gap2 + �(26b)

≤ C∞ − log(N) + 1

2
log
(πe

6

)

+ 1

2
log

(
1 + 12

d2
min

mmse(X D, snr)

)

n)≤ 1

2
log

(
1 + snr

1 + c3snr

)
+ 1

2
log

(
4πe

6

)

+ 1

2
log

(
1 + 12

d2
min

mmse(X D, snr)

)

o)≤ 1

2
log

(
1 + snr

1 + c3snr

)
+ 1

2
log

(
4πe

6

)

+ 1

2
log

(
1 + c3snr

1 + snr

)

= 1

2
log

(
1 + (1 + c3)snr

1 + c3snr

)
+ 1

2
log

(
4πe

6

)

p)≤ 1

2
log

(
1 + 1

c3

)
+ 1

2
log

(
4πe

6

)

r)= 1

2
log

(
1+ 2

3
log

(
12(1+βsnr0)

β

))
+ 1

2
log

(
4πe

6

)
,

where the (in)-equalities follow from: n) getting an extra one
bit gap by dropping the floor operation; o) using the bound on
d2

min = 12
N2−1

from (76) and bound mmse(X, snr) ≤ 1
1+snr ;

p) using that 1+(1+c3)snr
1+c3snr ≤ 1+c3

c3
= 1 + 1

c3
; and r) using the

value of c3 from (75).
This concludes the proof for the case 1 ≤ snr ≤ snr0.
Finally, note that for the case snr ≤ 1 the gap is trivially

given by

gap3 ≤ C(β, snr, snr0) − I (Xmix, snr)

≤ C(β, snr, snr0) ≤ 1

2
log(1 + snr)

≤ 1

2
log(2). (77)

This concludes the proof.

APPENDIX E
PROOF OF PROPOSITION 17

We will need the following identities for the proof:

snr · E[Cov(X|Y)] = E[Cov(Z|Y)], (78a)

snr2 · E[Cov2(X|Y)] = E[Cov2(Z|Y)], (78b)

which follow since
√

snrX + Z = Y = E[Y|Y] = √
snrE[X|Y] + E[Z|Y],

and therefore
√

snr(X − E[X|Y]) = (Z − E[Z|Y]).
Next, observe that

Cov(Z|Y) = E[ZZT|Y] − (E[Z|Y])(E[Z|Y])T,
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and so we have that

Cov2(Z|Y)

=
(
E[ZZT|Y] − E[Z|Y]E[Z|Y]T

)2

= (E[ZZT|Y])2 − E[Z|Y]E[Z|Y]T
E[ZZT|Y]

− E[ZZT|Y]E[Z|Y]E[Z|Y]T + (E[Z|Y]E[Z|Y]T)2

a)= (E[ZZT|Y])2 − 2E[Z|Y]E[Z|Y]T
E[ZZT|Y]

+ (E[Z|Y]E[Z|Y]T)2

b)� (E[ZZT|Y])2 − 2E[Z|Y]E[Z|Y]T
E[Z|Y]E[Z|Y]T

+ (E[Z|Y]E[Z|Y]T)2

= (E[ZZT|Y])2 − (E[Z|Y]E[Z|Y]T)2

c)= E[ZZT(ZZT)T|Y] − Cov(ZZT|Y) − (E[Z|Y]E[Z|Y]T)2,

(79)

where the order operations follow from: a) the fact that
E[Z|Y]E[Z|Y]T and E[ZZT|Y] are symmetric matrices; b)
using E[Z|Y]E[Z|Y]T � E[ZZT|Y] (from the positive semi-
definite property of the conditional covariance matrix); and
c) the fact that, since Cov(ZZT|Y) = E[ZZT(ZZT)T|Y] −
E[ZZT|Y](E[ZZT|Y])T and by symmetry of E[ZZT|Y], we
have that E[ZZT|Y](E[ZZT|Y])T = (E[ZZT|Y])2. By using
the monotonicity of the trace, properties of the expected value,
and the inequality in (79), we have that

Tr
(
E[Cov2(Z|Y)]

)

≤ Tr
(
E

[
E[ZZT(ZZT)T|Y] − Cov(ZZT|Y)

−(E[Z|Y]E[Z|Y]T)2
])

= Tr
(
E

[
E[ZZT(ZZT)T|Y]

])
− Tr

(
E

[
Cov(ZZT|Y)

])

− Tr
(
E

[
(E[Z|Y]E[Z|Y]T)2

])
. (80)

We next focus on each term of the right hand side of (80)
individually. The first term can be computed as follows:

Tr
(
E

[
E[ZZT(ZZT)T|Y]

])
d)= Tr

(
E[ZZTZZT]

)
e)= E

[
Tr
(

ZZTZZT
)]

= E

[
Tr
(

ZTZZTZ
)]

= E

⎡
⎣
(

n∑
i=1

Z2
i

)2
⎤
⎦

f )= n(n + 2), (81)

where the equalities follow from: d) using the law of total
expectation; e) since expectation is a linear operator and using
fact that the trace can be exchanged with linear operators; and
f) observing that S =∑n

i=1 Z2
i is a chi-square distribution of

degree n and hence E[S] = n(n + 2).
For the second term in (80), by definition of the MMSE,

we have

Tr
(
E

[
Cov(ZZT|Y)

])
= nmmse(ZZT|Y). (82)

The third term in (80) satisfies

Tr
(
E

[
(E[Z|Y]E[Z|Y]T)2

])
g)≥ Tr

((
E

[
E[Z|Y]E[Z|Y]T

])2
)

= Tr

((
E[ZZT] − E[Cov(Z|Y)]

)2
)

h)= Tr
(
(I − snr E[Cov(X|Y)])2

)
i)= Tr

(
J2(Y)

)
, (83)

where the (in)-equalities follow from: g) using Jensen’s
inequality; h) using the property snr · E[Cov(X|Y)] =
E[Cov(Z|Y)] in (78); and i) using the identity [22]

I − snr E[Cov(X|Y)] = J(Y).

By putting (81), (82), and (83) together, we have that

E

[
Cov2(Z|Y)

]

≤ kn := n(n + 2) − n mmse(ZZT|Y) − Tr
(
J2(Y)

)
n

.

Finally, using the identity E
[
Cov2(Z|Y)

] =
snr2

E
[
Cov2(X|Y)

]
in (78) concludes the proof.

APPENDIX F
PROOF OF PROPOSITION 18

Using the Cramér-Rao lower bound [40, Th. 20] we have
that

J(Y) 
 Cov−1(Y)

=
(
snrE[XXT ] + I

)−1

= V−1�−1V,

where � is the eigen-matrix of snr · E[XXT ] + I, which is a
diagonal matrix with the following values along the diagonal:
λi = snrσi + 1, and σi is the i -th eigenvalue of the matrix
E[XXT ]. Therefore,

Tr
(

J2(Y)
)

≥ Tr

(
V−1�−1V

(
V−1�−1V

)T
)

= Tr(�−2)

=
n∑

i=1

1

(1 + snrσi )2

≥ n

(1 + snr)2 ,

where the last inequality comes from minimizing∑n
i=1

1
(1+snrσi )2 subject to the constraint that Tr

(
E[XXT ]) =∑n

i=1 σi ≤ n and where the minimum is attained with σi = 1
for all i .

Finally, note that all inequalities are equalities if Y ∼
N (0, (1 + snr)I) or equivalently if X ∼ N (0, I). This
concludes the proof.
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