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Abstract—Hierarchical cooperation schemes in wireless net-
works rely on local cooperation among neighboring nodes to cre-
ate virtual multiple-input multiple-output (MIMO) connections
between clusters of nodes. It was shown that, by applying the
virtual MIMO technique recursively in a hierarchical manner,
the sum rate of all source-destination pairs can scale linearly with
the number of nodes in the network. In this paper we focus on
the impact of local cooperation and establish new capacity scaling
bounds for the virtual MIMO transmission taking into account
the constraints of local communication both at the transmitters
and the receivers. We show that the cost of local communication,
which is inevitable to establish the virtual MIMO transmission,
grows exponentially with the number of layers in the cooperation
hierarchy and plays a vital role in determining the overall
performance of the hierarchical virtual MIMO cooperation.

Index Terms—Scalability, distributed cooperation, wireless net-
works, virtual MIMO

I. INTRODUCTION

Given a large wireless network consisting of N nodes

randomly deployed within an area A, each of the nodes

wants to transmit to a random destination node within the

network at some equal rate. For dense networks where the

area A is fixed but the density of nodes scales up, Gupta

and Kumar [1] showed that, with multi-hop transmission, the

maximum achievable sum rate CN scales at most as O(
√
N)

as dense networks are essentially interference limited. For

extended networks where the transmission distance scales up

with the number of nodes but the density of nodes N/AN

is fixed, Xie and Kumar [2] provided an upper bound on the

capacity scaling and showed that the multiple-hop transmission

strategy is essentially optimal if the path loss attenuation factor

is high. A hierarchical cooperation scheme proposed by Özgür

et al. [3] employs local communication among neighboring

nodes to create virtual multiple-input multiple-output (MIMO)

connections between source-destination pairs, and such virtual

MIMO technique is then applied recursively to solve the local

communication problems by formulating new virtual MIMO

connections at a smaller scale. It was shown in [3] that, with

perfect channel state information at the receivers, the maximal

sum rate CN can scale as O(N1−ǫ) for any ǫ > 0 in dense

This material is based upon work supported by the Air Force Office of
Scientific Research (AFOSR) under award No. FA9550-13-1-0023, and by
the MIT Wireless Center. The work of S. Shamai has been supported by the
European Union’s Horizon 2020 Research And Innovation Programme, grant
agreement no. 694630.

(I) (II) (III)s1

s1 s2s2

sMsM

d1

d1d2 d2

dM dM
Qs

Qs

Qd

Qd
H

Fig. 1. Virtual MIMO model: local communication among transmitters (I)
and among receivers (III) to facilitate the virtual MIMO transmission (II).

networks. This hierarchical cooperation scheme was later

refined in [4], [5] to maximize the achievable rate. However,

the cost of local communications, which grows exponentially

with the number of layers in the cooperation hierarchy, was

not fully explored in previous analysis [3]–[5]. For dense

networks, the number of nodes N cannot be too large to

ensure independent channels [6]–[8]. For extended networks,

the received signal to noise ratio (SNR) becomes inevitably

low and the channel knowledge can no longer be assumed

available for free, which hinders the feasibility of quantization

based joint detection in the distributed receivers [9]. Therefore

the number of nodes N cannot be too large either.

In this paper we first quantify the cost of local communi-

cation for the hierarchical virtual MIMO transmission without

imposing any limit on the total number of nodes N in the

network, and then discuss the consequence of imposing such

a constraint. We generalize the virtual MIMO model [3] to

accommodate flexible local collaboration among neighboring

nodes. As shown in Fig. 1, for each source-destination pair

(take s1 and d1 for example), the transmission is split into three

stages. In Stage I the source node s1 distributes its message

to all the neighboring nodes (s2, · · · , sM ), each of Qs bits,

via local communication, to form a virtual multiple-antenna

transmitter. In Stage II all the M nodes (s1, · · · , sM ) transmit

to all the M nodes in the destination cluster (d1, · · · , dM )

using the same channel (i.e., in the same time and frequency

resource block), and the transmission lasts a duration of one

time slot (i.e., one channel use)1. In Stage III all nodes in the

destination cluster first independently quantize their observa-

tion into Qd bits and then forward them to the destination

node via local communication. The destination node d1, after

1Any predefined time slot works here. For example, choosing one second as
the time unit will facilitate direct comparison of virtual MIMO transmission
rate [bits per second] and local cooperation message size Qs and Qd [bits].
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receiving all the quantized bits from its neighboring nodes

(d2, · · · , dM ) in the cluster, will perform joint detection to

retrieve the MQs bits sent by the source node s1. To focus on

the impact of local communication, we assume that the virtual

MIMO transmission in Stage II is capacity achieving in the

sense that we can recover the transmitted message successfully

if decoding is done based on the original observations (without

quantization) of all the receiving nodes in the cluster. The

virtual MIMO model in Fig. 1 nicely captures the essence

of multiple-cell cooperation [10], [11] in cellular networks,

where base stations are connected through finite-rate backhaul

and the user terminals are capable of communicating directly

with other users in its close vicinity.

II. SYSTEM MODEL

We inherit the grid topology from [3] such that there

are N nodes evenly distributed in a square and every node

wants to transmit the same amount data to a destination node

randomly chosen from the rest of the N−1 nodes. All the

transmissions are carried out in the same frequency band and

the aggregate throughput of all the N source-destination pairs,

CN , is referred as the sum rate. For a pair of transmit and

receive clusters at distance dst meters apart, the SNR for the

transmission between node i in the transmit cluster and node

j in the receive cluster is written as

SNRi,j = Pi(dst)d
−α
ij γi,jE[|hi,j |2] ≈ γ(dst), ∀i, j, (1)

where Pi(dst) is the transmit power of node i, dij is the actual

distance between node i in the transmit cluster and node j
in the receive cluster, and α≥2 is the attenuation factor. We

assume that all channels hi,j are i.i.d. with E[|hi,j |2]=1. All

other factors such as the noise power, antenna gains, and other

loss are modeled through γi,j , which has marginal variation.

The approximation in (1) is taken to ignore the minor variation

of SNR across different transmit-receive pairs as we are aiming

at the capacity scaling behavior with very large number of

nodes rather than the exact capacity.

Given two clusters each of M nodes at distance of dst
meters apart, the capacity of a K1×K2 MIMO channel be-

tween K1∈[1:M ] nodes in the transmit cluster and K2∈[1:M ]
nodes in the receive cluster, assuming full cooperation among

transmit/receive nodes, can be denoted as2 C(K1,K2, γ) [bits

per channel use]. Without specifying the expression of the

channel capacity C(K1,K2, γ), which is channel assumption

dependent, the following fact will be used in our analy-

sis: given any fixed K1 (resp. K2) ∈ [1:M ], the capacity

C(K1,K2, γ) is monotonically increasing and concave w.r.t.

K2 (resp. K1) if we ignore the continuity constraint.

The hierarchical cooperation protocol proposed in [3] rests

on a layered structure, where the local cooperation tasks of

Stage I and Stage III of an upper layer in the hierarchy

are treated as the communication problem to be solved by

the lower layer, which itself also consists of three stages

partitioned in the same fashion. Such recursion is applied

2The SNR γ depends on (M,dst), which is not highlighted here.
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Fig. 2. A cut SK1,K2
applied to the virtual MIMO setup puts K1 transmit

nodes (including the source node s1) on the left side of the cut and K2 receive
nodes (including the destination node d1) on the right side.

repeatedly until the communication task for the lower layer

becomes trivial or can be solved by local transmission. Our

analysis is bottom-up, from the lowest layer (only incurs local

transmission) to the highest layer (all nodes in the network are

included). Note that at each layer, the local communication

in Stage I (and Stage III) are carried out concurrently in all

clusters. In this paper we artificially ignore the inter-cluster

interference despite the fact that we do not resort to spatial

reuse. Such “ignorance” of interference rests on two key

observations: the power of inter-cluster interference can be

limited to a low level via power control as stated in [3]; the

penalty of spatial reuse can be greatly reduced by intelligent

scheduling mechanism [4], [5]. Therefore we do not expect our

results will change drastically should the residual interference

(after power control) be accounted into analysis.

III. RATE UPPER BOUNDS OF A VIRTUAL MIMO SESSION

For each source-destination pair, say s1→d1, the data trans-

mission takes three steps: s1 first transmits Qs bits each to

its M−1 neighbors via orthogonal channels; M×M virtual

MIMO transmission is performed for a duration of one time

slot (i.e., one channel use); each node in the receiving cluster

forward Qd bits to the destination node d1 via orthogonal

channels. Therefore, the amount of data that transmits from s1
to d1 can be upper bounded by the cut-set bounds illustrated

in Fig. 2. A cut for the virtual MIMO setup may put K1

transmit nodes (including s1) on the left side of the cut and

K2 receive nodes (including d1) on the right side. Since we

do not distinguish a node from its neighbors, it is the number

of nodes rather than their specific identity that matters. All

cuts that have K1 transmit nodes on its left side and K2

receive nodes on its right side will be denoted as cut SK1,K2 as

they will incur the same upper bound. For K1,K2=1, . . . ,M ,

the cut SK1,K2 incurs a constraint from the data transmission

via the K1×K2 MIMO channel, (M−K1) constraints of Qs

bits each from the orthogonal channels originated from s1,

and (M−K2) constraint of Qd bits each from the orthogonal

channels ended at d1. The corresponding upper bound on the

transmitted bits D from s1 to d1 can be written as

D ≤ 1 ∗ C(K1,K2, γ) + (M−K1)Qs + (M−K2)Qd [bits].

Since C(K1,K2, γ) is monotonically increasing and con-

cave, the minimum value of the above combined function is

2016 IEEE Information Theory Workshop (ITW)



obtained at its boundaries, which leads to the following cut-set

bound (after applying all the cuts)

D = min{C(M,M, γ), C(1, 1, γ)+(M−1)Qs+(M−1)Qd,

C(1,M, γ)+(M−1)Qs, C(M, 1, γ)+(M−1)Qd}, (2)

Furthermore, with per-antenna power constraint (in contrast to

the sum power constraint), we have

C(M, 1, γ)− C(1, 1, γ) ≤ C(M,M, γ)− C(1,M, γ),

C(1,M, γ)− C(1, 1, γ) ≤ C(M,M, γ)− C(M, 1, γ),
(3)

where the inequality is due to the fact that, when channel

knowledge is known at the receiver, larger capacity gain

can be obtained by increasing the degree-of-freedom than by

increasing the diversity order. To maximize the cut-set bound

in (2), we choose Qs and Qd such that

Qs ≥
C(M,M, γ)−C(1,M, γ)

M − 1
,

Qd ≥ C(M,M, γ)−C(M, 1, γ)

M − 1
,

(4)

which, together with the condition (3), implies that

C(1, 1, γ)+(M−1)Qs+(M−1)Qd ≥ C(M,M, γ).

Therefore, the cut-set bound (2) can now be written as

D ≤ C(M,M, γ). (5)

If the channels are i.i.d. Rayleigh fading with H = [hi,j ],
hi,j∼CN (0, 1), and the receive nodes have perfect channel

state information, the capacity C(M,M, γ) can be written as

C(M,M, γ) = E[log det(IM + γHH
†)] (6)

= E

[

M
∑

i=1

log(1+Mγλ2
i )

]

≃M

∫

log(1 +Mγx)f(x)dx,

where the first equality is from the MIMO capacity with per-

antenna power constraint, the second step is by rewriting the

capacity with singular values of the random matrix 1√
M
H ,

and the third step is due to that, for large M , the empirical

distribution of λ converges to a limiting density function

f(x) [12, (8.23)] as prescribed by the Random Matrix Theory.

For both Mγ ≫ 1 (e.g., dense networks) and Mγ ≪ 1 (e.g.,

extended networks), we have the following approximation

C(M,M, γ) ≃ M log(1 +Mγ).

When M is large, we can write C(1,M, γ) and C(M, 1, γ) as

C(M, 1, γ) = E[log(1 + γ
∑

i |hi,j |2)] ≃ log(1 +Mγ), (7)

C(1,M, γ) = E[log(1 + γ
∑

j |hi,j |2)] ≃ log(1 +Mγ), (8)

where the approximation is from the Law of Large Num-

bers for large M . Note that all the capacities C(1,M, γ),
C(M, 1, γ), and C(M,M, γ) grow with M if the SNR γ does

not change with M , then the requirement of local communi-

cation Qs and Qd as stated in (4) will not be satisfied as M
scales up. If we instead allocate power such that Mγ(dst)=γ0
is a constant, the condition (4) always hold and we can rewrite

the condition (for both γ0≫1 and γ0≪1 ) as

Qs & log(1 + γ0), Qd & log(1 + γ0). (9)

IV. AGGREGATE THROUGHPUT UNDER HIERARCHICAL

COOPERATION PROTOCOL

By choosing power allocation such that Mγ(dst)=γ0>0 as

discussed in Sec. III, the aggregate throughput C(M,M, γ) in

(6) can be written as M
∫

log(1+γ0x)f(x)dx=MR∗, where

R∗ ,
∫

log(1 + γ0x)f(x)dx ≤ log(1 + γ0).

In the high SNR regime we have R∗≃ log(1+γ0)− log(e) and

the requirement in (9) becomes

Qs & R∗ + log(e), Qd & R∗ + log(e). (10)

In the low SNR regime we have R∗ ≃ log(1 + γ0) and the

requirement in (9) becomes

Qs & R∗, Qd & R∗. (11)

A. How Much Time Is Required in the Hierarchical Protocol

Assume there exists a scheme that can support N0 source-

destination pairs at an aggregate throughput C0=
1
S0
N b0

0 within

a cluster of N0 nodes, where S0>0 and b0≥0 are two

parameters depending on the communication scheme.

1) Layer ℓ=1: Set the cluster size M1=N0. Each source

node within a cluster needs to transmit Qs bits to the rest

of (M1−1) nodes within the cluster, resulting in M1(M1−1)
transmission sessions each of Qs bits. Using the transmission

scheme from layer ℓ=0, it takes

(M1−1)M1Qs

C0
=

(M1−1)M1Qs

N b0
0 /S0

≃ S0QsM
2−b0
1

time slots (channel use) to carry out the message exchange

within each cluster. In Stage II there are N1 sessions, each

corresponding to a M1 ×M1 virtual MIMO transmission that

lasts for one time slot. Therefore Stage II takes N1 time slots.

In Stage III, a destination node receives Qd bits from each

of its M1−1 neighbors, and on average every node inside the

cluster will be a destination node, which results in M1(M1−1)
sessions each of Qd bits. Using the transmission scheme

from layer ℓ=0 it takes (M1−1)M1Qd/C0≃S0QdM
2−b0
1

time slots. The aggregate throughput at layer ℓ=1 is therefore

C1≃
N1M1R

∗

N1+S0(Qs+Qd)M
2−b0
1

=
R∗N

1
2−b0
1

1+S0(Qs+Qd)
=
N b1

1

S1
, (12)

where the second step is obtained by choosing N1=M2−b0
1

and the last step is obtained by setting

b1=
1

2− b0
, S1=S0(

Qs +Qd

R∗ ) +
1

R∗ . (13)

2) Layer ℓ=2: Set M2=N1. In Stage I each source node

transmits Qs bits to all the M2−1 neighboring nodes and

every destination node receives Qd bits from each of its

M2−1 neighbors. The transmission scheme developed at layer

ℓ=1, whose rate is C1 as in (12), is used to accomplish

the transmission tasks of Stage I & III. Hence Stage I takes

M2(M2−1)Qs/C1 ≃ S1QsM
2−b1
2 time slots and Stage III

takes about S1QdM
2−b1
2 slots, whereas Stage II takes N2 time
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slots, one for each source node. The aggregate throughput at

layer ℓ=2 is

C2≃
N2M2R

∗

N2+S1(Qs+Qd)M
2−b1
2

=
R∗N

1
2−b1
2

1+S1(Qs+Qd)
=
N b2

2

S2
,

where the second step is by choosing N2=M2−b1
2 , and

b2 =
1

2− b1
, S2=S1(

Qs +Qd

R∗ ) +
1

R∗ . (14)

3) Layer ℓ>2: Assume at layer (ℓ−1) we have

Nℓ−1 = M
2−bℓ−2

ℓ−1 , Cℓ−1 =
1

Sℓ−1
N

bℓ−1

ℓ−1 , (15)

bℓ−1 =
1

2− bℓ−2
, Sℓ−1 = Sℓ−2(

Qs +Qd

R∗ ) +
1

R∗ . (16)

Setting Mℓ=Nℓ−1, applying the layer (ℓ−1) scheme in the

Stage I and Stage III of layer ℓ, and resorting to the Mℓ×Mℓ

virtual MIMO transmission in Stage II, we have

Cℓ≃
NℓMℓR

∗

Nℓ+Sℓ−1(Qs+Qd)M
2−bℓ−1

ℓ

=
R∗N

1
2−bℓ−1

ℓ

1+Sℓ−1(Qs+Qd)
=
N bℓ

ℓ

Sℓ
,

where the second step is by choosing Nℓ=M
2−bℓ−1

ℓ and

bℓ =
1

2− bℓ−1
, Sℓ = Sℓ−1(

Qs +Qd

R∗ ) +
1

R∗ . (17)

B. Aggregate Throughput (Sum Capacity)

Given b0∈[0, 1) and S0>0, bℓ and Sℓ can be determined

explicitly for all ℓ = 1, 2, 3, . . . , as follows

bℓ =
ℓ− (ℓ−1)b0
(ℓ+1)− ℓb0

, (18)

Sℓ = (
Qs+Qd

R∗ )ℓ(S0+
1

Qs+Qd−R∗ )−
1

Qs+Qd−R∗ , (19)

where bℓ is determined by observation and induction, whereas

Sℓ is determined by the fact that

Sℓ +
1

Qs +Qd −R∗ = (
Qs+Qd

R∗ )(Sℓ−1 +
1

Qs +Qd −R∗ ).

Therefore we have

Nℓ = M
1/bℓ
ℓ = N

1/bℓ
ℓ−1 = N

1/(
∏ℓ

i=1 bi)
0 = N

(ℓ+1)−ℓb0
0 , (20)

Mℓ = Nℓ−1 = N
ℓ−(ℓ−1)b0
0 , (21)

and the aggregate throughput (i.e., sum rate) Cℓ is given by

Cℓ =
N bℓ

ℓ

Sℓ
=

N
ℓ−(ℓ−1)b0
0

(Qs+Qd

R∗
)ℓ(S0+

1
Qs+Qd−R∗

)− 1
Qs+Qd−R∗

, (22)

where the last step is obtained by applying (18), (19) and (20).

V. CAPACITY SCALING UNDER VARIOUS CONSTRAINTS

A. When the Total Number of Nodes N is Unbounded

When the total number of nodes N is unbounded, we can

choose N0 and ℓ independently to scale up N .

1) If we fix N0 and let ℓ→∞: We can rewrite (22) as

Cℓ≃
N

b0+ℓ(1−b0)−ℓ logN0
(
Qs+Qd

R∗ )

0

S0 +
1

Qs+Qd−R∗

=
C0N

βℓ

ℓ

1+ 1
S0(Qs+Qd−R∗)

, (23)

where C0=N b0
0 /S0 is the rate at which local message change

can be performed at layer ℓ=0 as defined at the beginning of

Sec. IV-A. The scaling factor βℓ in (23) is given by

βℓ = 1− logN0
(Qs+Qd

R∗
)

1− b0
−
1− 1

(1−b0)
logN0

(Qs+Qd

R∗
)

ℓ(1− b0) + 1
. (24)

As ℓ→∞, the scaling factor βℓ increases monotonically to

β∞ , 1− logN0
(Qs+Qd

R∗
)

1− b0
= 1− log

N
1−b0
0

(
Qs +Qd

R∗ ). (25)

Since we have Qs ≥ R∗ and Qd ≥ R∗ as stated in (10)

and (11), the penalty term on the scaling factor β∞ is not

negligible for b0 ∈ [0, 1) with a fixed N0.

2) If we fix ℓ and let N0 grows: From [1] we know that

C0 ≤ O(
√
N0) if the optimal multi-hop strategy is used

for message exchange in the initial cluster. We can therefore

rewrite (22) (setting b0=1/2 and S0=1) as

Cℓ ≃
N

ℓ−(ℓ−1)/2
0

(Qs+Qd

R∗
)ℓ(1+ 1

Qs+Qd−R∗
)
=

N
ℓ/2+1/2
ℓ/2+1

ℓ

(Qs+Qd

R∗
)ℓ(1+ 1

Qs+Qd−R∗
)

≃ (
Qs+Qd

R∗ )−ℓN
1− 1

ℓ+2

ℓ . (26)

Here the cost of local communication is not significant as long

as ℓ is not too large.

3) If both N0 and ℓ grow: Since β = ln(C)/ ln(N), where

N = N
ℓ(1−b0)+1
0 , C ≃ (

Qs+Qd

R∗ )−ℓN
ℓ(1−b0)+b0
0 ,

grow with N0 and ℓ, we take the partial derivatives of β w.r.t.

N0 and ℓ, relaxing the integer constraints, and set them to zero

to determine the relationship between N0 and ℓ as

N0 = (
Qs+Qd

R∗ )[ℓ(1−b0)+1]/(1−b0)
2

. (27)

The maximized β, possible only if (27) is met, is

β =
[ℓ(1− b0) + b0]

2 + b0(1− b0)

[ℓ(1− b0) + 1]2
, (28)

and the required total number of nodes N to sustain (28) is

N = (
Qs+Qd

R∗ )[ℓ(1−b0)+1]2/(1−b0)
2

. (29)

B. When N is Large but Fixed

Substituting (20) into (22), we have

C≃(
Qs+Qd

R∗ )−ℓN
ℓ−(ℓ−1)b0
(ℓ+1)−ℓb0 =(

Qs+Qd

R∗ )−ℓN
1+

b0−1

ℓ(1−b0)+1 , (30)

which prescribes the optimal ℓ (to maximize C) as

ℓ∗ =

√

ln(N)

ln(Qs+Qd

R∗
)
− 1

1− b0
, (31)
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Fig. 3. The maximized capacity scaling exponent β of (28) as a function of
the required total number of nodes N specified in (29).

and the corresponding optimal initial cluster size N∗
0 as

ln(N∗
0 ) =

ln(N)

ℓ∗(1− b0) + 1
=

√

ln(N) ln(Qs+Qd

R∗
)

1−b0
. (32)

The optimal “scaling” exponent can now be derived as

β∗ =
ln(C)

ln(N)
= 1− 2

√

ln(Qs+Qd

R∗
)

ln(N)
+

ln(Qs+Qd

R∗
)

(1− b0) ln(N)
. (33)

VI. NUMERICAL ILLUSTRATION

To have a quantitative sense of how local communication

cost may degrade the overall performance, in Fig. 3 we plot

the maximized capacity scaling exponent β stated in (28) as

a function of the required total number of nodes N specified

in (29). Since the local communication cost must satisfy the

constraints Qs ≥ R∗ and Qd ≥ R∗ to not hurt the virtual

MIMO capacity, we plot for two cases with Qs+Qd

R∗
= 2 and

Qs+Qd

R∗
= 3. The former represents an idealized power control

mechanism such that those constraints are always satisfied

with equality, and the latter puts up some margin to tolerate

rate mismatch. For the initial stage, b0 = 0 corresponds to the

situation with TDMA type of message exchanging methods

and b0 = 0.5 corresponds to the case where ideal multi-hop

routing is utilized. From Fig. 3 we can see that targeting at

a capacity scaling exponent β > 3
4 would require the total

number of nodes N > 1014 even for the case with ideal local

communication cost Qs+Qd

R∗
= 2.

In Fig. 4 we plot optimal capacity scaling exponent β∗

specified in (33) as a function of the total number of nodes

N , where we maximize the aggregate throughput CN for each

fixed N and ignore the integer constraint on ℓ and N0. From

Fig. 4 we can see that better message exchanging methods

at the initial stage (i.e., larger b0) helps to improve the sum

rate CN and hence also the scaling exponent β∗ (blue vs. red),

and more than “necessary” local communication cost Qs+Qd

severely degrades the overall performance. Since the idealized

case Qs+Qd

R∗
= 2 may requires sophisticated (if not impossible)

power control at every node on each stage, appropriate tradeoff
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Fig. 4. The optimal capacity scaling exponent β∗ of (33) with the aggregate
throughput CN maximized at each fixed N , ignoring the integer constraint on
ℓ and N0. More than necessary local communication cost Qs +Qd > 2R∗

severely degrades the sum rate CN hence also the scaling exponent β∗. Note
that the number of hierarchical layers ℓ∗ of (31), at which the sum rate is
maximized, is less than 5 even for networks consisting of N = 109 nodes.

between the local communication margin and power control

complexity is to be investigated. Note that for the range of

network size we have investigated, 103 ≤ N ≤ 109 as in

Fig. 4, the number of hierarchical layers ℓ∗ at which the sum

rate is maximized is very small (less than 5 even for N = 109).
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