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Abstract—This paper studies optimization of the minimum
mean square error (MMSE) in order to characterize the
structure of the least favorable prior distributions. In the first
part, the paper characterizes the local behavior of the MMSE
in terms of the input distribution and finds the directional
derivative of the MMSE at the distribution PX in the direction
of the distribution QX.

In the second part of the paper, the directional derivative
together with the theory of convex optimization is used to
characterize the structure of least favorable distributions. In
particular, under mild regularity conditions, it is shown that
the support of the least favorable distributions must necessarily
be very small and is contained in a nowhere dense set of
Lebesgue measure zero. The results of this paper produce both
sufficient and necessary conditions for optimality, do not rely
on Gaussian statistics assumptions, and are not sensitive to the
dimensionality of random vectors. The results are evaluated for
the univariate and multivariate random Gaussian cases, and
the Poisson case. Finally, as one of the applications, it is shown
how the results can be used to characterize the capacity of
Gaussian MIMO channels with an amplitude constraint.

I. INTRODUCTION

The minimum mean square error (MMSE) in estimating
an input random vector X ∈ Rn from a noisy observa-
tion/output Y ∈ Rk is defined as

mmse(X|Y) , inf
f(·):f is measurable

E
[
‖X− f(Y)‖2

]
. (1)

In this paper we study the problem of maximizing the
MMSE in (1) over the set of input distributions on X for a
fixed transition distribution PY|X. Specifically, we will work
with the following two sets: 1) the set of distributions with
a compact support; and 2) the set of distributions with finite
generalized moments (e.g., second moment, third absolute
moment, logarithmic moments, etc.). The distributions that
achieve the worst-case MMSE (i.e., maximize the MMSE)
are called least favorable prior distributions.

The problem of finding least favorable prior distributions
is interesting from both estimation theoretic and informa-
tion theoretic points of view. Firstly, in estimation theory,
maximization of the MMSE over a set of distributions with
compact support is directly relate to the problem of charac-
terizing a minimax estimator [1]. Specifically, a conditional
expectation (optimal Bayes estimator) evaluated with a least
favorable prior distribution is also a minimax estimator.

Secondly, in information theory, in view of the I-MMSE
relationship [2] that connects the MMSE and the mutual
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information for the case of additive Gaussian noise, the least
favorable distributions are often also capacity achieving dis-
tributions (i.e., maximize mutual information). For example,
in [3] such an approach was used to characterize the capacity
achieving distribution of a Gaussian noise channel with a
small (but nonvanishing) input amplitude constraint.

Unlike previous works, the approach taken in this work
is based on the theory of convex optimization and allows us
to produce systematic and general results. For instance, our
approach produces both sufficient and necessary conditions
for optimality, does not rely on the assumption of Gaussian
statistics, and is not sensitive to the dimensionality of
random vectors X and Y. Our approach also parallels the
variational approach, used in information theory [4], [5], for
finding capacity achieving distributions.

A. Past Work

The theory of finding least favorable prior distributions
has received considerable attention under the assumption of
univariate and/or Gaussian statistics. For the univariate case
under some mild condition, Ghosh in [6] has shown that,
with the support constraint on the input, the least favorable
priors are discrete with finitely many points. However, as
was pointed out in [6] it is not clear how to generalize the
argument to the multivariate case. In contrast, the approach
taken in this paper is insensitive to the dimensionality.

In [7] for the Gaussian case, capitalizing on the result
of Ghosh, the authors demonstrated necessary and sufficient
conditions for the optimality of a two point prior distribution.
In addition, the authors in [7] also provided a sufficient
condition for the optimality of a three point prior. In contrast,
the methodology used in this paper produces both sufficient
and necessary conditions that can be tested against any N -
point prior.

For the multivariate Gaussian case, with a sufficiently
small ball constraint, in [1] it has been shown that the least
favorable prior is distributed on the boundary of the ball.
For a comprehensive overview of the minimax estimation of
a bounded mean the interested reader is referred to [8] and
references therein.

B. Outline and Paper Contributions
Our contributions are as follows. In Section II we review

important properties of the MMSE needed in our analysis. In
Section III we characterize the local behavior of the MMSE
in terms of the input distribution and find the directional
derivative of the MMSE functional at the distribution PX in
the direction of the distribution QX.

In Section IV we apply the theory of convex optimization
to maximize the MMSE. In Section IV-A and Section IV-B
we present required mathematical tools such as theorems
from convex optimization and theorems of analytic func-
tions. In Section IV-C we look at the case of the compact
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support constraint: Theorem 6 shows that a least favor-
able input distribution exists for an arbitrary PY|X and
derives necessary and sufficient conditions for its optimality;
Proposition 1, under some mild conditions, characterizes the
structure of the support of least favorable prior distributions
and shows that the support must be a nowhere dense set
of Lebesgue measure zero; Proposition 3 and Proposition 4
look at univariate and multivariate Gaussian noise cases and
recover and expand on some known results; Proposition 5
shows how our results can be applied to characterize the
capacity of MIMO channels. Surprisingly, Proposition 5 also
characterizes the capacity of the MIMO amplitude channel
in a regime where the number of antennas approaches
infinity; and Proposition 6 considers the Poisson noise case.
Section IV-F, looks at least favorable priors under the
generalized moment constraints. Section V concludes the
paper.

Due to space limitations, some of the proofs are omitted
and can be found in an extended version of this paper [9].

C. Notation
Throughout the paper we adopt the following notational

conventions: Deterministic scalar quantities are denoted by
lowercase letters and deterministic vector quantities are
denoted by lowercase bold letters; matrices are denoted by
bold uppercase letters; random variables are denoted by
uppercase letters and random vectors are denoted by bold
uppercase letters; and we denote an n-dimensional ball of
radius R centered at 0 as B0(R) , {x ∈ Rn : ‖x‖ ≤ R}.
For a random vector X with distribution PX we define the
expected value as E[X] =

∫
xdPX(x) when we need to

emphasize that X is distributed according to PX we use the
notation EPX

[X]. We say that a random vector Y ∈ Lp

if E[‖Y‖p] < ∞; we denote the set of all probability
distributions on S ⊂ Rn as F∞(S); and a point x ∈ Rn
is said to be a point of increase of a distribution PX, if for
any open subset O ⊂ Rn containing x, PX(O) > 0. We
denote the set of points of increase of PX as E(PX) ⊆ Rn.
Observe that PX(E(PX)) = 1. In fact, E(PX) is the minimal
closed subset of Rn whose probability is 1.

II. THE MMSE

In this section we review some important properties of the
MMSE.

A. Fundamental Theorems of MMSE Estimation

Theorem 1. (Fundamental Theorems of MMSE Estimation.)

1) (Pythagorean Theorem.) For any f : Rk → Rn

E
[
‖X− E[X|Y]‖2

]
= E

[
‖X− f(Y)‖2

]
− E

[
‖f(Y)− E[X|Y]‖2

]
. (2a)

2) (Conditional Expectation is the Optimal Estimator.)

mmse(X|Y) = inf
f(·):f is measurable

E
[
‖X− f(Y)‖2

]
= E

[
‖X− E[X|Y]‖2

]
. (2b)

B. The MMSE as a Functional
Throughout the paper we will treat the MMSE as an

operator (or a functional) on the space of joint distributions
PXY. To emphasize that the MMSE is a function of the pair
(PX, PY|X) we use the following notation:

mmse(PX, PY|X) , mmse(X|Y). (3)

Continuity of the MMSE will play a key role in our
analysis and, therefore, we need the following definitions.

Definition 1. A function f : F 7→ R is said to be upper-
semicontinuous (resp. lower-semicont.) at a point x0 if

lim sup
x→x0

f(x) ≤ f(x0)

(
resp. lim inf

x→x0

f(x) ≥ f(x0)

)
.

A function f is continuous at x0 if it is both upper and lower
semicontinuous at x0.

Next, we summarize operator properties of the MMSE.
Theorem 2. (Operator Properties of the MMSE [10].)
1) (Concavity.) PXY 7→ mmse(PX, PY|X) is a concave

functional of PXY. Therefore, the MMSE is also concave
in PX (resp. PY|X) if PY|X (resp. PX) is fixed.

2) (Upper Semicontinuity.)
• PXY 7→ mmse(PX, PY|X) is upper semicontinuous over
M(S) where S ⊆ Rn is bounded and

M(S) , {PXY : ∀PY|X and PX ∈ F∞(S)}.

• Let Y = X + N where E[‖N‖2] < ∞; then PX 7→
mmse(PX, PY|X) is upper semicontinuous.

3) (Continuity.) Let Y = X+N where N has a continuous
and bounded density and E[‖N‖2] < ∞; then PX 7→
mmse(PX, PY|X) is continuous.

III. LOCAL BEHAVIOR OF THE MMSE IN TERMS OF THE
INPUT DISTRIBUTION

Let PX be the distribution of X. In this section, we study
the local behavior of the MMSE as a function of PX.
Definition 2. (The Gâteaux Derivative.) Let F be a convex
topological space. For any two distributions P ∈ F and
Q ∈ F we define the Gâteaux derivative of a function g :
F → R at P in the direction of Q as

∆Qg(P ) , lim
λ→0

g ((1− λ)P + λQ)− g (P )

λ
. (4)

The Gâteaux derivative is the generalization of a concept
of directional derivative and is an important optimization
tool. The following theorem finds the Gâteaux derivative of
the MMSE with respect to the input distribution.
Theorem 3. (The Gâteaux Derivative of the MMSE.) For
any PX, QX and PY|X we have that

∆QX
mmse(PX, PY|X)

= mmseQX
(PX, PY|X)−mmse(PX, PY|X), (5a)

where

mmseQX
(PX, PY|X) , EQX

[
‖X− EPX

[X|Y]‖2
]
. (5b)

Proof. Let Pλ = (1− λ)PX + λQX. From the definition of
the Gâteaux derivative in (4) we have to consider
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mmse(Pλ, PY|X)−mmse(PX, PY|X)

= EPλ
[
‖X− EPλ [X|Y]‖2

]
− EPX

[
‖X− EPX

[X|Y]‖2
]

a)
= EPλ

[
‖X− EPX

[X|Y]‖2
]
− EPX

[
‖X− EPX

[X|Y]‖2
]

− EPλ [‖EPX
[X|Y]− EPλ [X|Y]‖2]

b)
= (1− λ)EPX

[‖X− EPX
[X|Y]‖2]

+ λEQX
[‖X− EPX

[X|Y]‖2]− EPX
[‖X− EPX

[X|Y]‖2]

− EPλ [‖EPX
[X|Y]− EPλ [X|Y]‖2]

= λEQX
[‖X− EPX

[X|Y]‖2]− λEPX
[‖X− EPX

[X|Y]‖2]

− EPλ
[
‖EPX

[X|Y]− EPλ [X|Y]‖2
]
, (6)

where the steps follow from: a) using the Pythagorean
identity in (2a); and b) using the property that the expected
value is a linear operator on a set of distributions. Next by
dividing (6) by λ and taking λ→ 0 we have that

∆QX
mmse(PX, PY|X)

= mmseQX
(PX, PY|X)−mmse(PX, PY|X)

− lim
λ→0

EPλ
[
‖EPX

[X|Y]− EPλ [X|Y]‖2
]

λ
. (7)

The proof that the limit in (7) is zero is delegate to [9].

IV. OPTIMIZATION OF THE MMSE
In this section we use the derivative found in Theorem 3 to

characterize distributions that maximize the MMSE. Unlike
previous approaches, the approach laid out in this paper
is systematic and produces both sufficient and necessary
conditions for optimality. Moreover, the approach is fairly
general and works for a large class of channels PY|X. We
begin by introducing necessary mathematical tools.
A. Optimization Theorems

We will need the following optimization theorems.
Theorem 4. (Optimization Theorems [11].)
1) (Extreme Value Theorem.) For a compact topological

space F and an upper semicontinuous function f : F 7→
R

sup
F∈F

f(F ) = max
F∈F

f(F ). (8)

Moreover, the solution is unique if f is strictly concave.
2) (Necessary Condition for Optimality.) Let F be a convex

topological space and let f : F 7→ R have a Gâteaux
derivative ∆Qf(F ) as defined in (4). Suppose that F ? ∈
F is a maximizer of f , then

∆Qf(F ?) ≤ 0, ∀Q ∈ F . (9)

3) (Necessary and Sufficient Condition for Optimality.) The
condition in (9) is sufficient if in addition f is concave.

4) (KKT Conditions.) Let F be a convex topological space,
and let f : F 7→ R be a concave function on F and
g : F 7→ R a convex function on F . Assume there exists
a point F ∈ F such that g(F ) < 0. Let

µ = sup
F∈F and g(F )≤0

f(F ). (10)

Then, there is a constant λ ≥ 0 such that

µ = sup
F∈F

(f(F )− λg(F )) . (11)

Furthermore, if the supremum in (10) is achieved by F0,
it is achieved by F0 in (11) and λg(F0) = 0.

B. Analytic Functions and the Size of the Uniqueness Set
Part of our analysis will require identifying the sizes of

sets on which two analytic functions can agree without being
identical everywhere (i.e., uniqueness sets) for which the
following theorem will be used.
Theorem 5. (Identity Theorems [12].) Let X ⊂ Rn and let
f, g : X → R be two real-analytic functions on X that agree
on some set E ⊂ X . Then, f and g agree on X if one of the
following conditions is satisfied:
1) E is an open set;
2) E is a set of positive Lebesgue measure; or
3) n = 1 and E has a limit point in X .

C. Bounded Input: General Case

In this section we seek to find

sup
PX∈F∞(S)

mmse(PX, PY|X).

Theorem 6. For any PY|X and any compact S ⊂ Rn

sup
PX∈F∞(S)

mmse(PX, PY|X) = max
PX∈F∞(S)

mmse(PX, PY|X).

(12a)

Moreover, P ?X is an optimal input distribution in (12a) if and
only if for all QX ∈ F∞(S),

mmseQX
(P ?X, PY|X) ≤ mmse(P ?X, PY|X). (12b)

Proof. The proof of (12a) follows from the fact that PX 7→
mmse(PX, PY|X) is an upper semicontinuous function, as
shown in Theorem 2, using that F∞(S) is a sequentially
compact set, as shown in [9, Lemma 1], and applying
property 1) from Theorem 4. Finally, the statement in (12b)
follows from property 2) and property 3) in Theorem 4, and
the derivative expression for the MMSE in Theorem 3.

In this work we seek to make statements about the size of
the support of an optimal input distribution. Therefore, it is
convenient to re-write the condition in (12b) in an equivalent
form as conditions that involve statements about the support
of an optimal input distribution.
Proposition 1. P ?X is an optimal input distribution in (12a)
if and only if the following two conditions hold:
1) for all x ∈ S

E
[
‖X− EP?X [X|Y]‖2|X = x

]
≤ mmse(P ?X, PY|X); and

(13a)

2) for all x ∈ E(P ?X) ⊆ S

E
[
‖X− EP?X [X|Y]‖2|X = x

]
= mmse(P ?X, PY|X). (13b)

Definition 3. (Dense and Nowhere Dense Sets.)
• A set A ⊂ X is said to be dense in X if every element
x ∈ X either belongs to A or is a limit point of A.

• A set A ⊂ X is said to be nowhere dense if, for every
nonempty open set U ⊂ X , the intersection U ∩ A is not
dense in U .

Proposition 2. Suppose that the function

g(x) , E
[
‖X− EPX

[X|Y]‖2|X = x
]
, (14)
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is non-constant and real-analytic on S. Then, an optimal
input distribution in (12a) P ?X, satisfies the following:

• for S ⊂ Rn where n ≥ 1, E(P ?X) is a nowhere dense set
of Lebesgue measure zero; and

• for S ⊂ R, E(P ?X) has finite cardinality (i.e., an optimal
input distribution is discrete with finitely many points).

Proof. If P ?X is a maximizer in (12a), then by (13b)

g(x) = mmse(P ?X, PY|X),∀x ∈ E(P ?X). (15)

In other words, g(x) is constant on E(P ?X).
We first focus on the general case of n ≥ 1. Towards

a contradiction suppose that E(P ?X) ⊆ S is not a nowhere
dense set of S. Then there exists some open set O such
that O ∩ E(P ?X) is dense in O. Moreover, by (15) g(x) is
a constant on O ∩ E(P ?X). Since, g(x) is continuous and
O ∩ E(P ?X) is dense in O we have that g(x) is constant
on O by the definition of continuity. Finally, since O is an
open set of S by property 1 of Theorem 5 we have that
g(x) is constant on all of S. However, this contradicts our
assumption that g(x) is non-constant on S and, therefore,
E(P ?X) is a nowhere dense set.

The conclusion that E(P ?X) has Lebesgue measure zero
follows by assuming, towards a contradiction, that E(P ?X) is
a set of positive Lebesque measure. By (15) g(x) is constant
on E(P ?X) ⊂ S and using Theorem 5 we conclude that g(x)
must be constant on S.

The proof in the case of n = 1 is relegated to [9].

The result of Proposition 2 for n > 1 show that the
support of an optimal input distribution is small in two ways.
First, the support is small in measure theoretic terms and
has zero Lebesgue measure. Second, the support is small
topologically and is a nowhere dense which loosely speaking
implies that the elements of the support are not tightly
clustered. An interesting question, which we will address
shortly, is whether the size of the support is also small when
measured in terms of cardinality. For example, for n = 1
we already know that this is the case and the support has
finite cardinality. It turns out that in general, for n > 1, the
support of an optimal distribution might not be of finite or
even countably infinite cardinality.

Next, we show that the conditions on g(x) in Proposition 2
are not very restrictive and work for a variety of settings
(e.g., Gaussian noise).
Lemma 1. Let PY|X be such that Y = X + Z and where
X and Z are independent, and suppose that the pdf of Z ∼
fZ(z) is a complex-analytic function on an open subset of
Cn that contains Rn. Moreover, assume that fZ(z) > 0 for
all z ∈ R. Then, g(x) defined in (14) is a real analytic
function on Rn.

D. Bounded Input: Gaussian Noise Case
This section looks at the case when PY|X is Gaussian.

Proposition 3. (Univariate Gaussian.) Let PY |X(y|x) =
N (x, 1); then for the optimization problem

max
PX∈F∞([−A,A])

mmse(PX , PY |X), (16)

we have the following:

• an optimal input distribution in (16) is discrete with finitely
many points. Moreover, the optimizing input distribution
is unique and symmetric;

• {±A} ⊆ E(P ?X) for every A ≥ 0; and
• {±A} = E(P ?X) if and only if A ≤ ĀB ≈ 1.05647.

For the multivariate case we have the following general-
ization of Proposition 3.

Proposition 4. (Multivariate Gaussian.) Let PY|X =

N (x, I) and let C(r) , {x ∈ Rn : ‖x‖ = r}. Then, for
the optimization problem

max
PX∈F∞(B0(R))

mmse(PX, PY|X), (17)

we have the following:
• the optimal input distribution P ?X is unique and spherically

symmetric. Moreover, E(P ?X) =
⋃N
i=1 C(ri), where N <

∞ for some {ri}N1 ;
• C(R) ⊆ E(P ?X) for every R ≥ 0; and
• C(R) = E(P ?X) if and only if R ≤ R̄ = Θ(

√
n).

Note that the result of Proposition 4 shows that an optimal
input distribution can be supported on the set C(R) which
is a nowhere dense set of Lebesgue measure zero. However,
note that the set C(R) does have an uncountably infinite
cardinality. Hence, for n > 1 the conclusion in Proposition 2
is not superfluous and in general cannot be strengthened,
and discrete inputs are in general not optimal for n > 1.
However, do note that the number of possible spheres that
make up E(P ?X) is finite. In other words, the magnitude ‖X‖
is a discrete random variable with finitely many points.

In Proposition 4, the constant that determines R̄ can be
difficult to evaluate, but it can be shown that it is sufficient to
take R̄ ≤

√
n. Proposition 4 can be used to find the capacity

of a MIMO channel given an amplitude constraint.
Proposition 5. (Amplitude Constrained MIMO.) For

max
X:X∈B0(R)

I(X;X + Z), where Z ∼ N (0, I), (18)

the optimal input distribution is uniform on the set C(R) =
{x ∈ Rn : ‖x‖ = R} (i.e., boundary of the ball) if R ≤

√
n.

Note that Proposition 5 establishes capacity in the small
amplitude regime (i.e., R ≤

√
n) in the massive MIMO case

(i.e., the number of antennas approaches infinity) [13]. A
similar argument can also be applied to the MIMO wiretap
channel.

E. Bounded Input: Poisson Noise Case
The Poisson random transformation is governed by the

following conditional distribution:

pY |X(y|x) =
1

y!
xye−x, x ≥ 0, y = 0, 1, ..., (19)

where we use the convention that 00 = 1. It is well known
that the conditional expectation is given by

E[X|Y = y] =
(y + 1)pY (y + 1;PX)

pY (y;PX)
, y = 0, 1, ..., (20)

where pY (y;PX) is the marginal probability mass function
(pmf) of Y induced by input distribution PX .
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The following theorem characterizes the structure of a
least favorable prior for the Poisson case.

Proposition 6. (Poisson Noise Case.) Let PY |X be as in
(19). Then, for the optimization problem

max
PX∈F∞([0,A])

mmse(PX , PY |X), (21)

we have the following:
• an optimal input distribution in (21) is discrete with finitely

many points; and
• E(P ?X) = {0, A} if and only if A ≤ Ā ≈ 0.9129 where Ā

is the solution of the equation 2e
x
2 (x− 1) + xex − 2 = 0

for x > 0. Moreover, the optimal probability assignment
is given by P ?X [X = 0] = 1

1+e
A
2

, and the MMSE is given
by

mmse(P ?X , PY |X) = A2 (P ?X [X = 0])
2
.

F. Generalized Input Moment Constraints

In this section we seek to find

sup
PX∈F(f ;α)

mmse(PX, PY|X) (22a)

where F(f ;α) = {PX : EPX
[f(X)] ≤ α} . (22b)

for some given f : Rn → R independent of PX. Observe
that the set F(f ;α) is convex. In addition, we assume that
f(X) is a non-negative monotonically increasing function
of ‖X‖ which by the Markov inequality and Prokhorov
theorem implies that F(f ;α) is a sequentially compact set.
An example of an f(·) that satisfies such a condition is
f(X) = ‖X‖r for any r > 0.
Theorem 7. Suppose the MMSE in the optimization problem
in (22) is an upper semicontinuous function. Then, the
supremum in (22a) is attainable by some input distribution
P ?X. Moreover, P ?X is optimal if and only if the following
two conditions hold:
1) for all x ∈ Rn

E
[
‖X− EP?X [X|Y]‖2|X = x

]
− λ (f(x)− α)

≤ mmse(P ?X, PY|X); and

2) for all x ∈ E(P ?X) ⊆ Rn

E
[
‖X− EP?X [X|Y]‖2|X = x

]
− λ (f(x)− α)

= mmse(P ?X, PY|X).

Next, we look at the special case of multivariate Gaussian.

Proposition 7. Let PY|X = N (x, I). Then for the optimiza-
tion problem in (22) we have the following:
• the optimal input distribution is unique and symmetric.
• if f(x) = ω

(
‖x‖2

)
, then the support of the optimal input

distribution is bounded (i.e., E(P ?X) ⊆ B0(R) for some
R > 0);

• if f(x) = ‖x‖2, then the optimal input distribution is
given by X ∼ N (0, αI); and

• if f(x) = o(‖x‖2), then the support of the optimal input
distribution is unbounded (i.e., there is no R ≥ 0 such
that E(P ?X) ⊆ B0(R) ).
It is important to point out that the proof of the case

f(x) = o(‖x‖2) in Proposition 7 does not require the

assumption that PY|X is Gaussian, and holds under the
general assumptions of Theorem 7.

Observe that according to Proposition 7, in the case of
f(x) = ω

(
‖x‖2

)
, the optimal distribution has a bounded

support and, therefore, from Proposition 2 we have that the
support is a nowhere dense set of Lebesgue measure zero.

V. CONCLUSION

In this work we have examined the structure of the support
of least favorable prior distributions. We have shown that,
under some mild conditions, the support of a least favorable
distribution must be a nowhere dense set of Lebesgue mea-
sure zero. Our results also produce necessary and sufficient
conditions for optimality and, in most cases, can be easily
evaluated as has been demonstrated by the Gaussian and
the Poisson examples. An interesting future direction is to
consider the problem where for λ ≥ 0 we seek to maximize

max
PX

(
mmse(PX, PY|X)− λmmse(PX, QY|X)

)
.

For example, taking PY|X = N (Hx, I) and QY|X =
N (H0x, I) might potentially generalize the single crossing
point property, shown in [14] and discussed in great detail
in [15] and [16].
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