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Noise Channels and Its Applications
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Abstract— The problem of estimating an arbitrary random
vector from its observation corrupted by additive white Gaussian
noise, where the cost function is taken to be the minimum
mean pth error (MMPE), is considered. The classical minimum
mean square error (MMSE) is a special case of the MMPE.
Several bounds, properties, and applications of the MMPE are
derived and discussed. The optimal MMPE estimator is found
for Gaussian and binary input distributions. Properties of the
MMPE as a function of the input distribution, signal-to-noise-
ratio (SNR) and order p are derived. The “single-crossing-point
property” (SCPP) which provides an upper bound on the MMSE,
and which together with the mutual information-MMSE rela-
tionship is a powerful tool in deriving converse proofs in multi-
user information theory, is extended to the MMPE. Moreover,
a complementary bound to the SCPP is derived. As a first
application of the MMPE, a bound on the conditional differential
entropy in terms of the MMPE is provided, which then yields a
generalization of the Ozarow–Wyner lower bound on the mutual
information achieved by a discrete input on a Gaussian noise
channel. As a second application, the MMPE is shown to improve
on previous characterizations of the phase transition phenomenon
that manifests, in the limit as the length of the capacity achieving
code goes to infinity, as a discontinuity of the MMSE as a function
of SNR. As a final application, the MMPE is used to show new
bounds on the second derivative of mutual information, or the
first derivative of the MMSE.

Index Terms— I-MMSE, estimation.
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I. INTRODUCTION

IN the Bayesian setting the Minimum Mean Square Error
(MMSE) of estimating a random variable X from an obser-

vation Y is understood as a cost function1 with a quadratic loss
function (i.e., L2 norm):

mmse(X | Y ) = E

�
|X − E[X | Y ]|2

�
. (1)

Another commonly used cost function is the L1 norm with
loss function given by the absolute value of the error (i.e., the
difference between the variable of interest and its estimate).
In general, cost functions with non-quadratic loss functions are
not well understood and have been considered only for special
cases, such as under the assumption of Gaussian statistics.

The interplay between estimation theoretic and information
theoretic measures has been very fruitful; for example the so
called mutual information-MMSE (I-MMSE) relationship [3],
that relates the derivative of the mutual information with
respect to the Signal-to-Noise-Ratio (SNR) to the MMSE,
has found numerous applications throughout information
theory [4]. The goal of this work is to show that the study
of estimation problems with non-quadratic loss functions can
also offer new insights into classical information theoretic
problems. The program of this paper is thus to develop the
necessary theory for a class of loss functions, and then apply
the developed tools to information theoretic problems.

A. Past Work

The popularity of the MMSE stems from its analytical
tractability, which is rooted in the fact that the MMSE is
defined through the L2 norm in (1). The L2 norm, in turn,
allows applications of the well understood Hilbert space
theory [5]. In information theoretic applications the L2 norm
is used, for example, to define an average input power con-
straint. The connection between the power constraint and the
L2 norm leads to a continuous analog of Fano’s inequal-
ity that relates the conditional differential entropy and the
MMSE [6, Th. 8.6.6].

Recently, in view of the I-MMSE relationship [3], the
MMSE (in an Additive White Gaussian Noise (AWGN) chan-
nel) has received considerable attention. For example, in [7]
the I-MMSE relationship was used to give a simple alternative
proof of the Entropy Power Inequality (EPI) [8]. Moreover, the

1Another common term used is a risk function.
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so called ‘Single-Crossing-Point Property’ (SCPP) [9], [10]
that bounds the MMSE for all SNR values above a certain
value at which the MMSE is known, together with the
I-MMSE relationship, offers an alternative, unifying frame-
work for deriving information theoretic converses, such as: [9]
to provide an alternative proof of the converse for the Gaussian
broadcast channel (BC) and show a special case of the EPI;
in [11] to provide a simple proof for the information com-
bining problem and a converse for the BC with confidential
messages; in [10], by using various extensions of the SCPP,
to prove a special case of the vector EPI, a converse for
the capacity region of the parallel degraded BC under per-
antenna power constraints and under an input covariance
constraint, and a converse for the compound parallel degraded
BC under an input covariance constraint; and in [12] to provide
a converse for communication under an MMSE disturbance
constraint.

In [13] we demonstrated a bound that complements the
SCPP, that bounds the MMPE for all SNR values below a
certain value at which the MMSE is known, and allows for
a finer characterization of the phase transition phenomenon
that manifests as a discontinuity of the MMSE as a function
of SNR, as the length of the codeword goes to infinity. This
plays an important role in characterizing achievable rates of
the capacity achieving codes [14], [15]. One of the applications
of the tools presented in this work is an improvement on the
bound in [13, Th. 1].

Many other properties of the MMSE in relation to the
I-MMSE have been studied in [9] and [16]–[18]. For a com-
prehensive survey on results, applications and extensions of the
I-MMSE relationship we refer the reader to [11] and [19].

While the MMSE has received considerable attention and
is well understood, non-quadratic cost functions are only
understood in special cases, such as under the assumption of
Gaussian statistics. For example, in [20] it was shown that
under scalar Gaussian statistics, for a large class of symmetric
loss functions the optimal linear MMSE (LMMSE) estimator
is also optimal. The result of [20] was extended in [21] to a
large class of cost functions that also include asymmetric loss
functions. Other early work in this direction includes also [22].

Tan et al. [23] studied the expected L∞ norm of the error,
when the input is assumed to be a Gaussian mixture. The
authors showed that, as the dimension of the signal goes to
infinity, the optimal LMMSE estimator minimizes the expected
maximum error.

Hall and Wise [24], [25] studied a class of even and non-
decreasing and even and convex, respectively, loss functions
and gave a sufficient condition on the conditional distribution
of the input X given the output Y , so that the conditional
expectation E[X |Y ] is the optimal estimator.

Akyol et al. [26] studied a scalar additive noise channel and
an L p cost function and showed a necessary and sufficient
condition on the noise and the input distributions to guarantee
that the optimal estimator is linear. Moreover, under the
derived sufficient and necessary conditions, if the source and
noise variances are the same, then the optimal estimator is
linear if and only if the input and the noise distributions are
identical.

Weinberger and Merhav [27] and Merhav [28] considered
the problem of transmitting a modulated signal over a discrete
memoryless channel where the performance criterion was
taken to be the L p cost function. To that end, the authors
showed tight exponential bounds for very small and very large
values of p.

Saerens [29] focused on designing an appropriate cost func-
tion such that the output of the trained model approximates the
desired summary statistics, such as the conditional expectation,
the geometric mean or the variance.

Livadiotis [30] focus on characterizing expectation and
variance based on L p norms and emphasized that a parame-
ter p provides a new degree of freedom in analyzing of new
phenomena in statistical physics. The interested reader is also
referred to [31] where the interplay between the L p means and
means generalized in terms convex functions is considered.

In non-Bayesian estimation L p cost functions have been
considered in [32] and [33], in a context of minimax estima-
tion, and the authors gave lower and upper bounds on the
exponential behavior of the cost function. For a non-Bayesian
treatment of non-quadratic cost functions we refer the reader
to [34] and [35].

Looking into non-quadratic cost functions is further moti-
vated by the fact that often the quadratic cost function may
not be the correct measure of signal fidelity for certain
applications. This is especially true in image processing where
error metrics, more sensitive to structural changes of the input
signal, better capture human perceptions of quality. We refer
the reader to [36] for a survey of recent results in this direction.

B. Paper Outline and Main Contributions

In this work we are interested in studying a cost function,
termed the Minimum Mean p-th Error (MMPE),2 the scalar
version of which is given by

mmpe(X | Y ; p) = inf
f

E
�|X − f (Y )|p�, (2)

where the infimum is over all measurable estimators f (Y ).
Our contributions are as follows:
1) In Section II we formally define the vector version of

the MMPE in (2) and introduce related definitions.
2) In Section III we study properties of the optimal MMPE

estimator and show:
• In Section III-A, Proposition 1 shows that the MPPE

optimal estimator indeed exists;
• In Section III-B, Proposition 2 derives an

orthogonality-like principle that serves as a
necessary and sufficient condition for an estimator
to be MMPE optimal;

• Section III-C gives examples of optimal MMPE
estimators. In particular, in Proposition 3 we find
the MMPE for Gaussian random vectors, and in
Proposition 4 for discrete binary random variables;
and

• In Section III-D, Proposition 5 shows some basic
properties of the optimal MMPE estimator in terms

2The abbreviation MMPE has been used before in [11, Ch. 8] for the
Minimum Mean Poisson Error.
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of input distribution, such as, linearity, stability,
degradedness, etc. Moreover, via an example it is
shown that in general the MMPE optimal estimator
is biased on average (i.e., the first moment of the
error (bias) is not zero). However, it is shown that
the p-th order estimator is unbiased on average in
the sense that the (p − 1)-th moment of the error is
zero.

3) In Section IV we study properties of the MMPE as a
function of order p, SNR and the input distribution that
will be useful in a number of applications:

• In Section IV-A, Proposition 6 shows that the
MMPE is invariant under translations of the input
random vector and derives basic scaling properties;

• In Section IV-B, Proposition 7 shows that, as far as
estimation error over the channel Y = √

snrX+Z is
concerned the estimation of the input X is equivalent
to the estimation of the Gaussian noise Z; and

• In Section IV-C, Proposition 8 gives a ‘change of
measure’ result that allows one to take the expecta-
tion in the definition of the MMPE with respect to
an output at a different SNR.

4) In Section V we discuss basic bounds on the MMPE
and show:

• In Section V-A, Proposition 10 develops basic order-
ing bounds between MMPE’s of different orders and
bounds equivalent to that of the LMMSE bound;

• In Section V-B, Proposition 11 shows that, under
an appropriate moment constraint on the input dis-
tribution, the Gaussian input is asymptotically the
‘hardest’ to estimate;

• In Section V-C, Proposition 12 derives interpolation
bounds for the MMPE. One of the consequences of
such bounds is Proposition 13, which shows that the
MMPE is a continuous function of order p; and

• In Section V-D, Proposition 15 derives bounds on
the MMPE with discrete vector inputs.

5) In Section VI we define the conditional MMPE and
show:

• Proposition 16 shows that conditioning reduces the
MMPE; and

• Proposition 17 shows that the MMPE estimation
of X from two AWGN observations is equivalent to
estimating X from a single observation with a higher
SNR. This implies that the MMPE is a decreasing
function of SNR.

6) In Section VII we show applications of the developed
tools:

• In Proposition 18, by using the tools developed for
the conditional MMPE, a simple proof of the SCPP
for the MMSE is given, and extended to the MMPE;

• In Proposition 19 we use the change of measure
result in Proposition 8 to show a bound that comple-
ments the SCPP bound, that is, it bounds the MMPE
for all SNR values below a certain SNR value at
which the MMPE is known; and

• In Proposition 20, by using change of measure result
in Proposition 19 and continuity of the MMPE

in p from Proposition 13, we show that for any
finite dimensional input the MMPE is a continuos
function of SNR.

7) In Section VIII we apply the developed bounds and
generalize or improve some well known information
theoretic MMSE bounds:

• In Section VIII-A, Theorem 1 gives a general
inequality that bounds the conditional differential
entropy via the MMPE of which the continuous
analog of Fano’s from [6, Th. 8.6.6] is a special
case;

• In Section VIII-B, Theorem 2 generalizes the
Ozarow-Wyner bound [37] on the mutual informa-
tion achieved by a discrete input on an AWGN
channel, to vector discrete inputs and yields the
sharpest known version of this bound. Moreover, in
Theorem 3 we show how the bound behaves as the
dimension of the input goes to infinity;

• In Section VIII-C, Theorem 4 improves on the
previous characterizations of the width of the phase
transition region of finite-length code of length n
given by O( 1

n ) in [13] to O( 1√
n
). This in turn also

improves the converse result on the communica-
tions under disturbance constrained problem studied
in [13]; and

• In Section VIII-D, Proposition 21 we show how the
MMPE can be used to provide new lower and upper
bounds on the derivative of the MMSE.

C. Notation
Throughout the paper we adopt the following notational

conventions:

• Deterministic scalar and vector quantities are denoted
by lower case and bold lower case letters, respectively.
Matrices are denoted by bold upper case letters;

• Random variables and vectors are denoted by upper case
and bold upper case letters, respectively, where r.v. is
short for either random variable or random vector, which
should be clear from the context;

• If A is a r.v. we denote the support of its distribution by
supp(A);

• The symbol | · | may denote different things: |A| is
the determinant of the matrix A, |A| is the cardinality
of the set A, |X | is the cardinality of supp(X) , or |x |
is the absolute value of the real-valued x ;

• The symbol � · � denotes the Euclidian norm;
• E[·] denotes the expectation operator;
• We denote the covariance of r.v. X by KX;
• X ∼ N (mX, KX) denotes the density of a real-valued

Gaussian r.v. X with mean vector m and covariance
matrix KX;

• The identity matrix is denoted by I;
• Reflection of the matrix A along its main diagonal, or the

transpose operation, is denoted by AT ;
• The trace operation on the matrix A is denoted by Tr(A);
• The Order notation A � B implies that A−B is a positive

semidefinite matrix;
• log(·) denotes logarithms in base 2;



DYTSO et al.: ON THE MMPE IN GAUSSIAN NOISE CHANNELS AND ITS APPLICATIONS 2015

• [n1 : n2] is the set of integers from n1 to n2 ≥ n1;
• For x ∈ R we let 	x
 denote the largest integer not greater

than x ;
• For x ∈ R we let [x]+ := max(x, 0) and log+(x) :=

[log(x)]+;
• Let f (x), g(x) be two real-valued functions. We use the

Landau notation f (x) = O(g(x)) to mean that for some
c > 0 there exists an x0 such that f (x) ≤ c g(x) for all
x ≥ x0, and f (x) = o(g(x)) to mean that for every c > 0
there exists an x0 such that f (x) < cg(x) for all x ≥ x0;

• We denote the conditional r.v. X|Y = y ∼ pX|Y(·|y)
as Xy;

• We denote the upper incomplete gamma function and the
gamma function by

� (x; a) :=
� ∞

a
t x−1e−t dt, x ∈ R, a ∈ R

+, (3a)

� (x) := � (x; 0). (3b)

The generalized Q-function is denoted by

Q̄(x; a) := � (x; a)

� (x)
. (3c)

In particular, the generalized Q-function can be related
to the standard Q-function, by using the relationship
Q(

√
2x) = 1

2
√

π
�
� 1

2 ; x2
�

and �
� 1

2

� = √
π , as

Q̄
� 1

2 ; a2
� = 2Q(

√
2a); and

• We define the volume of the region S embedded in R
n as

Vol(S) :=
�

S
1 dx1dx2 · · · dxn. (4)

In particular, the volume of the n-dimensional ball B(r)
of radius r centered at the origin is given by

Vol(B(r)) = π
n
2 rn

�
� n

2 + 1
� .

II. COST FUNCTION DEFINITION

Motivated by the study of cost functions with non-quadratic
error we define the following norm.

Definition 1: For the r.v. U ∈ R
n and p > 0

�U�p :=
	

1

n
E
��U�p�


 1
p =

	
1

n
E

��
Tr(UUT )

 p
2
�
 1

p

.

(5)
For p ≥ 1 the function in (5) defines a norm and obeys the

triangle inequality

�U + V�p ≤ �U�p + �V�p. (6)

Therefore, throughout the paper we define the L p space, for
p ≥ 1, as the space of r.v. on a fixed probability space
(�, σ(�), P) such that the norm in (5) is finite. However,
many of our results will hold for 0 < p < 1, for which (5) is
not a norm.

In particular, for Z ∼ N (0, I) the norm in (5) is given by

n�Z�p
p = E

⎡
⎣
�

n�
i=1

Z2
i

� p
2
⎤
⎦ = 2

p
2
�
� n+p

2

�

�
� n

2

� , for n ∈ N, p ≥ 0,

(7)

and for V uniform over the n dimensional ball of radius r the
norm in (5) is given by

n�V�p
p = 1

Vol(B(r))

π
n
2

�
� n

2

�
� r

0
ρ pρn−1dρ

= n

2 p + 2n
r p, for n ∈ N, p ≥ 0. (8)

Note that for n = 1 we have that �U�p
p = E

�|U |p
�

and
therefore from now on we will refer to �U�p

p as p-th moment
of U. Naturally, for n > 1, there are many other ways for
defining the moments, see for example [38]. However, in view
of the information theoretic problems we are interested in,
such for example from previous work [13], the definition in (5)
arises naturally.

Definition 2: For any p > 0, we define the minimum mean
p-th error (MMPE) of estimating X from Y as

mmpe(X|Y; p) := inf
f

�X − f (Y)�p
p, (9)

and where the minimization is over all possible Borel measur-
able functions f (Y). Whenever the optimal MMPE estimator
exists and is unique (up to a set of measure zero) we shall
denote it by f p(X|Y).3 The optimal estimator in (9) might not
be unique (i.e., there could be two or more estimators that do
not agree on a set of a positive measure) in which case we
define

fp(X|Y = y) = sup{� f (y)� : f (·) is a minimizer in (9)}.
(10)

Remark 1: The notation fp(X|Y), for the optimal estimator
in (9) is inspired by the conditional expectation E[X|Y], and
f p(X|Y) should be thought of as an operator on X and a
function of Y. Indeed, for p = 2, the MMPE reduces to the
MMSE; that is, mmpe(X|Y; 2) = mmse(X|Y) and f2(X|Y) =
E[X|Y]. The properties of f p(X|Y) as an operator on X will
be investigated in Proposition 5.

Finally, similarly to the conditional expectation, the notation
f p(X|Y = y) should be understood as an evaluation for a
realization of a random variable Y, while f p(X|Y) should be
understood as a function of a random variable Y which itself
is a random variable.

We shall denote

mmpe(X|Y; p) = mmpe(X, snr, p), (11)

if Y and X are related as

Y = √
snr X + Z, (12)

where Z, X, Y ∈ R
n , Z ∼ N (0, I) is independent of X,

and snr ≥ 0 is the SNR. When it will be necessary to
emphasize the SNR at the output Y, we will denote it with
Ysnr. Since the distribution of the noise is fixed mmpe(X|Y; p)
is completely determined by the distribution of X and snr and
there is no ambiguity in using the notation mmpe(X, snr, p).
Applications to the Gaussian noise channel will be the main
focus of this paper.

3The restriction to measurable functions, in Definition 2, is necessary.
See [39] for surprising complications that can arise without this assumption.
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Note that there are other ways of defining the loss function
in (9); our definition in (9) is motivated by:

• For X ∈ R
1 the error in (9) reduces to a natural

expression with loss function given by �X − f (Y )�p =
|X − f (Y )|p;

• The definition in (9) naturally appears in applications of
Hölder’s or Jensen’s inequalities to mmse(X |Y ); and

• The norm in (5) used in the definition of (9) can be related
to information theoretic quantities, such as differential
entropy and Rényi entropy, via the vector moment entropy
inequality from [40].

We shall also look at the p-th error achieved by the
suboptimal (unless p = 2) estimator E[X|Y], that is,

�X − E[X|Y]�p
p, (13)

which represents higher order moments of the MMSE loss
function and serves (see below) as an upper bound on (9).

III. PROPERTIES OF THE OPTIMAL MMPE ESTIMATOR

A. Existence of Optimal Estimator

It is important to point out that �X − E[X|Y]�p, in general
is not equal to the MMPE, as E[X|Y] might not be the
optimal estimator under the p-th norm. The first result of
this section shows that for the AWGN channel the optimal
estimator f p(X|Y = y) indeed exists.

Proposition 1: For mmpe(X, snr, p), p > 0, snr > 0
the optimal estimator is given by the following point-wise
relationship:

f p(X|Y = y) = max
�

v :
E
��X − v�p|Y = y

� = min
a∈Rn

E
��X − a�p|Y = y

� �
.

(14)

Moreover, for p > 1 the optimal estimator is unique and is
given by

f p(X|Y = y) = arg min
v∈Rn

E
��X − v�p|Y = y

�
. (15)

Finally, if �X�p < ∞ then (14) and (15) are also valid for
snr = 0+.

Proof: See Appendix A. �
A result similar to that in Proposition 1 can be found in

[35, Th. 4.1.1] where it has been shown that for a given X an
estimator f p(X|Y) is optimal provided that the minimum on
the right hand side of (14) exists. In contrast to [35, Th. 4.1.1],
Proposition 1 shows that the minimum in (14) exists for
any X, and f p(X|Y) is the MMPE optimal estimator for
any X.

Proposition 1 immediately implies the following corollary
on the interchange of the expectation and infimum which will
be used in many of the following proofs.

Corollary 1: For p > 0 and snr > 0

mmpe(X, snr, p) = inf
f

1

n
E
��X − f (Y)�p�

= 1

n
E

�
inf

f
E
��X − f (Y)�p|Y�

�
. (16)

Proof: In the proof of Proposition 1 it is shown that

E

�
inf

f
E
��X − f (Y)�p|Y�

�
= E

��X − f p(X|Y)�p� ,
for f p(X|Y) in (14). Therefore, we have the following chain
of inequalities

E
��X − f p(X|Y)�p� = E

�
inf

f
E
��X − f (Y)�p|Y�

�

≤ inf
f

E
��X − f (Y)�p�

≤ E
��X − f p(X|Y)�p�. (17)

This concludes the proof. �

B. Orthogonality-Like Property

The MMPE for p �= 2 differs from MMSE in a number of
aspects. The main difference is that the norm defined in (5)
is not a Hilbert space norm in general (unless p = 2); as a
result, there is no notion of inner product or orthogonality, and
f p(X|Y), unlike E[X|Y], can no longer be thought of as an
orthogonal projection. Therefore, the orthogonality principle—
an important tool in the analysis of the MMSE—is no longer
available when studying the MMPE for p �= 2. However,
an orthogonality-like property can indeed be shown for the
MMPE.

Proposition 2 (Necessary and Sufficient Condition for the
Optimality of f p(X|Y)): For any X, any snr > 0, p ≥ 1,
f p(X|Y) is an optimal estimator if and only if

E

�
�X − f p(X|Y)�p−2 · �X − f p(X|Y)

�T · g(Y)
�

= 0,

(18a)

for any deterministic function g : R
n → R

n, that is,

E

��
WT W

 p−2
2 · WT · g(Y)

�
= 0, (18b)

where W = X − f p(X|Y). Moreover, for 0 < p < 1 the
condition in (18a) is necessary for optimality.

Proof: See Appendix B. �
Note that Proposition 2 for n = 1 and p ∈ R

+ reduces to

E[|X − f p(X |Y )|p−2(X − f p(X |Y ))g(Y )] = 0, (19)

which for p
2 ∈ N further reduces to

E[(X − f p(X |Y ))p−1g(Y )] = 0. (20)

Moreover, for p = 2 Proposition 2 reduces to the familiar
orthogonality principle

E

�
(X − f2(X|Y))T · g(Y)

�
= E

�
(X − E[X|Y])T · g(Y)

�

= 0. (21)

Remark 2: In the analysis of the MMSE the orthogonality
property is an important tool, used for example to show
that E[X|Y] is the unique minimizer. The argument goes
as follows: assume that we have another optimal estimator
f (Y) �= E[X|Y], then by orthogonality principle,

0 = E[(X − E[X|Y])T g(Y)] − E[(X − f (Y))T g(Y)]
= E[( f (Y) − E[X|Y])T g(Y)]. (22)
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By choosing g(Y) = ( f (Y)− E[X|Y]) we see that E[( f (Y)−
E[X|Y])T ( f (Y)− E[X|Y])] > 0, arriving at a contradiction.
This implies that E[X|Y] is the unique estimator up to a set
of measure zero.

In [26, Lemma 1], by replicating the above argument and
by assuming that p

2 ∈ N and n = 1, it was shown that the
optimal MMPE estimator is unique. However, since the proof
relies heavily on the assumption that p

2 ∈ N and n = 1,
this argument cannot be extended in a straightforward way to
p ∈ R

+ or n > 1.

C. Examples of Optimal MMPE Estimators

In general we do not have a closed form solution for the
MMPE optimal estimator in (14). Interestingly, the optimal
estimator for Gaussian inputs can be found and is linear for
all p ≥ 1. Note that similar results have been demonstrated
in [20] and [26] for scalar Gaussian inputs. Next we extend this
result to vector inputs and give two alternative proofs of the
linearity of the optimal MMPE estimator for Gaussian inputs,
via Proposition 1 and via Proposition 2.

Proposition 3: For input XG ∼ N (0, I) and p ≥ 1

mmpe(XG , snr, p) = �Z�p
p

(1 + snr)
p
2
, (23a)

with optimal estimator given by

f p(XG |Y = y) =
√

snr
1 + snr

y. (23b)

Proof: The proof follows by observing that W = XG −√
snrY

1+snr has a Gaussian distribution and is independent of Y.
So, for any two functions f (·) and g(·) we have

E[ f (W)g(Y)] = 0. (24)

Therefore, by using (24) for estimator f p(XG |Y = y) =√
snr

1+snr y the necessary and sufficient conditions in Proposition 2
hold and thus the linear estimator must be an optimal one.
Finally observe that

����XG −
√

snr
1 + snr

Y

����
p

p
= �Ẑ�p

p = �Z�p
p

(1 + snr)
p
2
, (25)

where we have used Ẑ = XG −
√

snr
1+snr Y ∼ N

�
0, 1

1+snr I


.
For a proof that uses only Proposition 1 see

Appendix C. �
The optimal MMPE estimator is in general a function of p

as shown next.
Proposition 4: For X ∈ {x1, x2} with P[X = x1] = 1 −

P[X = x2] = q ∈ (0, 1) and for p ≥ 1 we have that

f p(X |Y = y)

= x1 · q
1

p−1 · e− (y−√
snrx1)2

2(p−1) + x2 · (1 − q)
1

p−1 · e− (y−√
snrx2)2

2(p−1)

q
1

p−1 · e− (y−√
snrx1)2

2(p−1) + (1 − q)
1

p−1 · e− (y−√
snrx2)2

2(p−1)

.

(26a)

In particular, for p = 1, we have that

f p=1(X |Y = y) =
�

x1, a ≥ 1

x2, otherwise,
(26b)

where

a = q

q − 1
e−snr (x1−x2)(x1+x2)

2 +√
snry(x1−x2). (26c)

Proof: See Appendix D. �
Proposition 4 will be useful in demonstrating several exam-

ples and counter examples in the following sections. Note
that for the practically relevant case of BPSK modulation, or
x1 = −x2 = 1 and q = 1

2 , the optimal estimator in (26a)
reduces to

f p(X |Y = y) = tanh

	
y
√

snr
p − 1



, (27a)

which for p = 1 is the hard decision decoder

f p=1(X |Y = y) =
�

−1, y ≤ 0

+1, y > 0.
(27b)

By Proposition 4 we can show that the orthogonality
principle only holds for p = 2 (when MMPE corresponds
to MMSE) as shown in Fig. 1a, where we plot h(p) :=
E[(X − f p(X |Y ))Y ] vs. p for BPSK input and observe it is
zero only for p = 2.

D. Basic Properties of the Optimal MMPE Estimator

Interestingly many of the known properties of f2(X|Y) =
E[X|Y] for MMSE are still exhibited by f p(X|Y) for any
p > 0.

Proposition 5: For any p > 0 the optimal MMPE estimator
has the following properties:

1) if 0 ≤ X ∈ R
1 then 0 ≤ f p(X |Y ),

2) (Linearity) f p(aX + b|Y) = a f p(X|Y)+ b for a, b ∈ R,
3) (Stability) f p(g(Y)|Y) = g(Y) for any deterministic

function g(·),
4) (Idempotent) f p( f p(X|Y)|Y) = f p(X|Y),
5) (Degradedness) f p

�
X|Ysnr0 , Ysnr

� = f p
�
X|Ysnr0

�
for

a Markov chain X → Ysnr0 → Ysnr,
6) (Orthogonality-like Principle) See Proposition 2.

Proof: See Appendix E. �
It is important to point out that in general, the linearity

property does not hold for the sum of random variables. That
is, the following property:

f p(aX1 + bX2|Y) = a f p(X1|Y) + bf p(X2|Y), (28)

in general is not true.
Remark 3 (Average Bias of the MMPE Optimal Estimator):

An estimator f p(X|Y) is said to be unbiased on average if
E[X − f p(X|Y)] = 0. In general f p(X|Y) is unbiased on
average only for p = 2, since

E[ f p=2(X|Y)] = E[E[X|Y]] = E[X]. (29)

Fig. 1b shows that in general the optimal MMPE estimator is
biased on average; it plots E[X − f p(X |Y )] vs. p for X ∈
{−3, 1} : P[X = −3] = 0.01 and snr = 1, with fp(X |Y )
as in Proposition 4. This comes as no surprise as it is very
common in Bayesian estimation that the optimal estimator is
biased [41].
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Fig. 1. Counter examples for the orthogonality principle and the bias of the MMPE optimal estimator. (a) Plot of h(p) := E[(X − f p(X |Y ))Y ] vs. p, for
X ∈ {±1},P[X = 1] = 1

2 and snr = 1 and f p(X |Y ) given in (27a). (b) Plot of g(p) := E[(X − f p(X |Y )] vs. p, for X ∈ {−3, 1}, P[X = −3] = 0.01 and
snr = 1 with f p(X |Y ) given in (26a).

IV. PROPERTIES OF THE MMPE

In this section we explore properties of the MMPE as a
function of SNR and of the input distribution.

A. Basic Properties

The next two properties of the MMPE directly follow from
the properties of f p(X|Y) in Proposition 5.

Proposition 6: For any p > 0

mmpe(X + a, snr, p) = mmpe(X, snr, p), (30a)

mmpe(aX, snr, p) = a pmmpe(X, a2snr, p). (30b)
Proposition 6 implies that the MMPE, like the MMSE, is

invariant under translations, and that scaling the input results
in scaling the SNR and the error.

B. Estimation of the Input is Equivalent to
Estimation of the Noise

The following lemma is commonly applied in the analysis
of the MMSE.

Lemma 1: For X, Z, Y given in (12)
√

snr(X − E[X|Y]) = −(Z − E[Z|Y]). (31a)

Moreover,
√

snr �X − E[X|Y]�p = �Z − E[Z|Y]�p. (31b)
Lemma 1 states that estimating the noise is equivalent

to estimating the input signal if one uses the conditional
expectation as an estimator.

Next we show that an equivalent statement holds for the
MMPE.

Proposition 7: For X, Z, Y given in (12)
√

snr mmpe
1
p (X|Y; p) = mmpe

1
p (Z|Y; p). (32a)

Moreover,
√

snr (X − f p(X|Y)) = −(Z − f p(Z|Y)). (32b)

Proof: From the definition of the MMPE in (9)

mmpe
1
p (X, snr, p)

= inf
f (y)

�X − f (Y)�p (33)

= inf
f (y)

����
1√
snr

(Y − Z) − f (Y)

����
p

= 1√
snr

inf
f (y)

��Z − �√snr f (Y) − Y
���

p

= 1√
snr

inf
g(y): g(y)=y−√

snr f (y)
�Z − g(Y)�p (34)

= 1√
snr

mmpe
1
p (Z|Y; p).

This shows the equality in (32a). Moreover, since f p(X|Y)
exists and the infimum in (33) is attainable by Proposition 1,
so is the infimum in (34). Therefore, from (34) we have that
f p(Z|Y) exists and is given by

f p(Z|Y) = Y − √
snr f p(X|Y)

= √
snrX + Z − √

snr f p(X|Y), (35)

which leads to (32b). This concludes the proof. �

C. Change of Measure

The next result enables us to change the expectation from
Ysnr to Ysnr0 in the definition of the MMPE in (9) whenever
snr ≤ snr0. This is particularly useful when we know the
MMPE, or the structure of the optimal MMPE estimator, at
one SNR value but not at another smaller SNR value.

Proposition 8: For any X, snr ∈ (0, snr0] and p > 0, we
have

mmpe(X, snr, p)

= inf
f

1

n
E

�
�X − f (Ysnr0)�p

�
snr
snr0

e
snr0−snr

2snr0

�n
i=1 Z2

i

�
. (36)

Proof: See Appendix F. �
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One must be careful when evaluating Proposition 8. For
example, since we have that

lim
snr→0+

�
snr
snr0

e
snr0−snr

2snr0
Z2 = 0,

at first glance it appears that the expectation on the right
of (36) is zero while mmpe(X, 0, p) is not, thus violating
the equality. However, a more careful examination shows that
when snr → 0 the limit and expectation in (36) cannot be
exchanged; indeed we have that

lim
snr→0+ E

��
snr
snr0

e
snr0−snr

2snr0
Z2
�

= lim
snr→0+

�
snr
snr0

E

�
e

snr0−snr
2snr0

Z2
�

= lim
snr→0+

�
snr
snr0

1�
1 − snr0−snr

snr0

= 1,

where in the last equality we used the moment generating
function of the Cauchy r.v. Z2. As an example, Proposition 8
for X ∼ N (0, 1) with the optimal linear estimator from
Proposition 3, i.e., f (y) = ay for some a, evaluates to

E

�
�X − f (Ysnr0)�2

�
snr
snr0

e
snr0−snr

2snr0
Z2
�

a)= (1 − √
snr0a)2

�
snr
snr0

E[X2]E
�

e
snr0−snr

2snr0
Z2
�

+ a2
�

snr
snr0

E

�
Z2e

snr0−snr
2snr0

Z2
�

b)= 1

1 + snr
,

where the equalities follow from: a) linearity of expectation
and the fact that Z and X are independent; and b) since

E

�
e

snr0−snr
2snr0

Z2
�

=
�

snr0
snr and E

�
Z2e

snr0−snr
2snr0

Z2
�

= � snr0
snr

�3/2

and by choosing a = snr√
snr0(1+snr) in order to minimize the

expression in a).4

V. BOUNDS ON THE MMPE

In this section we develop bounds on the MMPE, many
of which generalize well known MMSE bounds. However, we
also show bounds that are unique to the MMPE and emphasize
the usefulness of the MMPE.

A. Extension of Basic MMSE Bounds

An important upper bound on the MMSE often used in
practice is the LMMSE.

Proposition 9 (LMMSE [9]): For any input X and snr > 0

mmse(X, snr) ≤ 1

snr
. (37a)

4Note that this optimal a is evident from the specific change of measure
that we have used. Instead of having the estimator according to Proposition 3

as
√

snr
1+snr we get it with the normalization by

�
snr
snr0

.

If �X�2
2 = σ 2 < ∞, then for any snr ≥ 0

mmse(X, snr) ≤ σ 2

1 + σ 2snr
, (37b)

where equality in (37b) is achieved iff X ∼ N (0, σ 2I).
The next bound generalizes Proposition 9 to higher order

errors.
Proposition 10: For snr ≥ 0, 0 < q ≤ p, and input X

n
p
q −1mmpe

p
q (X, snr, q) ≤ mmpe(X, snr, p)

≤ �X − E[X|Y]�p
p, (38a)

and where

f or p ≥ 2 : �X − E[X|Y]�p
p ≤ 2p min

�
�Z�p

p

snr
p
2

, �X�p
p

�

(38b)

f or 1 ≤ p ≤ 2 : �X − E[X|Y]�p
p

≤ min

⎛
⎜⎝

�
�Z�p + n

1
2 − 1

p �Z�2

p

snr
p
2

,

�
�X�p + n

1
2 − 1

p �X�2

p

⎞
⎟⎠ (38c)

f or p ≥ 0 : mmpe(X, snr, p) ≤ min

�
�Z�p

p

snr
p
2

, �X�p
p

�
,

(38d)

where �Z�p
p is given in (7).

Proof: See Appendix G. �
It is interesting to point out that in the derivation of

the bounds in Proposition 10 no assumption is put on the
distribution of Z, and thus the bounds hold in great generality.
If Z is composed of independent identically distributed (i.i.d.)
Gaussian elements, then the moment �Z�p

p in Proposition 10
can be tightly approximated in terms of factorials as

n

2
p
2
�Z�p

p = �
� n

2 + p
2

�

�
� n

2

�

≤ �
�% n

2 + p
2

&�

�
�' n

2

(� =
�% n

2 + p
2

&− 1
�!�' n

2

(− 1
�! = O(n

p
2 ),

(39)

which is tight for even n and integer p
2 .

It is not difficult to check that for p = 2 Proposition 10
reduces to Proposition 9. The reason that the bounds on �X −
E[X|Y]�p are only available for p ≥ 2, while the bounds on
mmpe(X, snr, p) are available for p ≥ 0, is because the proof
of the bound in (38b) uses Jensen’s inequality, which requires
p ≥ 2, while the proof of the bound in (38d) does not.

B. Gaussian Inputs Are the Hardest to Estimate

Note that the bounds in Proposition 10 are similar to the
bound in (37a) and blow up at snr = 0+. Therefore, it
is desirable to have bounds as in (37b). The next result
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demonstrates such a bound and shows that Gaussian inputs
are asymptotically the hardest to estimate.

Proposition 11: For snr ≥ 0, p ≥ 1, and a random
variable X such that �X�p

p ≤ σ p�Z�p
p, we have

mmpe(X, snr, p) ≤ κp,σ 2snr · σ p�Z�p
p

(1 + snrσ 2)
p
2
, (40a)

where

f or p = 2 : κ
1
p

p,σ 2snr = 1, (40b)

f or p �= 2 : 1 ≤ κ
1
p

p,σ 2snr = 1 + √
σ 2snr√

1 + σ 2snr
≤ 1

+ 1√
1 + σ 2snr

.

(40c)

Moreover, a Gaussian X with per-dimension variance σ 2 (i.e.,
X ∼ N (0, σ 2I)) asymptotically achieves the bound in (40a),
since limsnr→∞ κp,σ 2snr = 1.

Proof: See Appendix H. �

C. Interpolation Bounds and Continuity

One of the key advantages of using the MMPE is that
the MMPE of order q can be tightly predicted based on the
knowledge of the MMPE at lower orders p and higher orders
r . At the heart of this analysis is the interpolation result of L p

spaces [42]: given 0 < p ≤ q ≤ r and α ∈ (0, 1) such that
1
q = α

p + 1−α
r , the q-th norm can be bounded as

�V �q ≤ �V �α
p�V �(1−α)

r , (41)

which implies that the norm is log-convex and thus a contin-
uous function of p [43, Th. 5.1.1]. Next, we present several
interpolation results for the MMPE.

Proposition 12 (Log-Convexity and Interpolation): For any
0 < p ≤ q ≤ r ≤ ∞ and α ∈ (0, 1) such that

1

q
= α

p
+ ᾱ

r
⇐⇒ α = q−1 − r−1

p−1 − r−1 , (42a)

where ᾱ = 1 − α, we have for any measurable f (Y)

�X − f (Y)�q ≤ �X − f (Y)�α
p �X − f (Y)�ᾱ

r . (42b)

In particular,

�X − E[X|Y]�q ≤ �X − E[X|Y]�α
p �X − E[X|Y]�ᾱ

r . (42c)

Moreover,

mmpe
1
q (X, snr, q) ≤ inf

f
�X − f (Y)�α

p�X − f (Y)�ᾱ
r . (42d)

In particular,

mmpe
1
q (X, snr, q) ≤ �X − fr (X|Y)�α

p mmpe
ᾱ
r (X, snr, r),

(42e)

mmpe
1
q (X, snr, q) ≤ mmpe

α
p (X, snr, p)�X − f p(X|Y)�ᾱ

r .

(42f)

Proof: The bound in (42b) follows by applying (41) with
V = �X− f (Y)� ∈ R. The bound in (42c) follow by choosing
f (Y) = E[X|Y].

The bound in (42d) follows by

mmpe
1
q (X, snr, q) = inf

f
�X − f (Y)�q

≤ inf
f

�X − f (Y)�α
p�X − f (Y)�ᾱ

r , (43)

where the last inequality follows from (41) by choosing V =
�X − f (Y)� ∈ R.

Finally, the bounds in (42e) and (42f) follow by choosing
f (Y) in (42d) equal to fr (X|Y) and f p(X|Y) respectively.
This concludes the proof. �

From log-convexity we can deduce continuity.
Proposition 13 (Continuity): For any X and snr > 0,

mmpe(X, snr, p) and �X−E[X|Y]�p are continuous functions
of p > 0.

Proof: Continuity of �X − E[X|Y]�p follows from log-
convexity in (42c) while the continuity of MMPE follows from

lim
q→p

|mmpe(X, snr, p) − mmpe(X, snr, q)|

≤ lim
q→p

max
�
�X − fq (X|Y)�p

p − �X − fq (X|Y)�q
q,

�X − f p(X|Y)�q
q − �X − f p(X|Y)�p

p


= 0,

where the last inequality is due to the continuity of the norm.
�

An interesting question is whether the following interpola-
tion inequality holds:

mmpe
1
q (X, snr, q) ≤ mmpe

α
p (X, snr, p) mmpe

ᾱ
r (X, snr, r)

(44)

instead of (42e) and (42f). A counter example to the inter-
polation inequality in (44) is shown in Fig. 2 where we take
a binary input X ∈ {±1} equality likely, p = 2, r = 8, and
snr = 1 and show:

• The MMPE of X of order q versus α ∈ [0, 1] where q
is computed according to (42a) (blue-solid line);

• The interpolation bound in (42e) (purple dashed-dotted
line);

• The interpolation bound in (42f) (yellow solid-dotted
line);

• The interpolation bound in (42d) with f (Y ) =
f p+r

2
(X |Y ) (green dashed line); and

• The right-hand side of the conjectured inequality in (44)
(red-dotted line).

This shows that (44) is not true in general.

D. Bounds on Discrete Inputs

Next, we investigate properties of the MMPE under the
assumption that the input is a discrete r.v. Discrete inputs
are commonly encountered in practice and, therefore, it is
worthwhile to investigate their performance.
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Fig. 2. Interpolation bounds from Proposition 12 and the conjectured bound
in (44) versus α. Clearly the conjectured bound is below the true MMPE
thus (44) cannot be true.

Proposition 14: Let XD be a discrete r.v. with
|supp(XD)| = N and P[XD = xi ] = pi for xi ∈ supp(XD).
Then for any X̂D : R

n → supp(XD)

mmpe(XD, snr, p) ≤ d p
max(XD)

n
P(n)

e (snr), (45a)

where

P(n)
e (snr) = P[XD �= X̂D(Y)], (45b)

dmax(XD) = max
x j ,xi∈supp(XD)

�x j − xi�. (45c)

Proof: The proof follows by upper bounding the MMPE
with the probability of detection error. Consider

n mmpe(XD, snr, p)
a)≤ E

�
�XD − X̂D(Y)�p

�

= E

�
�XD − X̂D(Y)�p | XD = X̂D(Y)

�
P[XD = X̂D(Y)]

+ E

�
�XD − X̂D(Y)�p | XD �= X̂D(Y)

�
P[XD �= X̂D(Y)]

b)= E

�
�XD − X̂D(Y)�p | XD �= X̂D(Y)

�
P[XD �= X̂D(Y)]

c)≤ d p
max(XD)P[XD �= X̂D(Y)],

where the (in)-equalities follow from: a) choosing
a suboptimal estimator; b) using the fact that
E

�
�XD − X̂D(Y)�p | XD = X̂D(Y)

�
= 0; and c) using

a bound �XD − X̂D(Y)� ≤ maxx j ,xi∈supp(XD) �x j − xi� =
dmax(XD). This concludes the proof. �

So far, by using Proposition 10, we have shown that the

MMPE as a function of snr decreases as O

	
2

p
2 n

p
2 −1

snr
p
2



. Next

we show that the MMPE can decrease exponentially in snr
by choosing X̂ D(Y) to be the maximum a posteriori (MAP)
decoder. Such behavior has been already observed for the
MMSE in [17] and [44].

Proposition 15: Let XD be a discrete r.v. with
|supp(XD)| = N and P[XD = xi ] = pi for xi ∈ supp(XD)
then:

mmpe(XD, snr, p)

≤ d p
max(XD)

n

N�
i=1

pi

N�
j=1: j �=i

Q

⎛
⎝

√
snrdi j

2
−

log
�

p j
pi


√

snrdi j

⎞
⎠,

(46a)

where

di j = �xi − x j�. (46b)
Proof: See Appendix I. �

A slightly weaker bound than that in Proposition 15, yet
computationally simpler, can be derived by choosing X̂ D(Y) to
be a threshold (or sphere) decoder. This weaker bound would
be used later on the mutual information in Section VIII-B.

Corollary 2: For any discrete r.v. XD

mmpe(XD, snr, p) ≤ d p
max(XD)

Q̄

	
n
2 ; snr d2

min(XD)

8




n
, (47a)

where

dmin(XD) = min
i, j :i �= j

di j . (47b)

VI. CONDITIONAL MMPE

We define the conditional MMPE as follows.
Definition 3: For any X and U, the conditional MMPE of

X given U is defined as

mmpe(X, snr, p|U) := �X − f p(X|Ysnr, U)�p
p. (48)

The conditional MMPE in (48) reflects the fact that the
optimal estimator has been given additional information in the
form of U. Note that when Z is independent of (X, U) we can
write the conditional MMPE for Xu ∼ PX|U(·|u) as

mmpe(X, snr, p|U) =
�

mmpe(Xu, snr, p) d PU(u). (49)

Since giving extra information does not increase the esti-
mation error, we have the following result.

Proposition 16 (Conditioning Reduces the MMPE): For
every snr ≥ 0, and random variable X, we have

mmpe(X, snr, p) ≥ mmpe(X, snr, p|U). (50)
Finally, the following Proposition generalizes [11, Propo-

sition 3.4] and states that the MMPE estimation of X from
two observations is equivalent to estimating X from a single
observation with a higher SNR.

Proposition 17: For every X and p ≥ 0, let U = √
	 · X +

Z	 where Z	 ∼ N (0, I) and where (X, Z, Z	) are mutually
independent. Then

mmpe(X, snr0, p|U) = mmpe(X, snr0 + 	, p). (51)
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Proof: For two independent observations Ysnr0 =√
snr0X + Z and Y	 = √

	X + Z	 where Z	 and Z are
independent, by using maximal ratio combining, we have that

Ysnr =
√

	√
snr0 + 	

Y	 +
√

snr0√
snr0 + 	

Ysnr0

= )
snr0 + 	X + W,

where W ∼ N (0, I). Next by using the same argument as in
[11, Proposition 3.4], we have that the conditional probabilities
are

pX|Ysnr0 ,Y	(x|ysnr0, y	) = pX|Y(x|ysnr) (52)

for ysnr =
√

	√
snr0+	

y	+
√

snr0√
snr0+	

ysnr0 . The equivalence of the
posterior probabilities implies that the estimation of X from
Ysnr is as good as the estimation of X from (Ysnr0, Y	). This
concludes the proof. �

Propositions 17 and Proposition 16 imply that, for fixed X
and p

mmpe(X, snr, p) ≥ mmpe(X, snr, p|√	X + Z�)
= mmpe(X, snr + 	, p), (53)

and we have the following:
Corollary 3: mmpe(X, snr, p) is a non-increasing function

of snr.

VII. SCPP BOUND AND ITS COMPLEMENT

The SCPP is a powerful tool that can be used to show
the advantage of Gaussian inputs over arbitrary inputs in
certain channels with Gaussian noise. In conjunction with the
I-MMSE relationship, the SCPP provides simple and insightful
converse proofs to the capacity of multi-user AWGN channels.
The original proof of the SCPP in [9] and [10] relied on
bounding the MMSE. Next we give a simpler proof of the
SCPP that does not require knowledge of the derivative of
the MMSE and can easily be extended to the MMPE of any
order p.

First observe that, in light of the bound in (38d), for any
snr > 0 we can always find a β ≥ 0 such that

mmpe
2
p (X, snr, p) = β�Z�2

p

1 + βsnr
,

since

lim
β→∞

β�Z�2
p

1 + βsnr
= �Z�2

p

snr
.

Next we generalize the SCPP bound to the MMPE.

Proposition 18: Let mmpe
2
p (X, snr0, p) = β�Z�2

p
1+βsnr0

for
some β ≥ 0. Then

mmpe
2
p (X, snr, p) ≤ cp · β�Z�2

p

1 + β snr
, for snr ≥ snr0,

(54a)

where

cp =
�

2 p ≥ 2

1 p = 2.
(54b)

Proof: Let snr = snr0 + 	 for 	 ≥ 0, and let Y	 =√
	X + Z	. Then

Ysnr =
√

	√
snr0 + 	

Y	 +
√

snr0√
snr0 + 	

Ysnr0

= )
snr0 + 	X + W,

where W ∼ N (0, I). Next, let

m := mmpe
2
p (X, snr0, p) = �X − f p(X|Ysnr0)�2

p, (55)

and define a suboptimal estimator given (Y	, Ysnr0) as

X̂ = (1 − γ )√
	

Y	 + γ f p(X|Ysnr0), (56)

for some γ ∈ R to be determined later. Then

X − X̂ = γ (X − f p(X|Ysnr0)) − (1 − γ )√
	

Z	,

and

mmpe
1
p (X, snr, p)

= �X − f p(X|Ysnr)�p

a)= �X − f p(X|Y	, Ysnr0)�p

b)≤ �X − X̂�p =
����γ (X − f p(X|Ysnr0)) − (1 − γ )√

	
Z	

����
p

c)=

����Z�2
p(X − f p(X|Ysnr0)) − √

	 · m · Z	

���
p

�Z�2
p + 	 · m

, (57)

where the (in)-equalities follow from: a) Proposition 17; b) by
using the sub-optimal estimator in (56); and c) by choosing

γ = �Z�2
p

�Z�2
p+	·m for m defined in (55).

Next, by applying the triangle inequality to (57) we get

mmpe
1
p (X, snr, p)

≤

����Z�2
p(X − f p(X|Ysnr0))

���
p

+
���√	 · m · Z	

���
p

�Z�2
p + 	 · m

=
√

m�Z�p · (�Z�p + √
	 · √m)

�Z�2
p + 	 · m

≤ √
2

√
m�Z�p�

�Z�2
p + 	 · m

, (58)

where in the last step we used (a + b) ≤ √
2
√

a2 + b2.
Note that for the case p = 2, instead of using the triangular

inequality in (58), the term in (57) can be expanded into a
quadratic equation for which it is not hard to see that the

choice of γ = �Z�2
p

�Z�2
p+	·m is optimal and leads to the bound

mmpe
1
p (X, snr, p) ≤

√
m�Z�p�

�Z�2
p + 	 · m

.

The proof is concluded by noting that β = m
�Z�2

p−snr0m
. �

Remark 4: We conjecture that the multiplicative constant
cp can be sharpened to 1 for all p ≥ 1. However, in order to
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make such a claim one must solve the following optimization
problem

min
γ∈[0,1] �(1 − γ )W + γ Z�p, (59)

where W and Z are independent and Z ∼ N (0, I). It is not
clear how to solve (59) for p �= 2 and thus we leave it for the
future work.

Remark 5: Note that the proof of Proposition 18 does not
require the assumption that Z is Gaussian and only requires
the assumptions of Proposition 17. That is, we only require
that a channel is such that the estimation of X from two
observations is equivalent to estimating X from a single
observation with a higher SNR.

A. Complementary SCPP Bound

In this section we give a bound that complements the SCPP
bound, that is, while the SCPP bounds the MMPE for all snr ≥
snr0, we give a bound that bounds the MMPE for all snr ≤
snr0 where it is assumed that the MMPE is known at snr0.

The next result enables us to bound the MMPE at snr with
values of the MMPE at snr0 while varying the order.

Proposition 19: For 0 < snr ≤ snr0, X and p ≥ 0,
we have

mmpe(X, snr, p) ≤ κn,t mmpe
1−t
1+t

	
X, snr0,

1 + t

1 − t
· p



,

where

κn,t :=
	

2n

n2


 t
t+1
	

1

1 − t


 nt
t+1 − 1

2

, t = snr0 − snr
snr0

.

Proof: From Proposition 8 we have that

mmpe(X, snr, p)

= inf
f

1

n
E

�
�X − f (Ysnr0)�p

�
snr
snr0

e
snr0−snr

2snr0

�n
i=1 Z2

i

�

a)≤ inf
f

�
snr
snr0

1

n

�
E
��X − f (Ysnr0)�m·p�� 1

m

·
	

E

�
e

r(snr0−snr)
2snr0

�n
i=1 Z2

i

�
 1
r

b)=
�

snr
snr0

n
1
m −1mmpe

1
m (X, snr0, m · p)

·
	

1 − r(snr0 − snr)
snr0


− n
2r

, (60)

where the (in)-equalities follow from: a) Hölder’s inequality
with conjugate exponents 1 ≤ m, r such that 1

m + 1
r = 1; and

b) by recognizing that the expectation of the exponential is
the moment generating function of a Chi-square distribution
of degree n, which exists only if r(snr0−snr)

2 snr0
< 1

2 .
Next, we let t = snr0−snr

snr0
and let r = t+1

2t in (60), so that
m = 1+t

1−t . Observe that now the bound in (60) holds for all
values of snr ≤ snr0 since

r(snr0 − snr)
snr0

= r t = (t + 1)t

2t
= t + 1

2
< 1. (61)

With the choice of m = 1+t
1−t the bound in (60) becomes

mmpe(X, snr, p)

≤
�

snr
snr0

	
(1 − r)snr0 + rsnr

snr0


− n
2r

n
1
m −1

· (mmpe(X, snr0, m · p))
1
m

= κn,t mmpe
1−t
1+t

	
X, snr0,

1 + t

1 − t
· p



.

This concludes the proof. �
The bound in Proposition 19 is the key in showing new

bounds on the phase transitions region for the MMSE, pre-
sented in the next section.

As an application of Proposition 19 we show that the MMPE
is a continuous function of SNR.

Proposition 20: For fixed X and p, mmpe(X, snr, p) is a
continuous function of snr > 0.

Proof: Assume without loss of generality that snr0 ≥ snr

lim
snr→snr0

|mmpe(X, snr, p) − mmpe(X, snr0, p)|
a)= lim

snr→snr0
mmpe(X, snr, p) − mmpe(X, snr0, p)

b)≤ lim
snr→snr0

κn,t mmpe
1−t
1+t

	
X, snr0,

1 + t

1 − t
· p




− mmse(X, snr0, p)
c)= mmse(X, snr0, p) − mmse(X, snr0, p) = 0,

where the (in)-equalities follow from: a) since the MMPE is a
decreasing function of SNR and since snr0 ≥ snr; b) by using
Proposition 19; and c) by definition of t in Proposition 19 we
have that limsnr→snr0 t = 0 and limsnr→snr0 kn,t = 1, and
by continuity of the MMPE in p from Proposition 13. This
concludes the proof. �

VIII. APPLICATIONS

We next show how the MMPE can be used to derive tighter
versions of some well known bounds. It is important to point
out that even though the focus of this paper is on the AWGN
setting, the results that follow (Theorem 1, Theorem 2 and
Theorem 3) apply to any additive channel model in which the
noise is an absolutely continuous random variable, without the
need for the i.i.d. assumption.

A. Bounds on the Differential Entropy

For any random vector U such that |KU| < ∞,
h(U) < ∞, and any random vector V, the following inequality
is considered to be a continuous analog of Fano’s inequal-
ity [6]:

h(U|V) ≤ n

2
log(2πe |KU|V| 1

n )

≤ n

2
log(2πe mmse(U|V)), (62)

where the inequality in (62) is a consequence of the arithmetic-
mean geometric-mean inequality, that is, for any 0 � A we

have used |A| 1
n = �*n

i=1 λi
� 1

n ≤
�n

i=1 λi
n = Tr(A)

n where λi ’s
are the eigenvalues of A.
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By applying (62) to the AWGN setting, for any X such that
|KX| < ∞, h(X) < ∞, by using Proposition 10 with q = 1,
we can arrive at the trivial bound: for any p ≥ 2

h(X|Y) ≤ n

2
log

	
2πe · n

2−p
p · mmpe

1
p (X, snr, p)



. (63)

Next, we show that the inequality in (62) can be generalized
in terms of the norm in (5), and the trivial bound in (63) can
be improved.

Theorem 1: For any U ∈ R
n such that h(U) < ∞ and

�U�p < ∞ for some p ∈ (0,∞), and for any V ∈ R
n, we

have

h(U|V) ≤ n

2
log
�

k2
n,p · n

2
p · mmpe

2
p (U|V; p)


, (64)

where

kn,p :=
√

π
� p

n

� 1
p e

1
p �

1
n

�
n
p + 1



�
1
n
� n

2 + 1
� . (65)

Proof: See Appendix J. �
Note that the result in Theorem 1 holds in great generality,

i.e., the AWGN assumption is not necessary. As an application
of Theorem 1 to the AWGN setting we have the following
stronger version of the inequality in (63)

h(X|Y) ≤ n

2
log
�

k2
n,p · n

2
p · mmpe

2
p (X, snr, p)


.

B. Generalized Ozarow-Wyner Bound

In [37] the following “Ozarow-Wyner lower bound” on
the mutual information achieved by a discrete input X D

transmitted over an AWGN channel was shown:

[H (X D) − gap]+ ≤ I (X D; Y ) ≤ H (X D), (66a)

gap ≤ 1

2
log
�πe

6



+ 1

2
log

	
1 + lmmse(X, snr)

dmin(X D)2



, (66b)

where lmmse(X, snr) is the LMMSE.
The advantage of the bound in (66) compared to existing

bounds is its computational simplicity, and the bound has been
shown to be useful for problems such as two-user Gaussian
interference channels [45], [46], communication with a distur-
bance constraint [13], energy harvesting problems [47], [48],
and information-theoretic security [49].

The bound on the gap in (66) has been sharpened in [45,
Remark 2] to

gap ≤ 1

2
log
�πe

6


+ 1

2
log

	
1 + mmse(X, snr)

dmin(X D)2



,

since lmmse(X, snr) ≥ mmse(X, snr).
Next, we generalize the bound in (66) to discrete vector

inputs and give the sharpest known bound on the gap term.
Theorem 2 (Generalized Ozarow-Wyner Bound): Let XD

be a discrete random vector with finite entropy, such
that pi = P[XD = xi ], and xi ∈ supp(XD). Moreover,
for any p > 0 let Kp be a set of continuous random

vectors, independent of XD, such that for every U ∈ Kp,
h(U), �U�p < ∞, and

supp(U + xi ) ∩ supp(U + x j ) = ∅,

∀ xi , x j ∈ supp(XD), i �= j. (67a)

Then for any p > 0

[H (XD) − gapp]+ ≤ I (XD; Y) ≤ H (XD), (67b)

where

n−1gapp ≤ inf
U∈Kp

�
G1,p(U, XD) + G2,p(U)

�
,

G1,p(U, XD) = log

	�U + XD − f p(XD|Y)�p

�U�p




(67c)

for p ≥ 1≤ log

�
1 + mmpe

1
p (XD, snr, p)

�U�p

�
,

(67d)

G2,p(U) = log

⎛
⎝kn,p · n

1
p · �U�p

e
1
n he(U)

⎞
⎠. (67e)

Proof: See Appendix K. �
It is interesting to note that the lower bound in (67b)

resembles the bound for lattice codes in [50, Th. 1], where
U can be thought of as dither, G2,p corresponds to the log of
the normalized p-moment of a compact region in R

n , G1,p

corresponds to the log of the normalized MMSE term, and
H (XD) corresponds with the capacity C .

In order to show the advantage of Theorem 2 over the orig-
inal Ozarow-Wyner bound (case of n = 1 and with LMMSE
instead of MMPE), we consider X D uniformly distributed
with the number of points equal to N = 	√1 + snr
, that
is, we choose the number of points such that H (X D) ≈
1
2 log(1 + snr). Fig. 3 shows:

• The solid cyan line is the “shaping loss” 1
2 log

�
πe
6

�
for a

one-dimensional infinite lattice and is the limiting gap if
the number of points N grows faster than

√
snr;

• The solid magenta line is the gap in the original Ozarow-
Wyner bound in (66); and

• The dashed purple, dashed-dotted blue and dotted green
lines are the new gap due to Theorem 2 for value of
p = 2, 4, 6, respectively, and where we chose U ∼
U
�
− dmin(X D)

2 ,
dmin(X D)

2

�
.

We note that the version of the Ozarow-Wyner bound in
Theorem 2 provides the sharpest bound for the gap term.
An open question, for n = 1, is what value of p provides the
smallest gap and if that coincide with the ultimate “shaping
loss”.

Next we turn our attention to the case of n > 1. Another
interesting question is how the gap behaves as n → ∞.

Theorem 3: Let U be uniform over the ball of radius r =
dmin(XD)

2 . Then for any p > 0

G2,p(U) = O

	
1

n
log (n)



, (68a)
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Fig. 3. Gap in equation (66a) and (67) vs. snr.

and therefore limn→∞ G2,p(U) = 0. Therefore,

1

n
H (XD) ≥ 1

n
I (XD; Y) ≥ 1

n
H (XD) − G1,p(U, XD)

− O

	
1

n
log (n)



, (68b)

where

eG1,p(U,XD)

for p ≥ 1≤ 1 + 2
dmax(XD)

dmin(XD)
p

+,,- (p + n)

n
Q̄

�
n

2
; snrd2

min(XD)

8

�
.

(68c)
Proof: See Appendix L. �

For recent applications of the bound in Theorem 2 to
non-Gaussian and MIMO channels the reader is referred
to [51]–[53], respectively.

C. New Bounds on the MMSE and Phase Transitions

The SCPP is instrumental in showing the behavior of the
MMSE of capacity achieving codes. For example, as the length
of any capacity achieving code goes to infinity, the MMSE
behaves as follows:

lim sup
n→∞

mmse(X, snr) =

⎧
⎪⎨
⎪⎩

1
1+snr , 0 ≤ snr ≤ snr0

β
1+βsnr , snr0 ≤ snr ≤ snr1

γ
1+γ snr , snr ≥ snr1,

(69)

as shown: in [14], for the Gaussian point-to-point channel with
the output Ysnr0 with β = γ = 0; in [15], for the Gaussian
BC with outputs Ysnr1 and Ysnr0 , where snr0 ≤ snr1 and

rate pair (R1, R2) =
�

1
2 log(1 + βsnr1),

1
2 log

�
1+snr0

1+βsnr0


for

some β ∈ [0, 1], with γ = 0; in [15], for the Gaussian wiretap
channel with outputs Ysnr0 (primary) and Ysnr1 (eavesdropper)
with maximum equivocation Dmax and rate R ≥ Dmax,
for β = γ = 0; and in [12], for the Gaussian point-to-
point channel with output Ysnr1 and an MMSE disturbance
constraint at Ysnr0 measured by mmse(X, snr0) ≤ β

1+βsnr0
for

some β ∈ [0, 1] with γ = β. The jump discontinuities in (69)

at snr = snr0 and snr = snr1 are referred to as the phase
transitions.

Based on the above, an interesting question is how the
MMSE in (69) behaves for codes of finite length. In [13],
in order to study the phase transition phenomenon for inputs
of finite length, the following optimization problem was pro-
posed:

Definition 4:

Mn(snr, snr0, β) := sup
X

mmse(X, snr), (70a)

s.t. �X�2
2 ≤ 1, and mmse(X, snr0)

≤ β

1 + βsnr0
, (70b)

for some β ∈ [0, 1].
Investigation in [13] revealed that Mn(snr, snr0, β) in (70a)

must be of the following form:

Mn(snr, snr0, β) =

⎧⎪⎨
⎪⎩

1
1+snr , snr ≤ snrL

Tn(snr, snr0, β), snrL ≤ snr ≤ snr0
β

1+βsnr , snr0 ≤ snr,

for some snrL and some function Tn(snr, snr0, β), where the
region snrL ≤ snr ≤ snr0 is referred to as the phase transition
region and its width is defined as W (n) := snr0−snrL . In [13]
the following was established for Tn(snr, snr0, β) and W (n):

mmse(X, snr) ≤ mmse(X, snr0) + κn

	
1

snr
− 1

snr0



,

where κn ≤ n + 2, (71)

and the width of phase transition region scales as
W (n) = O

�
n−1
�
.

The main result of this subsection is shown next. It uses
Propositions 19 and Proposition 12.

Theorem 4: For 0 < snr ≤ snr0,

mmse(X, snr) ≤ min
r> 2

γ

κ(r, γ , n)

	
β

1 + βsnr0


 γ r−2
r−2

, (72a)

where γ := snr
2snr0−snr ∈ (0, 1], and

κ(r, γ , n) :=
√

2

n1−γ

	
1 + γ

γ


 n(1−γ )−1
2

M
2(1−γ )

r−2
r , (72b)

Mr := ��X − E
�
X|Ysnr0

���r
r ≤ 2r min

⎛
⎝�Z�r

r

snr
r
2
0

, �X�r
r

⎞
⎠,

(72c)

and where the minimizing r in (72a) can be approximated by

ropt

≈
⎧
⎨
⎩

2 ln
�

4e
snr0mmse(X,snr0)


, 2

γ ≤ ln
�

4e
snr0mmse(X,snr0)



2
γ , 2

γ > ln
�

4
snr0mmse(X,snr0)


.

(72d)

Moreover, the width of the phase transition region scales as

W (n) = O
�

n− 1
2


. (72e)
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Proof: From the SCPP complementary bound in Propo-
sition 19 with p = 1 we have that

mmse(X, snr) ≤ κn,t mmpe
1−t
1+t

	
X, snr0,

1 + t

1 − t
· 2



. (73)

From the interpolation result in Proposition 12 letting q = 1+t
1−t ·

2, p = 2 we have that for some r such that 2 ≤ 2 1+t
1−t = q < r

and

α =
1−t

2(1+t) − 1
r

1
2 − 1

r

⇒ 1 − α =
2t

1+t r

r − 2
, (74)

and thus the MMPE term can be bounded as

mmpe
1−t
1+t

	
X, snr0,

1 + t

1 − t
· 2




≤ mmpeα(X, snr0, 2)�X − E[X|Ysnr0 ]�2(1−α)
r

= mmseα(X, snr0)�X − E[X|Ysnr0]�2(1−α)
r

= mmseα(X, snr0)�X − E[X|Ysnr0]�
2r

2t
1+t
r−2

r .

By Proposition 10 we can bound �X − E[X|Ysnr0 ]�
2r

2t
1+t
r−2

r
as follows:

�X − E[X|Ysnr0 ]�
r

4t
1+t
r−2

r ≤
	

2r min

	�Z�r
r

snr
r
2
, �X�r

r



 4t
(1+t)(r−2)

.

By putting all of the bounds together, letting γ = 1−t
1+t and

observing that

1 − γ = 2t

1 + t
,

γ = snr
2snr0 − snr

,

snr0

snr
= 1 + γ

2γ
,

we get the bound in (72a). Finally, the proof of approximately
optimal r in (72d) is given in Appendix M. �

The bounds in Theorem 4 and in (71) are shown in Fig. 4.
The bound in Theorem 4 is asymptotically tighter than the one
in (71). This follows since the phase transition region shrinks
as O

�
1√
n


for Theorem 4, and as O

� 1
n

�
for the bound in (71).

It is not possible in general to assert that Theorem 4 is tighter
than (71). In fact, for small values of n, the bound in (71)
can offer advantages, as seen for the case n = 1 shown in
Fig. 4b. Another advantage of the bound in (71) is its analytical
simplicity.

D. Bounds on the Derivative of the MMSE

The MMPE can be used to study the second derivative of
mutual information (or first derivative of MMSE), as initiated
for n = 1 in [9] and for n ≥ 1 in [10], namely,

d2 I (X, Y)

dsnr2 = n
d mmse(X, snr)

dsnr

= −Tr
�
E

�
Cov2(X|Y)

�
,

Cov(X|Y) := E

�
(X − E[X|Y])(X − E[X|Y])T |Y

�
. (75)

The second derivative of mutual information is important in
characterizing the bandwidth-power trade-off in the wideband
regime [54] and [55], and has also been used in the proof of
the SCPP in [9] and [10]. Moreover, in [9] it has been shown
that the derivative of the MMSE and the quantity in (13) are
related by the following bound for n = 1:

E

�
Cov2(X |Y )

�
≤ �X − E[X |Y ]�4

4 ≤ 3 · 24

snr2 . (76)

The main result of this subsection is the next bound.
Proposition 21: For any input X

mmse2(X, snr)

= mmpe2(X, snr, 2)

≤ 1

n
Tr
�
E

�
Cov2(X|Y)

�
≤ n mmpe(X, snr, 4). (77)

Proof: See Appendix N. �
It can be observed that, for the case n = 1, by using the

bound in (38b) from Proposition 10 we have that

E

�
Cov2(X |Y )

�
≤ mmpe(X, snr, 4) ≤ 3

snr2 , (78)

which significantly reduces the constant in (76) from 3 · 24 to
3. For a similar but slightly different bound than that in (78)
on E

�
Cov2(X |Y )

�
please see [13].

IX. CONCLUDING REMARKS

This paper has considered the problem of estimating a
random variable from a noisy observation under a general
cost function, termed the MMPE. We have shown that many
properties of the MMSE and the conditional expectation (i.e.,
optimal MMSE estimator) are identical or have a natural
generalization to the MMPE and the MMPE optimal estimator.

We have also provided a new simpler proof of the SCPP
for the MMSE and generalized it to the MMPE. We have
shown that the new framework of the MMPE also permits the
development of bounds that are complementary to the SCPP
which in turn allows for new tighter characterizations of the
phase transition phenomena that manifest, in the limit as the
length of the capacity achieving code goes to infinity, as a
discontinuity of the MMSE as a function of SNR.

We have also shown connections between the MMPE and
the conditional differential entropy by generalizing a well
know continuous analog of Fano’s inequality. The MMPE was
further used to refine bounds on the conditional entropy and
improve the gap term in the Ozarow-Wyner bound.

Currently, we are investigating the connections between
bounds on the MMPE provided in this work and the rate dis-
tortion problem with the MMPE distortion measure. Possible
future applications of the sharpened version of the Ozarow-
Wyner bound include sharpening the bounds on discrete inputs
in [56] and [57]. Another interesting future direction is to
consider a modified ‘information bottleneck problem’ [58]
where the constraint on the mutual information is replaced
by a constraint on the MMPE.
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Fig. 4. Bounds on Mn(snr, snr0, β) vs snr. (a) For snr0 = 5 and β = 0.01. Here n = 1. (b) For snr0 = 5 and β = 0.05. Several values of n.

APPENDIX A
PROOF OF PROPOSITION 1

For simplicity, we look at the case n = 1. The case for
n > 1 follows similarly. We first assume that snr > 0. The
first direction follows trivially:

inf
f

E
�|X − f (Y )|p� ≤ E

�|X − f p(X |Y )|p�.

The other direction follows by using

inf
f

E
�|X − f (Y )|p� ≥ E

�
inf

f
E
�22X − f (Y )|p

22 Y �
�
,

where we focus on the inner expectation
inf f E

�|X − f (Y )|p| Y = y
�

and show that the infimum
is achieved by f (y) = f p(X |Y = y) given in (14). Since y
is now given, we are simply looking for an optimal solution
to the more general problem

inf
v∈R

E
�22X y − v

22p� , (79)

where X y ∼ pX |Y (·|y). The goal is to show that the infimum
in (79) is achievable. Clearly, the infimum exists since

0 ≤ inf
v∈R

E
�22X y − v

22p� ≤ E
�22X y − 0

22p�

= E[|X y|p] < ∞, (80)

where the last inequality follows from [9, Proposition 6] which
asserts that for any p < ∞, X y is a sub-Gaussian random
variable and hence all conditional moments are finite.

Next, we show that g(v) = E
�22X y − v

22p� is a continuous
function of v. Recall, that any given function h(x) is contin-
uous if xn → x implies h(xn) → h(x) as n → ∞.

For arbitrary |v| < ∞ take a sequence vn such that vn → v,
we want to show that

lim
n→∞ g(vn) = lim

n→∞ E
�22X y − vn

22p�

= E

�
lim

n→∞
22X y − vn

22p� = g(v).

This can be done with the help of the dominated convergence
theorem. We must find an integrable random variable θ such

that
22X y − vn

22p ≤ θ for all n; this is found as

22X y − vn
22p a)≤ 2p �|X y|p + |vn |p�

b)≤ 2p �|X y|p + K
� = θ,

where the inequalities follow from: a)
22X y − vn

22p ≤
(2 max(|X y |, |vn|))p ≤ 2p

�|X y |p + |vn |p
�

which holds for
any p ≥ 0; and b) recall that every convergent sequence
is bounded and since the sequence vn converges to v it is
also bounded by some finite K for every n. The integrability
of θ = 2p

�|X y|p + K
�

follows again by the sub-Gaussian
argument from [9, Proposition 6]. Therefore, we conclude that
the function g(v) is continuous.

Next, we show that the infimum is attainable by some
|v0| < ∞. By definition of the infimum there exists some vn

(not necessarily convergent) such that

lim inf
n→∞ E[|X y − vn |p] = inf

v∈R

E
�22X y − v

22p�.
Towards a contradiction, assume that vn → ∞. Then by
Fatou’s lemma

lim inf
n→∞ E[|X y − vn |p] ≥ E[lim inf

n→∞ |X y − vn |p] = ∞.

However, this contradicts the result in (80) and therefore
sequence vn must be bounded. This, together with the fact
that g(v) is continuos, implies that the infimum is attainable
and thus

inf
v∈R

E
�22X y − v

22p� = min
v∈R

E
�22X y − v

22p�. (81)

Therefore, for each y ∈ R there exists |v| < K that
minimize the expression minv∈R E

�22X y − v
22p�. Note, that the

optimizing v might not be unique and the set of optimal values
is given by

Sy = {v : min
v∈R

E
�22X y − v

22p�}.
According to the Definition 2 we have that

f p(X |Y = y) = max{v : Sy}
= max{v : min

v∈R

E
�|X − v|p |Y = y

�}. (82)
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Note, that we have show that for every y the optimal value v
is bounded and therefore in (82) we can take the max instead
of the sup.

Moreover, as will be shown in Proposition 2, due to the strict
convexity of |·|p for p > 1 the optimizer is indeed unique and
can be given by

f p(X |Y = y) = arg min
v∈R

E
�|X − v|p |Y = y

�
.

For the case of snr = 0+ the problem reduces to

inf
v∈Rn

�X − v�p,

which is bounded if and only if �X�p < ∞. This concludes
the proof.

APPENDIX B
PROOF OF PROPOSITION 2

We take a classical approach used in estimation theory
to find an optimal estimator by using tools from calculus
of variations [59, Ch.7, Th.1]. A necessary condition for f
to be a minimizer in (14) is expressed through a functional
derivative as

∇gE
��X − f (Y)�p�

= lim
�→0

E

��X − ( f (Y) + �g(Y)) �p − �X − f (Y)�p

�

�
= 0,

(83)

for all admissible g(Y).
Therefore, we focus on the following limit:

lim
�→0

E

��X − ( f (Y) + �g(Y)) �p − �X − f (Y)�p

�

�
. (84)

We seek to apply the dominated convergence theorem to (84)
in order to interchange the order of the limit and the expecta-
tion. To that end we let v = x − f (y) and

�x − f (y)�p =
�

vT v
 p

2
,

and

�x − ( f (y) + �g(y)) �p

=
�
(v − �g(y))T (v − �g(y))

 p
2

=
�

vT v − �g(y)T v − �vT g(y) + �2g(y)T g(y)
 p

2
.

Next for the integrand

�x − ( f (y) + �g(y)) �p − �x − f (y)�p

�
(85)

we observe that all the terms in (85) are of order no more
than p, and since all of the terms are in L p (or p integrable)
the quantity in (85) is integrable for any �. Therefore, the dom-
inated convergence theorem applies and we can interchange
the order of limit and expectation in (84).

Next, observe that we can re-write the limit as a derivative,
that is,

lim
�→0

�x − ( f (y) + �g(y)) �p − �x − f (y)�p

�

= d

d�
�x − ( f (y) + �g(y)) �p

222
�=0

. (86)

By using chain rules of differentiation of matrix calculus
we arrive at

d

d�
�x − ( f (y) + �g(y)) �p

222
�=0

= d

d�

�
(v − �g(y))T (v − �g(y))

 p
2
222
�=0

= −p
�
(v − �g(y))T (v − �g(y))

 p
2 −1

(v − �g(y))T g(y)
222
�=0

= −p Tr
p
2 −1

�
vvT

�
vT g(y). (87)

Therefore, the function derivative is given by

lim
�→0

E

��X − ( f (Y) + �g(Y)) �p − �X − f (Y)�p

�

�

= E

�
−p · �X − f (Y)�p−2(X − f (Y))T g(Y)

�
.

Finally, for f p(X|Y) to be optimal it must satisfy

E

�
�X − f (Y)�p−2(X − f p(X|Y))T g(Y)

�
= 0,

for any admissible g(Y). This verifies the necessary condition
for optimality for p > 0.

To verify that this is a sufficient condition for optimality
we take the second variational derivative of E

��X − f (Y)�p
�

and demonstrated that it is always positive for p ≥ 1. The fact
that

d2

d�2 �x − ( f (y) + �g(y)) �p
222
�=0

≥ 0 for p ≥ 1,

follows since �x − ( f (y) + �g(y)) �p is a convex function of
� for p ≥ 1.

This verifies the sufficient condition for p ≥ 1 and
concludes the proof.

APPENDIX C
PROOF OF PROPOSITION 3

In Proposition 1 we let X y ∼ pX |Y (·|y) and therefore have
to solve for all y

min
v∈R

E
�|X y − v|p�. (88)

We know that X y is Gaussian with X y ∼ N
�√

snry
1+snr ,

1
1+snr


.

The optimization problem in (88) can be transformed into

min
v∈R

E

�2222
Z√

1 + snr
+

√
snry

1+snr
− v

2222
p
�

= mina∈R E
�|Z − a|p�

(1 + snr)p

(89)

where

a = √
1 + snr v −

√
snry√

1 + snr
, (90)

and where Z ∼ N (0, 1). Next, by taking the derivative with
respect to a in (89)

f �(a) = d

da
E
�|Z − a|p� = E

�
d

da
|Z − a|p

�

= E

�
−psign(Z − a) |Z − a|p−1

�
, (91)
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where the interchange of the order of differentiation and
expectation in (91) is possible by Leibniz integral rule [60]
which requires verifying that for

g(a, z) = d

da
|z − a|p = −p sign(z − a) |z − a|p−1 , (92)

we have that |g(a, z)| ≤ θ(z) where θ(z) is integrable. This
is indeed the case since

|p sign(z − a) |z − a|p−1 | ≤ p2p
�
|z|p−1 + |a|p−1


= θ(z).

Clearly, θ(z) is integrable, so the change of the order of
differentiation and expectation in (89) is justified.

Next, observe that for a fixed a the function g(z, a) in (92)
is a decreasing function of z for any p ≥ 1 and in addition
g(z, a) is an odd function around z = a. Since f �(a) is an
average value of g(a, z) this means that the sign of f �(a) is
the same as the sign of a, that is, f �(a) > 0 if a > 0 and
f �(a) < 0 if a < 0. Moreover, if a = 0

f �(a = 0) = E

�
−p sign(Z) |Z |p−1

�
= 0.

All this implies that a = 0 is a critical and a minimum point.
Therefore, the optimal â = 0 for the optimization problem
in (89) and the optimal v̂ for the original optimization problem
is found through (90) to be

v̂ =
√

snr y

1 + snr
.

Finally, we compute the mmpe(X, snr, p) for X ∼ N (0, 1)

mmpe(X, snr, p) = E

�2222X −
√

snr
1 + snr

Y

2222
p
�

= E

�2222
X

1 + snr
−

√
snrZ

1 + snr

2222
p
�

a)= E

�22222
Ẑ√

1 + snr

22222
p22222

b)=
2

p
2 �
�

p+1
2



√
π(1 + snr)

p
2
,

where the equalities follow from: a) follows since X and Z are
independent Gaussian r.v.’s and have an equivalent distribution
given by Ẑ√

1+snr
where Ẑ ∼ N (0, 1); and b) follows from (7)

by setting n = 1. This concludes the proof.

APPENDIX D
PROOF OF PROPOSITION 4

From Proposition 1 we have to minimize E
�|X y − v|p

�
where X y ∼ pX |Y (·|y). We have that the joint probability
density function of (X, Y ) is given by

pX,Y (x, y) = q√
2π

e− (y−√
snrx1)2

2 δ(x − x1)

+ 1 − q√
2π

e− (y−√
snrx2)2

2 δ(x − x2).

Without loss of generality we assume that x1 ≤ x2. By using
Bayes’ formula we have that

E
�|X y − v|p�

=
|x1 − v|p q√

2π
e− (y−√

snrx1)2

2 + |x2 − v|p 1−q√
2π

e− (y−√
snrx2)2

2

pY (y)
.

(93)

The minimization of (93) with respect to v is equivalent to
minimizing

g(v) = a|x1 − v|p + |x2 − v|p,

where

a = q e− (y−√
snrx1)2

2

(1 − q) e− (y−√
snrx2)2

2

.

In piecewise form we can write g(v) as

g(v) =

⎧
⎪⎨
⎪⎩

a(v − x1)
p + (v − x2)

p, x2 ≤ v

a(v − x1)
p + (x2 − v)p, x1 < v < x2

a(x1 − v)p + (x2 − v)p, v ≤ x1,

with the derivative of g(v) given by

g�(v) =

⎧⎪⎨
⎪⎩

ar(v − x1)
p−1 + r(v − x2)

p−1, x2 ≤ v

ar(v − x1)
p−1 − r(x2 − v)p−1, x1 < v < x2

−ar(x1 − v)p−1 − r(x2 − v)p−1, v ≤ x1,

(94)

From (94) we see that for the regime x2 ≤ v the derivative is
positive and therefore the minimum occurs at v = x2. For the
regime v ≤ x1 we have that the derivative is always negative
so the minimum occurs at v = x1. For the regime x1 < v < x2
the optimal v soves

g�(v) = ap(v − x1)
p−1 − p(x2 − v)p−1 = 0,

that is,

v = a
1

p−1 x1 + x2

a
1

p−1 + 1
.

Next, by comparing the three candidates for the minimizing v,
we have that

g(v = x2) = a|x2 − x1|p,

g(v = x1) = |x2 − x1|p,

and

g

�
v = a

1
p−1 x1 + x2

a
1

p−1 + 1

�

= a

22222x1 − a
1

p−1 x1 + x2

a
1

p−1 + 1

22222

p

+
22222x2 − a

1
p−1 x1 + x2

a
1

p−1 + 1

22222

p

= a

(a
1

p−1 + 1)p
|x1 − x2|p + a

p
p−1

(a
1

p−1 + 1)p
|x2 − x1|p

= |x2 − x1|p a

(a
1

p−1 + 1)p−1
.
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Since a

(a
1

p−1 +1)p−1
≤ min(1, a), we have that the minimum

of g(v) occurs at

v = a
1

p−1 x1 + x2

a
1

p−1 + 1

= q
1

p−1 e− (y−√
snrx1)2

2(r−1) · x1 + (1 − q)
1

p−1 e− (y−√
snrx2)2

2(p−1) · x2

q
1

p−1 e− (y−√
snrx1)2

2(p−1) + (1 − q)
1

p−1 e− (y−√
snrx2)2

2(p−1)

.

(95)

Therefore, the optimal estimator is given by the RHS
of (95).

Note, that for the case of p = 1 the function g(v) reduces to

g(v) = a|x1 − v| + |x2 − v|,
and the minimum occurs at

v =
�

x1, a ≥ 1

x2, a < 1.

This implies that for p = 1 the optimal estimator is

f p(X |Y = y) =
�

x1, a ≥ 1

x2, a < 1,

where a = q e− (y−√
snrx1)2

2

(1−q) e− (y−√
snrx2)2
2

. This concludes the proof.

APPENDIX E
PROOF OF PROPOSITION 5

The key to deriving all of the claimed properties is the
expression of the optimal estimator in Proposition 1. We prove
next all the properties.

1) For 0 ≤ X ∈ R suppose that

0 > vy = f p(X |Y = y) = arg min
v

E
�|X − v|p|Y = y

�
,

then

min
v

E
�|X − v|p |Y = y

� = E
�|X − vy |p|Y = y

�

a)= E
�
(X − vy)

p|Y = y
�

b)≥ E
�
X p|Y = y

�
, (96)

where the (in)-equalities follow from: a) using the
assumption that X ≥ 0 and vy < 0 so X − vy > 0
and the absolute value is redundant; and b) by using the
assumption that X ≥ 0 and vy < 0 then X − vy ≥ X .
The expression in (96) leads to a contradiction since
it implies that vy = 0 but by assumption vy < 0.
Therefore, vy = f p(X |Y = y) ≥ 0. This concludes
the proof of property 1).

2) Next we show that f p(aX + b|Y) = a f p(X|Y) + b. Let

vy = f p(X|Y = y) = arg min
v

E
��X − v�p|Y = y

�
,

then

f p(aX + b|Y = y)

= arg min
v

E

�
�aX + b − v�p

222Y = y
�

= arg min
v

a p
E

�����X − v − b

a

����
p 222Y = y

�

a)= arg min
v

E

�����X − v − b

a

����
p 222Y = y

�

b)= avy + b

= a f p(X|Y = y) + b,

where the equalities follow from: a) since scaling the
objective function does not change the optimizer; and
b) since the minimum is attained at v−b

a = vy. This
concludes the proof of property 2).

3) Next, we show that f p(g(Y)|Y = y) = g(Y). Since,

f p(g(Y)|Y = y)

= arg min
v

E
��g(Y) − v�p|Y = y

�

= arg min
v

�
�g(y) − v�p pX|Y(x|y)dx

= arg min
v

�g(y) − v�p

= g(y).

This concludes the proof of property 3).
4) Follows from property 3) by taking g(Y) = f p(X|Y).
5) Observe that for the Markov chain X → Ysnr0 → Ysnr

we have

pX|Ysnr0 ,Ysnr(x|ysnr0, ysnr) = pX|Ysnr0
(x|ysnr0). (97)

By using Proposition 1 we have that

f p
�
X|Ysnr0 = ysnr0 , Ysnr = ysnr

�

= arg min
v∈Rn

E
��X − v�p|Ysnr0 = ysnr0 , Ysnr = ysnr

�

= arg min
v∈Rn

�
�x − v�p pX|Ysnr0 ,Ysnr(x|ysnr0 , ysnr)dx

a)= arg min
v∈Rn

�
�x − v�p pX|Ysnr0

(x|ysnr0)dx

= arg min
v∈Rn

E
��X − v�p|Ysnr0 = ysnr0

�

= f p
�
X|Ysnr0 = ysnr0

�

where the equality in a) follows from (97).
6) See Fig. 1a for the counter example.

This concludes the proof.

APPENDIX F
PROOF OF THE BOUND IN PROPOSITION 8

We define

Ŷsnr = Ysnr0 + Z�,

where Z� ∼ N (0, σ 2I) with σ 2 = snr0−snr
snr is independent of

Ysnr0 , X and Z. Observe that Ŷsnr and Ysnr have the same
SNR’s and therefore

mmpe(X|Ysnr; p) = mmpe(X|Ŷsnr; p). (98)
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By performing a change of measure we have

n mmpe(X|Ŷsnr; p) = inf
f

E

�
�X − f (Ŷsnr)�p

�

= inf
f

E
��X − f (Ysnr0)�p L(X, Ysnr0)

�
,

where L(x, y) is given by

L(x, y) = pŶsnr|X(y|x)

pYsnr0 |X(y|x)

=
1√

(2π)n(1+σ 2)
e
− 1

2 (y−√
snr0x)T 1

1+σ2 I(y−√
snr0x)

1√
(2π)n e− 1

2 (y−√
snr0x)T I(y−√

snr0x)
,

and thus

n mmpe(X|Ŷsnr; p)

= inf
f

E
��X − f (Ysnr0)�p L(X, Ysnr0)

�

= inf
f

1√
1 + σ 2

E

�
�X − f (Ysnr0)�pe

1
2 ZT IZ− 1

2 ZT 1
1+σ2 IZ

�

= inf
f

�
snr
snr0

E

�
�X − f (Ysnr0)�pe

snr0−snr
2snr0

ZT Z
�

= inf
f

�
snr
snr0

E

�
�X − f (Ysnr0)�pe

snr0−snr
2snr0

�n
i=1 Z2

i

�
.

This concludes the proof.

APPENDIX G
PROOF OF PROPOSITION 10

A. Proof of the Bound in (38a)

The upper bound in (38a) follows from the fact that E[X|Y]
is in general a suboptimal estimator for a given p thus

mmpe(X, snr, p) ≤ 1

n
E
��X − E[X|Y]�p�.

The lower bound in (38a) for p ≥ q follows by

mmpe(X, snr, q) = inf
f

1

n
E
��X − f (X|Y)�q�

= inf
f

1

n
E

�
�X − f (X|Y)� qp

p

�

a)≤ inf
f

1

n

�
E
��X − f (X|Y)�p�� q

p

=
	

1

n
p
q

inf
f

E
��X − f (X|Y)�p�


 q
p

=
	

1

n
p
q −1

mmpe(X, snr, p)


 q
p

,

where the inequality in a) follows from Jensen’s inequality
and the concavity of (·) q

p .

B. Proof of the Bounds in (38b) and (38c)

We now proceed to the proof of the upper bounds in (38b)
and (38c). We have

�X − E[X|Y]�p
a)= 1√

snr
�Z − E[Z|Y]�p

b)≤ 1√
snr

��Z�p + �E[Z|Y]�p
�
, (99)

where the (in)-equalities follow from: a) by using Lemma 1,
b) by using the triangle inequality which holds for p ≥ 1.

Next, the term �E[Z|Y]�p can be further bound as follows:

n
1
p �E[Z|Y]�p = E

1
p

�
Tr

p
2

�
E[Z|Y]ET [Z|Y]

�

= E
1
p

⎡
⎣
�

n�
i=1

E
2[Zi |Y]

� p
2
⎤
⎦

a)≤ E
1
p

⎡
⎣
�

n�
i=1

E[Z2
i |Y]

� p
2
⎤
⎦

= E
1
p

�
E

p
2

�
n�

i=1

Z2
i |Y
��

= E
1
p

�
E

p
2

�
Tr(ZZT )|Y

��
, (100)

where the inequality in a) follows from using Jensen’s inequal-
ity. Depending on whether p

2 ≤ 1 or p
2 ≥ 1 we bound (100)

as follows:

for p ≥ 2 : E
1
p

�
E

p
2

�
Tr(ZZT )|Y

��

a)≤ E
1
p

�
E

�
Tr

p
2 (ZZT )|Y

��

= E
1
p

�
Tr

p
2 (ZZT )

�

= n
1
p �Z�p, (101a)

for 1 ≤ p < 2 : E
1
p

�
E

p
2

�
Tr(ZZT )|Y

��

b)≤ E
1
2

�
E

�
Tr(ZZT )|Y

��

= E
1
2

�
Tr(ZZT )

�

= n
1
2 �Z�2, (101b)

where the inequalities follow from: a) by using Jensen’s
inequality on a convex function xr for r ≥ 1; and b) by using
Jensen’s inequality on a concave function xr for r ≤ 1.

By putting (99), (100) and (101) together we get

for p ≥ 2 : �X − E[X|Y]�p ≤ 2�Z�p,√
snr

(102a)

for 1 ≤ p < 2 : �X − E[X|Y]�p ≤ �Z�p + n
1
2 − 1

p �Z�2√
snr

.

(102b)

The second term in the minimum of (38b) and (38c) is
shown by assuming that �X�p is finite and by mimicking the
steps leading to the bound in (102). We have

for p ≥ 1 : �X − E[X|Y]�p ≤ 2�X�p, (103a)

for 1 ≤ p < 1 : �X − E[X|Y]�p ≤
�
�X�p + n

1
2 − 1

p �X�2


.

(103b)

Taking the minimum, between (102) and (103) concludes
the proof.
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C. Proof of the Bound in (38d)

The first part of the bound in (38d) follows by choosing
f (y) = y√

snr
in the definition of then MMPE, and hence

mmpe(X, snr, p) ≤
����X − Y√

snr

����
p

p

= 1

snr
p
2
�Z�p

p . (104)

The bound holds as long as �Z�p
p = E

���n
i=1 Z2

i

� p
2
�

is finite
which is the case for p ≥ 0.

The second bound follows by choosing f (y) = 0 in the
definition of then MMPE, and hence

inf
f

E[Tr
p
2 (X − f (X|Y))(X − f (X|Y))T ] ≤ E

�
Tr

p
2

�
XXT

�
,

(105)

which holds for any p as long as E

�
Tr

p
2
�
XXT

��
exists.

The proof of the upper bound in (38d) is completed by
taking the minimum of the bound in (104) and (105). This
concludes the proof.

APPENDIX H
PROOF OF THE BOUND IN PROPOSITION 11

First we show that if �X�p ≤ �Z�p then

mmpe(X, snr, p) ≤ κp,snr
�Z�p

p

(1 + snr)
p
2
. (106)

Consider the following sub-optimal estimator f (Y) =
√

snr
1+snr Y

mmpe(X, snr, p) ≤
����X −

√
snr

1 + snr
Y

����
p

p

=
����

1

1 + snr
X −

√
snr

1 + snr
Z

����
p

p

=
��X − √

snrZ
��p

p

(1 + snr)p

a)≤
��X�p + √

snr�Z�p
�p

(1 + snr)p

b)≤
�
1 + √

snr
�p �Z�p

p

(1 + snr)p
,

= κp,snr
�Z�p

p

(1 + snr)
p
2
, (107)

where

κ
1
p
p,snr = 1 + √

snr√
1 + snr

, (108)

where the (in)-equalities follow from: a) triangle inequality and
scaling property of the norm; and b) by using the assumption
that �X�p ≤ �Z�p .

Next, let X = σU. Then �X�p = �σU�p ≤ σ�Z�p and
therefore �U�p ≤ �Z�p , so by using the bound in (106) we
have that

mmpe(X, snr, p) = mmpe(σU, snr, p)

a)= σ pmmpe(U, σ 2snr, p)

b)≤ κp,σ 2snrσ
p �Z�p

p

(1 + snrσ 2)
p
2
,

where the (in)-equalities follow from: a) by using the scaling
property of the MMPE in Proposition 6; and b) by using the
bound in (106).

Observe that the bound in (106) is achieved asymptotically
by using XG ∼ N (0, σ 2I) since by Proposition 3 and the
scaling property in Proposition 6 we have that

mmpe(XG , snr, p) = σ p�Z�p
p

(1 + snrσ 2)
p
2
.

This concludes the proof.

APPENDIX I
PROOF OF PROPOSITION 15

We seek to give an upper bound on P(n)
e (snr) in (45) for

the MAP decoding rule given by

x̂ = arg max
m

pX|Y(xm |y)

= arg max
m

pme− �y−√
snrxm�2

2

= arg max
m

pme− �y−√
snrxm�2

2

= arg min
m

	�y − √
snrxm�2

2
+ log

1

pm



.

To that end, let us denote the following events:

Ei (y) =
�

xk = arg min
m

	�y − √
snrxm�2

2
+ log

1

pi



,

for some k �= i
�
,

Ei, j (y) =
3�y − √

snrxi�2

2
+ log

p j

pi
≥ �y − √

snrx j�2

2

4
.

We have

P(n)
e (snr) = P[X̂ �= X]

=
N�

i=1

piP[X̂ �= X|X = xi ]

=
N�

i=1

piP[Ei(Y)|X = xi ]

≤
N�

i=1

�
j �=i

piP[Ei, j (Y)|X = xi ]. (109)
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Next we analyze P[Ei, j (Y)|X = xi ]
P[Ei, j (Y)|X = xi ]

= P

��Z�2

2
+ log

p j

pi
≥ �Z + √

snr(xi − x j )�2

2

�

a)= P

�
log

	
p j

pi



− snr�xi − x j�2

2
≥ √

snrZT (xi − x j )

�

b)= P

�
log

	
p j

pi



− snr�xi − x j�2

2
≥ √

snr�xi − x j�Z

�

c)= Q

	√
snrdi j

2
− log

	
p j

pi



1√

snrdi j



, (110)

where the equalities follow from: a) expanding �Z +
2
√

snr(xi − x j )�2; b) using the fact that ZT (xi − x j ) has the
same distribution as �xi − x j�Z ; and c) using the definition
di j = �xi − x j�.

Combining (109) and (110) concludes the proof.

APPENDIX J
PROOF OF THEOREM 1

Let Wv = Uv − g(v) where g(·) is a deterministic function
and Uv ∼ pU|V(·|v). By [40, Th. 3] we have

n
1
p �Wv�p

e
1
n he(Wv)

≥ 1

kn,p
, kn,p :=

√
pi
� p

n

� 1
p e

1
p �

1
n

�
n
p + 1



�
1
n
� n

2 + 1
� ,

(111)

where he(·) is the differential entropy measured in nats.
Moreover, observe that he(Wv) = he(Uv − g(v)) = he(Uv)
due to the translation invariance of the differential entropy.
Therefore, by rearranging (111) and by using the translation
invariance of the differential entropy, we get

1

n
he(Uv) log(e) ≤ log

�
kn,p · n

1
p �Wv�p


, (112)

where from (5) we have n
1
p �Wv�p = E

1
p [�U − g(V)

�p|V = v
�
. By taking the expectation on both sides of (112)

with respect to pV(v) we arrive at

n−1he(U|V) log(e) = n−1h(U|V)

≤ 1

p
E

�
log

	
k p

n,p · n · 1

n
· E
��U − g(V)�p|V�


�

a)≤ 1

p
log

	
k p

n,p · n · 1

n
· E
�
E
��U − g(V)�p|V��




= 1

p
log

	
k p

n,p · n · 1

n
· E
��U − g(V)�p�




= log
�

kn,p · n
1
p · �U − g(V)�p


,

where the inequality in a) follows from Jensen’s inequality.
Finally, since this bound holds for any deterministic function
g(·), to tighten this bound, and due to the monotonicity of
the log function, we may pick g(·) to be the optimal p-th
estimator of U. This concludes the proof.

APPENDIX K
PROOF OF THEOREM 2

Let (U, XD, Z) be mutually independent. By the data
processing inequality and the assumption in (67a) we have

I (XD; Y) ≥ I (XD + U; Y)

= h(XD + U) − h(XD + U|Y)

= H (XD) + h(U) − h(XD + U|Y). (113)

Next, by using Theorem 1, we have that the last term of (113)
can be bounded as

n−1h(XD + U|Y) ≤ log
�

kn,p · n
1
p · �XD + U − g(Y)�p


.

(114)

Next, by combining (113) and (114) and taking g(Y) =
f p(X|Y) we have that

I (XD; Y) ≥ H (XD) − gapp, (115)

n−1gapp ≤ inf
U∈K

�
L1,p(U, XD) + L2,p(U)

�
,

G1,p(U, XD) = log

	�U + XD − f p(X|Y)�p

�U�p




for p ≥ 1≤ log

�
1 + mmpe

1
p (XD, snr, p)

�U�p

�
,

G2,p(U) = log

⎛
⎝kn,p · n

1
p · �U�p

e
1
n he(U)

⎞
⎠, (116)

where inequality in (116) follows by the triangle inequality
which holds for p ≥ 1.

Finally, the proof concludes by taking g(Y) = f p(X|Y).

APPENDIX L
PROOF OF THEOREM 3

To show that limn→∞ G2,p(U) = 0 we show that

lim
n→∞

kn,p · n
1
p · �U�p

e
1
n he(U)

= 1.

First of all observe that using (111) in Appendix J

1 ≤ kn,p · n
1
p · �U�p

e
1
n he(U)

.

Next, we show an upper bound. Note that if U is uniform over
a ball B0(r) of radius r = dmin(XD)/2 then

h(U) = log (Vol(B0(r))) , (117)

where

Vol(B0(r)) = πn/2

�
� n

2 + 1
�rn . (118)

Moreover, the norm U can be upper bounded by

�U�p
p = 1

n

1

Vol(B0(r))

�

B0(r)

�
n�

i=1

u2
i

� p
2

du1du2 · · · dun

≤ 1

n

1

Vol(B0(r))

�

B0(r)

�
r2
 p

2
du1du2 · · · dun = r p

n
.

(119)
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Therefore, by using (119) and (118)

kn,p · n
1
p · �U�p

e
1
n he(U)

≤ kn,p · �
1
n
� n

2 + 1
�

√
π

=
√

π
� p

n

� 1
p e

1
p �

1
n

�
n
p + 1


�

1
n
� n

2 + 1
�

�
1
n
� n

2 + 1
�√

π

= (pe)
1
p

	
1

n


 1
p

�
1
n

	
n

p
+ 1



.

Next by using the Stirling’s approximation �(x + 1) =√
2πx

� x
e

�x + o(x) we have that

	
1

n


 1
p

�
1
n

	
n

p
+ 1



≤
	

2πn

p


 1
n
	

1

pe


 1
p + o (n),

and therefore

kn,p · n
1
p · �U�p

e
1
n he(U)

≤
	

2πn

p


 1
n + o (n)

as n → ∞→ 1.

This shows that limn→∞ G2,p(U) = 0. Next, we
show that limn→∞ G1,p(XD, U) = 0 by showing that
limn→∞ mmpe(XD,snr,p)

�U�p
= 0. First, observe that by using the

bound in (47a)

mmpe
1
p (XD, snr, p) ≤

dmax Q
1
p

	
n
2 ; snrd2

min
8




n
1
p

,

and by using (8) we have that

mmpe
1
p (XD, snr, p)

�U�p

≤

dmax(XD)Q
1
p

	
n
2 ; snrd2

min(XD)

8




n
1
p

dmin(XD)

2(p+n)
1
p

= 2
dmax(XD)

dmin(XD)

p

+,,,- (p + n)Q̄

	
n
2 ; snrd2

min(XD)
8




n
. (120)

This concludes the proof.

APPENDIX M
ON FINDING THE OPTIMAL r IN

THE PROOF OF THEOREM 4

We must solve the following optimization problem:

min
r> 2

γ

g(r) = M
γ r−2
r−2

G
r(1−γ )

r−2

N
2(1−γ )

r−2

�
2(1−γ )

r−1 (n/2 + r/2),

M = mmse(X, snr0),

G = 8

snr0
,

N = n�
�n

2


= 2�

�n

2
+ 1

.

Instead of optimizing g(r) we will focus on optimizing h(r) =
ln(g(r)) where

h(r) = γ r − 2

r − 2
ln(M) + r(1 − γ )

r − 2
ln(G) − 2(1 − γ )

(r − 2)
ln(N)

+ 2(1 − γ )

r − 2
ln

	
�

	
n + r

2




. (121)

Unfortunately, a closed form solution for the optimum
of (121) is difficult to find and instead we look for an
approximate solution. This is done by using Stirling’s formula
�(x + 1) ≈ √

2πx
� x

e

�x . We have

�

	
n + r

2



= �

	
n + r

2
− 1 + 1




≈
5

2π

	
r + n − 2

2


� r+n−2
2

e

� r
2 + n−2

2

. (122)

Now, we seek to optimize the following expression:

g(r)

≈
M

γ r−2
r−2 N

2(γ−1)
(r−2)

��
2π
� r+n−2

2

� 	 r+n−2
2
e


 r+n−2
2
� 2(1−γ )

r−2

G
r (γ−1)

r−2

,

that is

h(r)

≈ γ r − 2

r − 2
ln(M) + r(1 − γ )

r − 2
ln(G) − 2(1 − γ )

r − 2
ln(N)

+ 1 − γ

r − 2
ln

	
2π

	
r

2
+ n − 2

2




− 2(1 − γ )( r

2 + n−2
2 )

r − 2

+ 2(1 − γ )( r
2 + n−2

2 )

r − 2
ln

	
r

2
+ n − 2

2



. (123)

By taking the derivative of (123) with respect to r we get

h�(r) = 1

2

1 − γ

( r
2 − 1)2 f (r)

f (r) = ln(M) − ln(
√

2πG) + log(N) + r − 2

n − 2 + r

− n + 1

2
ln

	
n − 2

2
+ r

2



+ r

2
+ n − 2

2

≈ ln(M) − ln(
√

2πG) + log(N)

− n + 1

2
ln

	
n − 2

2
+ 1



+ r

2
+ n − 2

2
(124)

where in the last step we used the approximation
n+1

2 ln
� n−2

2 + r
2

� ≈ n+1
2 ln

� n−2
2 + 1

�
and r−2

n−2+r ≈ 0 which
is reasonable as n becomes large.
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Solving f (r) = 0 in (124) we get that the approximate
solution is

r

2
= ln

⎛
⎝

√
2πG

� n
2

� n+1
2

M Ne
n−2

2

⎞
⎠

= ln

⎛
⎝ 8

√
2π
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2

� n+1
2
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�

e
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⎞
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⎝ 8

√
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2π n
2

� n
2e

� n
2 e
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2

⎞
⎠

= ln

	
4e

snr0mmse(X, snr0)



,

where in the last approximation we have used Stirling’s
formula.

Since, we have a constraint that r > 2
γ we set r to be

r ≈
⎧
⎨
⎩

2 ln
�

4e
snr0mmse(X,snr0)


, 2

γ ≤ ln
�

4e
snr0mmse(X,snr0)



2
γ , 2

γ > ln
�

4e
snr0mmse(X,snr0)


.

This concludes the proof.

APPENDIX N
PROOF OF PROPOSITION 21

First observe that

inf
f

E[�X − f (Y)�2|Y = y] = E

�
�X − E[X|Y]�2|Y = y

�
.

(125)

We will need the following bounds on trace of A � 0 where
A ∈ R

n×n

1

n
Tr(A)2 ≤ Tr(A2) ≤ nTr(A)2. (126)

For the upper bound we have that

Tr
�
E

�
Cov2(X|Y)

�

= E

�
Tr
�

Cov2(X|Y)
�

a)≤ E

�
nTr2 (Cov(X|Y))

�

= E

�
nTr2

�
E
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��

= E

�
nE

2
�
Tr(X − E[X|Y])(X − E[X|Y])T |Y

��

= E

�
nE

2
�
�X − E[X|Y]�2|Y

��

b)= E

�
n

	
inf

f
E

�
�X − f (Y)�2|Y

�
2
�

= E

�
n inf

f
E

2
�
�X − f (Y)�2|Y

��

c)≤ E

�
n inf

f
E

�
�X − f (Y)�4|Y

��

d)≤ n inf
f

E

�
E

�
�X − f (Y)�4|Y

��

e)= n inf
f

E

�
�X − f (Y)�4

�

= n2mmpe(X, snr, 4),

where the (in)-equalities follow from: a) since Cov(X|Y) � 0
and using the inequality in (126); and b) by using (125); c)
Jensen’s inequality; d) by using E[X1] ≤ E[X2] if X1 ≤ X2;
and e) law of total expectation.

For the lower bound
1

n
Tr
�
E

�
Cov2(X|Y)

�
= 1

n
E

�
Tr
�

Cov2(X|Y)
�

a)≥ 1

n
E

�
1

n
Tr2 (Cov(X|Y))

�

b)≥ 1

n2 E
2 [Tr (Cov(X|Y))]

= mmse2(X, snr),

where the inequalities follow from: a) since Cov(X|Y) � 0
and by using the inequality in (126); and b) Jensen’s inequality.
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