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I. INTRODUCTION

In this work, we consider transmission over a Cloud Radio
Access Network (CRAN) in which the relay nodes (radio
units) are constrained to operate without knowledge of the
users’ codebooks, i.e., are oblivious (nomadic), and only know
time- or frequency-sharing protocols. The model is shown in
Figure 1. Focusing on a class of discrete memoryless channels
in which the relay outputs are independent conditionally on the
users’ inputs, we establish a single-letter characterization of
the capacity region of this class of channels. We show that both
relaying à-la Cover-El Gamal [1], i.e., compress-and-forward
with joint decompression and decoding, as suggested in [2],
are optimal. This is equivalent to noisy notwork coding [3]. For
the proof of the converse part, we utilize useful connections
with the Chief Executive Officer (CEO) source coding problem
under logarithmic loss distortion measure [4]. For memoryless
Gaussian channels, we provide a full characterization of the
capacity region under Gaussian signaling, i.e., when the users’
channel inputs are restricted to be Gaussian. In doing so,
we also discuss the suboptimality of separate decompression-
decoding and the role of time-sharing. Furthermore, we elabo-
rate on meaningful connections with the problem of distributed
information bottleneck problem [5]–[7]. Finally, we evaluate
and compare the performance of some oblivious, including
the recent scheme [8], and non-oblivious schemes, such as [9]
and [10], and cut-set bounds.

II. CRAN SYSTEM MODEL AND MAIN RESULTS

Consider the discrete memoryless (DM) CRAN model
shown in Figure 1. In this model, L users communicate with a
common destination or central processor (CP) through K relay
nodes, where L ≥ 1 and K ≥ 1. Relay node k, 1 ≤ k ≤ K,
is connected to the CP via an error-free finite-rate fronthaul
link of capacity Ck. In what follows, we let L := [1 :L] and
K := [1 :K] indicate the set of users and relays, respectively.
Similar to [11], the relay nodes are constrained to operate
without knowledge of the users’ codebooks and only know a
time-sharing sequence Qn, i.e., a set of time instants at which
users switch among different codebooks. The obliviousness of
the relay nodes to the actual codebooks of the users is modeled
via the notion of randomized encoding [2], [12]. That is, users
or transmitters select their codebooks at random and the relay
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nodes are not informed about the currently selected codebooks,
while the CP is given such information.

A. Capacity Region of a Class of CRANs
Consider the following class of DM CRANs in which the

channel outputs at the relay nodes are independent condi-
tionally on the users’ inputs. That is, for all k ∈ K and all
i ∈ [1 :n],

Yk,i −
−XL,i −
− YK/k,i (1)

forms a Markov chain in this order.

Theorem 1 ( [6]). For the class of DM CRANs with oblivious
relay processing and enabled time-sharing for which (1) holds,
the capacity region C(CK) is given by the union of all rate
tuples (R1, . . . , RL) which satisfy∑
t∈T

Rt ≤
∑
s∈S

[Cs − I(Ys;Us|XL, Q)] + I(XT ;USc |XT c , Q),

for all non-empty subsets T ⊆ L and all S ⊆ K, for some
joint measure of the form

p(q)

L∏
l=1

p(xl|q)

K∏
k=1

p(yk|xL)

K∏
k=1

p(uk|yk, q). (2)

The direct part of Theorem 1 can be obtained by a coding
scheme in which each relay node compresses its channel
output by using Wyner-Ziv binning to exploit the correlation
with the channel outputs at the other relays, and forwards the
bin index to the CP over its rate-limited link. The CP jointly
decodes the compression indices (within the corresponding
bins) and the transmitted messages, i.e., Cover-El Gamal
compress-and-forward [1, Theorem 3] with joint decompres-
sion and decoding (CF-JD). Alternatively, the rate region of
Theorem 1 can also be obtained by a direct application of the
noisy network coding (NNC) scheme of [3, Theorem 1].

Remark 1. The fact that the two operations of decompression
and decoding are performed jointly in the scheme CF-JD is
critical to achieve the full rate-region of Theorem 1, in the
sense that if the CP first jointly decodes the compression
indices and then jointly decodes the users’ messages, i.e.,
the two operations are performed successively, this results
in a a region that is generally strictly suboptimal. A similar
observation can be found in [5], [6], [13].
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Fig. 1. CRAN model with oblivious relaying and time-sharing.

B. Memoryless MIMO Gaussian CRAN
Consider a memoryless Gaussian MIMO CRAN with obliv-

ious relay processing and enabled time-sharing in which relay
node k, k ∈ K, is equipped with Mk receive antennas and has
output

Yk = Hk,LX + Nk, (3)

where X := [XT
1 , . . . ,X

T
L]T , Xl ∈ CNl is the channel input

vector of user l ∈ L, Nl is the number of antennas at user l,
Hk,L := [Hk,1, . . . ,Hk,L] is the matrix obtained by concate-
nating the Hk,l, l ∈ L, horizontally, with Hk,l ∈ CMk×Nl

being the channel matrix connecting user l to relay node
k, and Nk ∈ CMk is the noise vector at relay node k,
assumed to be memoryless Gaussian with covariance matrix
Nk ∼ CN (0,Σk) and independent from other noises and
from the channel inputs {Xl}. The transmission from user
l ∈ L is subjected to the following covariance constraint,

E[XlX
H
l ] � Kl, (4)

where Kl is a given Nl×Nl positive semi-definite matrix, and
the notation � indicates that the matrix (Kl − E[XlX

H
l ]) is

positive semi-definite.
1) Capacity Region under Time-Sharing of Gaussian

Inputs: Let, for all l ∈ L, the input Xl be restricted to be
distributed such that for all Q = q,

Xl|Q = q ∼ CN (0,Kl,q), (5)

where the matrices {Kl,q}|Q|q=1 are chosen to satisfy∑
q∈Q

pQ(q)Kl,q � Kl. (6)

Theorem 2 ( [6]). The capacity region CG(CK) of the memo-
ryless Gaussian MIMO model with oblivious relay processing
described by (3) and (4) under time-sharing of Gaussian
inputs is given by the set of all rate tuples (R1, . . . , RL) that
satisfy∑

t∈T
Rt ≤

∑
k∈S

[
Ck − EQ

[
log

|Σ−1k |
|Σ−1k −Bk,Q|

]]

+ EQ

[
log
|
∑

k∈Sc HH
k,TBk,QHk,T + K−1T ,Q|
|K−1T ,Q|

]
,

(7)

for all non-empty T ⊆ L and all S ⊆ K, for some pmf pQ(q)
and matrices Kq,l and Bk,q such that EQ[Kl,Q] � Kl and
0 � Bk,q � Σ−1k ; and where, for q ∈ Q and T ⊆ L, the
matrix KT ,q is defined as KT ,q := diag[{Kt,q}t∈T ].

2) Price of Non-Awareness: Bounded Rate Loss: The
uplink of a CRAN relates to diammond channels; and, so, its
capacity remains to be found in general.

In general (i.e., without restricting to oblivious relay pro-
cessing), the uplink of a CRAN relates to diammond chan-
nels [14]; and, so, its capacity remains to be found. Restricting
the relay nodes not to know/utilize the users’ codebooks causes
only a bounded rate loss in comparison with maximum rate
that would be achievable in the non-oblivious setting. The
result is obtained through comparison with the cut-set bound.

Theorem 3 ( [6]). If (R1, . . . , RL) ∈ Cuncons(CK), then there
exists a constant ∆ ≥ 0 such that (R1 −∆, . . . , RL −∆) ∈
CG(CK), with

∆ ≤
{

N
2 (2.45 + log(KM

N )), for KM > 2N,
KM+N

2 for KM ≤ 2N.
(8)

III. CONNECTIONS

A. Distributed Source Coding under Logarithmic Loss
Key element to the proof of the converse part of Theorem 1

is the connection with the Chief Executive Officer (CEO)
source coding problem. For the case of K ≥ 2 encoders,
while the characterization of the optimal rate-distortion region
of this problem for general distortion measures has eluded
the information theory for now more than four decades, a
characterization of the optimal region in the case of loga-
rithmic loss distortion measure has been provided recently
in [4]. A key step in [4] is that the log-loss distortion measure
admits a lower bound in the form of the entropy of the source
conditioned on the decoders input. Leveraging on this result,
in our converse proof of Theorem 1 we derive a single letter
upper-bound on the entropy of the channel inputs conditioned
on the indices JK that are sent by the relays, in the absence of
knowledge of the codebooks indices FL. Also, the rate region
of the vector Gaussian CEO problem under logarithmic loss
distortion measure has been found recently in [15].

B. Distributed Information Bottleneck Method
The information bottleneck (IB) method was introduced by

Tishby [16] as an information-theoretic principle for extracting
the relevant information that some signal Y ∈ Y provides
about another one, X ∈ X , that is of interest. Beyond data
classification or clustering and prediction, it has found remark-
able applications in the wider field of learning [17]. Perhaps
key to the analysis, and development, of the IB method is
the elegant connection it has with information-theoretic rate-
distortion problems. Specifically, the IB problem is essentially
a remote (or indirect) source coding problem [18] with log-
arithmic loss distortion measure [4]; and prior information-
theoretic art such as [19] and [20] is relevant for it. Also,
information combining problems, as used in [21] along with
the I-MMSE relation, are relevant to prove simply the Tishby
Gaussian bottleneck result. Furthermore, the IB method is also
related to the problem of Wyner-Ziv coding with common
reconstruction [22]. Distributed architectures for IB are also
studied; and the optimal rate-information region of distributed
IB is developed for discrete and Gaussian sources in [7].
Extension of the IB method to general alphabets can be found
in [23].
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IV. OUTLOOK

Among interesting problems that are left unaddressed in
this paper that of characterizing optimal input distributions
under rate-constrained compression at the relays where, e.g.,
discrete signaling is already known to sometimes outperform
Gaussian signaling for single-user Gaussian CRAN [2]. It
is conjectured that the optimal input distribution is discrete.
Other issues might relate to extensions to continuous time
filtered Gaussian channels, in parallel to the regular bottleneck
problem [24], or extensions to settings in which fronthauls may
be not available at some radio-units, and that is unknown to
the systems. That is, the more radio units are connected to the
central unit the higher rate could be conveyed over the CRAN
uplink [25]. Alternatively, one may consider finding the worst-
case noise under given input distributions, e.g., Gaussian, and
rate-constrained compression at the relays. Finally, there are
interesting aspects that address processing constraints of con-
tinuous waveforms, e.g., such as sampling at a given rate [26],
[27] with focus on remote logarithmic distortion [4], which in
turn boils down to the distributed bottleneck problem [7], [15].
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