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Abstract—In this paper, the finite-order autoregressive moving
average (ARMA) Gaussian wiretap channel with noiseless causal
feedback is considered, in which an eavesdropper receives noisy
observations of the signals in both forward and feedback chan-
nels. It is shown that the generalized Schalkwijk-Kailath scheme,
a capacity-achieving coding scheme for the feedback Gaussian
channel, achieves the same maximum rate for the same channel
with the presence of an eavesdropper. Therefore, the secrecy
capacity is equal to the feedback capacity without the presence
of an eavesdropper for the feedback channel. Furthermore, the
results are extended to the additive white Gaussian noise (AWGN)
channel with quantized feedback. It is shown that the proposed
coding scheme achieves a positive secrecy rate. As the amplitude
of the quantization noise decreases to zero, the secrecy rate
converges to the capacity of the AWGN channel.

I. INTRODUCTION

Secure communication over feedback channels has recently
attracted considerable attention. Substantial progress has been
made towards understanding this type of channels. In partic-
ular, although the feedback may not increase the capacity of
open-loop additive white Gaussian noise (AWGN) channels,
[1]–[7] showed that feedback can increase the secrecy capacity
by sharing a secret key between legitimate users. For instance,
[1] and [2] showed the achievement of a positive secrecy rate
by using noiseless feedback even when the secrecy capacity
of the feed-forward channel is zero. Moreover, [8] proved the
usefulness of noisy feedback for a class of full-duplex two-way
wiretap channels. Furthermore, [9] presented an achievable
scheme for the wiretap channel with generalized feedback,
which is a generalization and unification of several relevant
previous results in the literature. Very recently, [10] proposed
an improved feedback coding scheme for the wiretap channel
with noiseless feedback, which was shown to outperform the
existing ones in the literature. A more comprehensive review
of the previous work can be found in the extended version of
this paper [11].

However, it is noteworthy that most of the aforementioned
results considered memoryless wiretap channels with only
a few exceptions such as [12], which studied the memory
Gaussian channel (i.e., the ARMA(1) Gaussian channel) with
feedback under an eavesdropping attack, and showed that
the feedback secrecy capacity equals the standard feedback

capacity without an eavesdropper. In this paper, we make two
major contributions.

1) We generalize the results in [12] to the finite-order
ARMA Gaussian wiretap channel with feedback. The
construction and analysis of the feedback scheme are
much more involved here for the finite-order ARMA
channel than that in [12]. In particular, we show that the
feedback secrecy capacity Csc of the finite-order ARMA
Gaussian channel equals the feedback capacity C f b of
such a channel. Namely, Csc =C f b.

2) We further study the AWGN channel with quantized
feedback, which is a more realistic channel model for the
feedback link. In this case, the coding scheme in [12] for
ARMA(1) is not applicable any more. We thus propose a
new coding scheme and show that the proposed coding
scheme provides non-trivial positive secrecy rates and
achieves the feedback capacity of the AWGN channel
as the amplitude of the quantization noise vanishes to
zero.

The rest of the paper is organized as follows. In Sections
II and III, we introduce the system model and the preliminary
results, respectively. Section IV presents the main results of
our paper. Finally, we conclude the paper in Section V.

Notation: Uppercase and the corresponding lowercase let-
ters (e.g.,Y,Z,y,z) denote random variables and their realiza-
tions, respectively. We use log to denote the logarithm with
base 2, and 0log0 = 0. We use x′ to denote the transpose of
a vector or matrix x.

II. SYSTEM MODEL

In this section, we present the mathematical system model.
First of all, we consider a discrete-time Gaussian channel with
noiseless feedback (See Fig. 1). The additive Gaussian channel
is modeled as

y(k) = u(k)+w(k), k = 1,2, · · · , (1)

where the Gaussian noise {w(k)}∞
k=1 is assumed to be station-

ary with power spectrum density Sw(e jθ ) for ∀θ ∈ [−π,π).
Unless the contrary is explicitly stated, “stationary” without
specification refers to stationary in wide sense. Moreover, we
assume that the power spectral density satisfies the Paley-
Wiener condition 1

2π

∫
π

−π
| logSw(e jθ )|dθ < ∞.
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Fig. 1. Finite-order ARMA Gaussian wiretap channel with feedback.

Let RH 2 be the set of stable and proper rational filters in
Hardy space H2.

Assumption 1. (Finite-order ARMA Gaussian Channel) In
this paper, noise w is assumed to be the output of a finite-
dimensional linear time invariant (LTI) minimum-phase stable
system H ∈RH 2, driven by white Gaussian noise with zero
mean and unit variance. The power spectral density (PSD) of
w is colored (nonwhite), bounded away from zero and has a
canonical spectral factorization given by Sw(e jθ ) = |H(e jθ )|2.

As shown in Fig.1, the feedback wiretap channel of interest
includes a forward channel from Alice to Bob as described
by (1), a causal noiseless feedback ŷ from Bob to Alice, and
three noisy observation channels to the eavesdropper Eve. Note
that a classical wiretap channel model can be recovered if
the eavesdropper’s channel inputs from u and ŷ are removed.
In this paper, we assume that the eavesdropper is powerful
and can access three inputs 1. The noisy wiretap channels are
modeled as

z(k) =u(k)+ v(k),

z̃(k) =y(k)+ ṽ(k),

ẑ(k) =ŷ(k)+ v̂(k), k = 1,2, · · · .

The additive noises v, ṽ and v̂ are assumed to be arbitrarily
finite-memory processes, i.e.,

p(v(k)|vk−1
1 ) = p(v(k)|vk−1

k−d), k ≥ d,

p(ṽ(k)|ṽk−1
1 ) = p(ṽ(k)|ṽk−1

k−d̃
), k ≥ d̃,

p(v̂(k)|v̂k−1
1 ) = p(v̂(k)|v̂k−1

k−d̂
), k ≥ d̂,

(2)

where d, d̃ and d̂ respectively represent the sizes of the
finite memories and the notation vb

a represents a sequence
{va,va+1, · · · ,vb} in a compact form. In this paper, we assume
these noises have strictly positive and bounded variance for all
k. But they are not necessarily uncorrelated.

We specify a sequence of (n,2nRs) channel codes with an
achievable secrecy rate Rs as follows. We denote the message
index by xu0, which is uniformly distributed over the set
{1,2,3, · · · ,2nRs}. The encoding process ui(xu0, ŷi−1) at Alice
satisfies the average transmit power constraint P, where ŷi−1 =

1Note that in [12] access to only the channel input u and channel output
y is considered. Based on the generalized results in this paper, however, the
results in [12] with three noisy observation channels to the eavesdropper as
assumed in this paper still hold.

{ŷ0, ŷ1, · · · , ŷi−1} (ŷ0 = /0) for i = 1,2, · · · ,n, and u1(xu0, ŷ0) =
u1(xu0). Bob decodes the message as x̂u0 following a decoding
function g : yn → {1,2, · · · ,2nRs} with an error probability
satisfying P(n)

e = 1
2nRs ∑

2nRs
xu0=1 p(xu0 6= g(yn)|xu0) ≤ εn, where

limn→∞ εn = 0. Meanwhile, the information received by Eve
should asymptotically vanish, i.e., limn→∞

1
n I(xu0;zn

1, z̃
n
1, ẑ

n
1) =

0. The objective of secure communications is to send xu0 to
Bob at as high a rate Rs as possible. The secrecy capacity
Csc is defined as the supremium of all achievable rates Rs.
Mathematically,

Csc = sup
feasible coding schemes

Rs

s.t. lim
n→∞

1
n

I(xu0;zn
1, z̃

n
1, ẑ

n
1) = 0,

(3)

where the argument “feasible coding schemes” is referred to
as all feedback codes that satisfy the secrecy requirements and
the power constraint. Note that the feedback capacity (without
the secrecy constraint) from Alice to Bob, denoted as C f b, can
be recovered by removing the secrecy constraint. This implies
Csc ≤C f b.

III. PRELIMINARIES OF THE FEEDBACK CAPACITY AND
CAPACITY-ACHIEVING CODING SCHEME

In this section, we present a characterization of the feedback
capacity C f b and the construction of C f b-achieving feedback
codes without the presence of an eavesdropper. The materials
here are useful for us to further investigate the channel model
with an eavesdropper.

A. Feedback Capacity C f b Revisited

Firstly, we present a feedback capacity characterization for
the Gaussian channel under Assumption 1. As proved in [13],
the feedback capacity from Alice to Bob for such a channel
with the average power budget P can be characterized by

C f b =max
Q

1
2π

∫
π

−π

log |1+Q(eiθ )|dθ ,

s.t.
1

2π

∫
π

−π

|Q(e jθ )|2Sw(e jθ )dθ ≤ P,

Q ∈RH 2 is strictly causal.

(4)

Remark 1. Under Assumption 1, the optimal Q has no zeros
on the unit circle (Proposition 5.1 (ii) in [13]).

Since this optimization problem has an infinite dimensional
search space, except for the ARMA(1) Gaussian channels,
the solution Q(e jθ ) in an analytical form is unknown. One
recent result in [14] and [15] provides a numerical solution to
this problem, which can be efficiently solved by the standard
convex optimization tools. We refer the interested reader to
[14] and [15] for details.

In what follows, we describe, given an optimal Q in (4), how
to construct an implementable coding scheme that achieves the
feedback capacity from Alice to Bob.
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Fig. 2. Representation I: Decomposition of filter K into the feedback encoder
(Alice) and decoder (Bob). The eavesdropper channels are not included. The
z-transform is used to represent the dynamics of LTI systems.

B. C f b-achieving Feedback Coding Scheme

First of all, once an optimal Q is found for the above op-
timization, we can obtain a feedback filter K=−Q(1+Q)−1

stabilizing the channel within the prescribed input average
power budget (see [14] for proofs). Next, based on the transfer
function K, we construct an explicit feedback coding scheme
as follows, which is deterministic (time-invariant) and has
doubly exponentially decaying decoding error probability.

We first present controller K as an LTI single-input-single-
output (SISO) finite-dimensional discrete-time unstable system
with the following state-space model:

K :
[

xs(k+1)
xu(k+1)

]
=

[
As 0
0 Au

][
xs(k)
xu(k)

]
+

[
Bs
Bu

]
y(k)

u(k) =
[
Cs Cu

][xs(k)
xu(k)

]
.

(5)

Based on Remark 1, we assume that the eigenvalues of Au
are strictly outside the unit disc while the eigenvalues of As
are strictly inside the unit disc. Without loss of generality, we
assume that As and Au are in Jordan form. Assume that Au
has m eigenvalues, denoted by λi(Au), i = 1,2, · · · ,m. Next,
as shown in Fig. 2, we can decompose K into an encoder
(Alice) and a decoder (Bob), in which an estimate from the
decoder is fed back to the encoder via the noiseless feedback
channel. We denote this coding scheme as Representation I
(decoder-estimation-based feedback coding scheme). Due to
space limitations, we refer the readers to [12] for details.

We next propose an equivalent representation of the above
decoder-estimation-based feedback coding scheme. As will
be seen later, this new representation is vital to extend our
results to channels with noisy feedback.

Representation II: Channel-output-based Feedback
Coding Scheme (Fig. 3).

Decoder: The decoder runs K driven by the channel output
y. That is, x̂u(k+1) = Aux̂u(k)+Buy(k), x̂u(0) = 0.

It produces an estimate of the initial condition of the encoder

x̂u0(k) = A−k−1
u x̂u(k+1).

Fig. 3. Representation II: Decomposition of filter K into the feedback encoder
(Alice) and decoder (Bob). The eavesdropper channels are not included.

Encoder: The encoder runs the following dynamics driven
by the initial state, i.e., the message:

x̃u(k+1) = Aux̃u(k), x̃u(0) = xu0,
ũu(k) = Cux̃u(k).

It receives y and runs dynamics driven by the received feed-
back y,

xs(k+1) = Asxs(k)+Bsy(k), xs(0) = 0,
x̂u(k+1) = Aux̂u(k)+Buy(k), x̂u(0) = 0,

and produces a signal û(k) =Csxs(k)+Cux̂u(k),
Then, the encoder produces the channel input

u(k) = ũu(k)− û(k).

By comparing the two representations, we see that the only
difference comes from the feedback signal. In Representation
I, the feedback signal û is generated by the decoder, while
in Representation II, the feedback signal is simply the raw
channel output. The equivalence can be directly verified by
comparing the channel inputs u (encoder) and the estimate of
the message x̂u0 (decoder) between the two representations.

IV. MAIN RESULTS

In this section, we first present our results for the finite-
order ARMA feedback channel with an eavesdropper, and then
extend our results to the case with quantization noise in the
feedback. We provide only the outline of some technical proofs
here due to space limitations. The complete proofs can be
found in the technical report [11] available online.

A. Finite-order ARMA Feedback Channel with an Eavesdrop-
per

We first present our new development on the properties
of the feedback coding scheme for the finite-order ARMA
Gaussian channels without the presence of an eavesdropper.
We then use these properties to establish our main theorem,
which characterizes the feedback secrecy capacity and its
achieving coding scheme.

The following result shows that, by choosing the particular
m-step initializations (in the state-space representation) for the
proposed coding scheme, the channel inputs (k ≥ m+ 1) are
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only determined by the past additive Gaussian noise w, a fact
that is vital to guarantee the asymptotic secrecy from Eve.

Proposition 1. For the proposed coding scheme in Fig. 2 or
Fig. 3, assume the first m-step channel inputs um

1 = Am+1
u xu0

(where Am+1
u refers to matrix Au to the power m+1), x̂u(m+

1) = ym
1 (i.e., the estimated message x̂u0(m) = A−m−1

u ym
1 ) and

xs(m+1) = 0, where m is the number of eigenvalues of matrix
Au. Then the induced channel inputs u(k) for k ≥ m+ 1 are
determined only by the past Gaussian noise wk−1

1 .

Proof. (Sketch) Following the coding scheme in Representa-
tion I with the proposed initializations and taking nontrivial
algebra, we can obtain u(m+1) =−Cuwm

1 and, for k≥m+2,

u(k) =

−CuAk
u

( k−1

∏
i=m+1

αiA−m−1
u wm

1 +
k−1

∑
i=m+1

k−1

∏
j=i+1

α jβi(w(i)−Csxs(i))
)

−Csxs(k),

and xs(k) = Asxs(k−1)+Bs(u(k−1)+w(k−1)),
(6)

where αi = I−A−i−1
u BuCuAi

u and βi = A−i−1
u Bu. Starting with

u(m + 1) = −Cuwm
1 and xs(m + 1) = 0, the above coupled

iterations produce values of u(k) and xs(k) that depend only
on the past noise wk−1

1 . Due to the equivalence between
Representation I and Representation II of the coding scheme,
this result directly holds for Representation II.

Proposition 2. With the initializations defined in Proposition
1, the coding scheme K in Fig. 2 or Fig. 3 remains C f b-
achieving.

It is noteworthy that the above propositions implicitly reveal
an interesting behavior of the proposed coding scheme K
with the selected initializations. Specifically, in the first m-
step, Alice transmits a (scaled) message while Bob receives a
noisy (unbiased) message. In the sequential steps, Alice sends
projected values of the past noise (shared key with Bob) to
refine Bob’s estimate. In the meanwhile, Eve receives only
the noisy refinements from Alice due to the additive noises
v, ṽ and v̂ on the eavesdropper channels. The next theorem
proves that the noisiness of these refinements for Eve leads to
the asymptotic ignorance of the message.

Theorem 1. Consider the finite-order ARMA Gaussian wire-
tap channel with feedback (Fig. 1) under the average channel
input power constraint P > 0. Then,

1) the feedback secrecy capacity equals the feedback (Shan-
non) capacity, i.e., Csc =C f b, where C f b is obtained from
Section III-A; and

2) the feedback secrecy capacity is achieved by the
C f b-achieving feedback coding scheme K with um

1 =
Am+1

u xu0, x̂u(m + 1) = ym
1 (i.e., the estimated message

x̂u0(m) = A−m−1
u ym

1 ), and xs(m+1) = 0.

Proof. (Sketch) The key to the proof is to show that under the
selected initializations, the proposed coding scheme K satisfies
the secrecy requirement limn→∞

1
n I(xu0;zn

1, z̃
n
1, ẑ

n
1) = 0.

Following the coding scheme K, we first have

zm
1 = um

1 + vm
1 = Am+1

u xu0 + vm
1 ,

z̃m
1 = um

1 + ṽm
1 +wm

1 = Am+1
u xu0 + ṽm

1 +wm
1 ,

ẑm
1 = um

1 + v̂m
1 +wm

1 = Am+1
u xu0 + v̂m

1 +wm
1 .

(7)

Then, for n≥ k+max{d, d̃, d̂}+1 and k ≥ m+1, we have

h(xu0|zn
1, z̃

n
1, ẑ

n
1)

(a)
≥h(xu0|zn

1, z̃
n
1, ẑ

n
1,w

n
1,v

n
m+1, ṽ

n
m+1, v̂

n
m+1)

(b)
=h(xu0|zm

1 , z̃
m
1 , ẑ

m
1 ,w

n
1,v

n
m+1, ṽ

n
m+1, v̂

n
m+1)

=h(xu0|Am+1
u xu0 + vm

1 ,A
m+1
u xu0 + ṽm

1 ,

Am+1
u xu0 + v̂m

1 ,v
m+d
m+1 , ṽ

m+d̃
m+1 , v̂

m+d̃
m+1),

(8)

where step (a) follows from the fact that conditioning does not
increase entropy and step (b) follows from Proposition 1. The
last step follows from (7), the finite memory assumption of
the wiretap channel noise processes and the fact that the noise
w is independent of the others. Recall that the message xu0 is
uniformly selected from the index set {1,2, · · · ,2nR}, where
the messages are equally spaced in an m-dimensional unit
hypercube (proof of Theorem 4.3, [16]). As a consequence,
the covariance matrix of xu0 is 1

12 Im as n becomes sufficiently
large. Also, for a fixed covariance, a vector Gaussian input
distribution maximizes the mutual information. Therefore,
from (8), we can prove

lim
n→∞

1
n

I(xu0;zn
1, z̃

n
1, ẑ

n
1)

≤ lim
n→∞

1
2n

logdet
(

E[BBT ]+
1

12
AAT

)
−h(B) = 0,

(9)

where A= [Am+1
u ,Am+1

u ,Am+1
u ,000]′ (000 is an (d+ d̃+ d̂)×m zero

matrix) and B= [vm
1 , ṽ

m
1 , v̂

m
1 ,v

m+d
m+1 , ṽ

m+d̃
m+1 , v̂

m+d̂
m+1 ].

This theorem shows that there exists a feedback coding
scheme such that the secrecy requirement can be achieved
without loss of the communication rate of the legitimate
users. In addition, Section III-B provides such a feedback
coding scheme that achieves the feedback secrecy capacity. In
particular, a Csc-achieving feedback code can be constructed
from the optimal Q in (4) by following the procedures in
Section III-B with the initializations defined in Proposition
1. The next corollary shows that the well-known S-K scheme
[17] is a special case of our proposed coding scheme2.

Corollary 1. Consider the AWGN wiretap channel with feed-
back (see Fig. 1) under the average channel input power
constraint P > 0. Assume that the additive noise w has zero
mean and variance σ2

w > 0. Then the proposed coding scheme

K with Au =

√
P+σ2

w
σ2

w
, Bu = −

√
A2

u−1
Au

, Cu = −
√

A2
u−1,

and As = Bs =Cs = 0 becomes the original S-K scheme, and
achieves the secrecy capacity Cs f =C f b =

1
2 log(1+ P

σ2
w
).

2This result has been shown in [12]. For completeness, we re-state this
result in this paper.
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B. Feedback with Quantization Noise

In this section, we extend our result to Gaussian channels
with quantized feedback. It is noteworthy that the capacity
of colored Gaussian channels with noisy feedback remains an
open problem, even when simplified to quantized feedback.
Therefore, in this paper, as an initial step towards the secrecy
capacity of noisy feedback Gaussian channels, we focus on
the AWGN channel with quantized feedback. In [18], the
authors presented a linear coding scheme featuring a positive
information rate and a positive error exponent for the AWGN
channel with feedback corrupted by quantization or bounded
noise. In what follows, we show that our proposed linear
coding scheme, when specified to the AWGN channel with
quantized feedback, converges to the scheme in [18] and, more
importantly, leads to a positive secrecy rate. Furthermore, this
achievable secrecy rate converges to the capacity of the AWGN
channel as the amplitude of the quantization noise decreases to
zero. Firstly, we define a memoryless uniform quantizer with
sensitivity σq as follows [18].

Definition 1. Given a real parameter σq > 0, a uniform quan-
tizer with sensitivity σq is a function Φσq : R→ R defined as
Φσq(y) = 2σqb

y+σq
2σq
c, where b·c represents the floor function.

The quantization error at instant k, i.e., the feedback noise, is
given by q(k) = Φσq(y(k))− y(k).

Notice that, for a given channel output y(k), the quantization
noise q(k) can be recovered by the decoder. In other words,
the decoder can access both the channel outputs and the
feedback noise while the encoder can only access the corrupted
channel output. On the other hand, with quantized feedback,
the coding schemes Representation I and Representation II are
no longer equivalent due to the different feedback signals. The
Representation I in [12] may not be applicable here. Therefore,
we next tailor the proposed coding scheme Representation II
to obtain the following theorem.

Theorem 2. Consider an AWGN channel with uniformly
memoryless quantized feedback defined in Definition 1, where
the channel input power constraint is P > 0 and the noise
variance of the AWGN channel and the quantization sensitivity
in the feedback link are assumed to be σ2

w and σq, respectively.
Assume the channel input u(1) = A2

uxu0, and the estimate
message x̂u0(1) = A−2

u (y(1)+q(1)). Then, our proposed cod-
ing scheme (Representation II) with Au = 2r,Bu = −1,Cu =
Au− 1

Au and As = Bs = Cs = 0 achieves a secrecy rate r for
all r < rq, where rq is defined as follows.

1) If 4σq ≤ P, rq is the nonnegative real solution of the
following equation: σw

√
22rq −1 =

√
P− σq(1 + 2rq),

which yields limσq→0+ rq =
1
2 log(1+ P

σ2
w
).

2) If 4σq > P, then rq = 0.

V. CONCLUSION

In this paper, we have considered the finite-order ARMA
Gaussian wiretap channel with feedback and have shown that
the feedback secrecy capacity equals the feedback capacity
without the presence of an eavesdropper. We have further

extended our scheme to the AWGN channel with quantized
feedback and proved that our scheme can achieve a positive
secrecy rate, which converges to the AWGN channel capacity
as the quantization noise decreases to zero.
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