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Abstract—Discrete channel inputs have been shown to max-
imize mutual information under various settings. This paper
offers a brief review of corresponding optimization methods.
Specifically, two techniques are considered; the first is rooted
in the theory of linear optimization whereas the second is based
on ideas from convex optimization.

I. INTRODUCTION

In this work, we are interested in the optimization problem

max
X:X∼PX∈M

I(X ;Y ), (1)

where I(X ;Y ) is the mutual information between random vec-
tors X and Y distributed according to some joint distribution
PXY . Their respective marginal distributions are denoted by
PX (input distribution) and PY (output distribution), respec-
tively, whereas M is some compact and convex set of input
distributions.1 We are specifically interested in an exact char-
acterization of the optimizing distribution P ⋆

X (not necessarily
unique). In cases where an exact optimizer cannot be found we
determine properties of an optimal input distribution in order
to reduce the dimensionality of the problem. For example,
in many cases it turns out that an optimizing distribution is
discrete with finitely many mass points, which reduces the
infinite dimensional problem (1) to a finite dimensional one
allowing to apply numerical methods for computing P ⋆

X .
Towards this end, we survey two popular approaches to

characterize the maximum in (1). The first approach assumes
that the output space is of finite cardinality whereas the input
space can be of arbitrary size. The technique is based on the
theory of linear optimization. We also introduce several new
techniques to this approach. For example, the new tools not
only allow to work with Euclidean input spaces but also with
inputs supported on separable metric spaces.

The second approach makes no assumption on the cardinal-
ity of the chanenl output space and is based on convex opti-
mization techniques. This approach has usually been applied
to channels with scalar inputs. We introduce several new tools
in order to extend the results to the vector case. Moreover, in
cases in which the input distribution is discrete with finitely
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1Note that M is very general in the sense that it accounts for any type of
constraints on the channel inputs (e.g., amplitude constraints, average power
constraints).

many mass points, we show how to obtain an estimate on the
number of points.

Due to space limitations, we do not focus on the algorithmic
aspects of finding an optimal input distribution. The literature
on this subject is vast and the interested reader is referred to
[1]–[3] and references therein. We also do not focus on the
popular subject of approximating the capacity of a channel
with discrete inputs (see [4]–[6] and references therein).

The paper is organized as follows. Section II introduces a
preliminary set of mathematical tools needed in our analysis
such as tools from probability theory, convex analysis, and
mathematical optimization. Section III then presents the first
optimization technique that focuses on channel output spaces
of finite cardinality. Under very general assumptions it is
shown that the optimizing input distribution must be discrete
with a finite number of mass points. Moreover, it is shown that
the number of mass points growth linearly with the cardinality
of the output space and linearly with the number of constraints
on the input. The second optimization technique is presented
in Section IV and it is shown under very mild conditions that
in the support of the optimal input distribution is generally a
nowhere dense set of Lebesgue measure zero. Moreover, in
cases in which the optimal input distribution is discrete with
finitely many mass points it is shown how the number of points
can be determined. Finally, Section V concludes the paper.

Notation: deterministic quantities (i.e, scalars and vectors)
are denoted by lower case letters and random objects by capital
letters; R denotes the affinely extended real number system;
the closed ball in Rn of radius R centered at x is denoted
as Bx(R) := {y ∈ Rn : ∥y − x∥ ≤ R}, where ∥ · ∥ is the
Euclidean norm; the Dirac measure centered on a fixed point
x is denoted as δx; the mutual information between X and Y
distributed according to PXY is also denoted as I(PX , PY |X).

II. SOME ELEMENTARY DEFINITIONS AND RESULTS

In this section, we recap some elementary definitions and
results from probability theory and mathematical optimization
that will be very useful for our purposes.

For a random vector X ∈ Rn and every measurable set
A ⊂ Rn we denote the probability measure of X as

PX(A) = P[X ∈ A].

If it is clear from the context we sometimes write P instead of
PX . The space of all probability measures defined on a sample
space Ω ⊆ Rn is denoted as P(Ω).
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A. Weak Convergence and Weak Continuity

It is well known that there exist several different notions of
the convergence of a sequence of probability measures. One
of them is weak convergence, which provides a given space
of probability measures with a topology.

Definition 1. A sequence of probability measures {Pn}n∈N is
said to converge weakly to the probability measure P if

lim
n→∞

EPn
[φ(X)] → EP [φ(X)] , (2)

for all bounded and continuous functions φ.

Another main ingredient of our considerations are linear
functionals. The following theorem gives a necessary and suffi-
cient condition for a linear functional to be weakly continuous
[7, Lemma 2.1].

Theorem 1. (Weak Continuity of Linear Functionals) A linear

functional L : P → R is weakly continuous on P if and only
if it can be represented as

L(P ) = EP [φ(X)],

for some bounded and continuous function φ.

Definition 2. A given space of probability measures P(Ω) is
said to be compact if every infinite sequence, {Pn}n∈N, in
P(Ω) has a weakly convergent subsequence.2

B. Elementary Optimization Theorems

The extreme value theorem for real-valued continuous func-
tions over compact intervals is one of the most celebrated
results of calculus. The following theorem is a generalization
to compact topological spaces [9, Sec. 2.13].

Theorem 2. (Extreme Value Theorem) For any compact topo-

logical space P and any upper semicontinuous functional
f : P → R

sup
P∈P

f(P ) = max
P∈P

f(P ).

Moreover, if f is strictly concave the maximizer is unique.

Definition 3. An extreme point of any convex set S is a point
x ∈ S that cannot be represented as x = (1 − t)y + tz with
y, z ∈ S and some t ∈ (0, 1). We denote the set of all extreme
points of S as exS.

As in this paper we are interested in the extreme points
of certain sets of probability measures, the following theorem
will be of particular importance [10, Th. 2.1].

Theorem 3. (Extreme Points of Moment Sets) Let (Ω,σ(Ω))
be a measurable space and let Preg(Ω) be the set of all
regular probability measures over the sample space Ω.3 Fix

2More precisely, the space is sequentially compact. By means of Prohorov’s
metric, however, the space of probability measures equipped with the topology
of weak convergence becomes a metric space [7, Th. 3.8], in which case the
notions compact and sequentially compact are equivalent [8, Th. 2.3.1].

3Recall that a probability measure is regular if any element of the σ-algebra
σ(Ω) can be approximated from below by compact measurable sets and from
above by open measurable sets.

measurable functions f1, . . . , fk as well as real numbers

c1, . . . , ck and consider the set

Hk := {P ∈ Preg(Ω) : EP [fi(X)] ≤ ci, 1 ≤ i ≤ k} ; (3)

that is, the set of regular probability measures with k ∈ N

bounded moments (called moment set). Then,

1) Hk is convex and the extreme points of Hk are given by

exHk ⊆ exHk, (4)

where

exHk :=

{

P ∈ Hk : P =
m
∑

i=1

αiδxi
, xi ∈ Ω,αi ∈ [0, 1],

m
∑

i=1

αi = 1, 1 ≤ m ≤ k + 1, the vectors

[f1(xi), . . . , fk(xi), 1], 1 ≤ i ≤ m,

are linearly independent

}

;

2) If the moment conditions in (3) are fulfilled with equality,
then (4) holds with equality.

The following result, taken from [10, Th. 3.2], states that
when maximizing a linear functional over a moment set it is
sufficient to focus on its extreme points.

Theorem 4. (Linear Programming) Let L : P → R be a

linear functional. Then,

sup
P∈Hk

L(P ) = sup
P∈exHk

L(P ).

Note that Theorem 4 only requires L to be linear and not
necessarily continuous.

Definition 4. A convex set S of a vector space V is called lin-

early closed (linearly bounded) if every straight line intersects
with S on a closed (bounded) subset of that line.

With this definition in hand, we close the section with a
theorem proven by Dubin [11].

Theorem 5. (Dubins Theorem) Let f : V → R be a linear

functional over a vector space V and let

L = {v ∈ V : f(v) = c},

for some constant c ∈ R, be a hyperplane formed by f .

Moreover, let I be the intersection of a linearly closed and

linearly bounded convex set K ⊂ V with n hyperplanes. Then,
every extreme point of I is a convex combination of at most

n+ 1 extreme points of K.

A remarkable property of Theorem 5 is that it also holds for
the infinite dimensional case.

III. CHANNEL OUTPUTS OF FINITE CARDINALITY

In this section, we consider the optimization problem (1) for
channels whose outputs are of bounded cardinality. Towards
this end, we are going to generalize an elegant approach
proposed by Witsenhausen in [12]. The approach relies on
techniques from linear optimization and convex analysis.
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As the main result of this section, the following theorem
characterizes under very mild conditions the structure of the
optimal input distribution.

Theorem 6. (Optimal Input Distribution Under Finite Output
Cardinality) Let N ∈ N be finite and assume the following:

• Hk as defined in (3) is compact;

• |supp(Y )| ≤ N (i.e., the support of Y is finite);

• PY |X(y|x) is continuous in x for every y.

Then, there exists a distribution P ⋆
X ∈ Hk so that

sup
PX∈Hk

I(PX , PY |X) = I(P ⋆
X , PY |X).

Moreover, P ⋆
X is discrete with at most N(k + 1) mass points

(possibly containing points at ±∞) and we have the following:

• If Ω ⊂ Rn is compact and f1, . . . , fk are bounded and
continuous on Ω, then P ⋆

X has at most N + k finite mass

points;

• If f1, . . . , fk are bounded and continuous on Ω = Rn and

are such that for every PX with a finite number of mass
points EPX

[fi(X)] < ∞ implies PX(+∞) = PX(−∞) =
0, then P ⋆

X has at most N + k finite mass points.

Proof: First of all, since the moment set Hk is assumed
to be compact and PX )→ I(X ;Y ) is concave, by Theorem 2
we have that the supremum is attained by some P ⋆

X ∈ Hk.

Next, we show that P ⋆
X is discrete and provide a bound on

the number of probability masses. The assumption that Y is
discrete allows us to write

I(PX , PY |X) = H(Y )−H(Y |X). (5)

Recall that the entropy of Y is given by

H(Y ) = −
N
∑

i=1

pi log(pi),

where the elements of the vector of output probabilities pY :=
[p1, . . . , pN ] are of the form

pi =

∫

PY |X(yi|x) dPX ,

so we can write pY as a linear transformation

pY = ⟨PY |X , PX⟩.

Now, let p⋆Y := [p⋆1, . . . , p
⋆
N ] denote the output vector

induced by an optimal input distribution P ⋆
X and note that

the conditional entropy is given by

H(Y |X) = −

∫ N
∑

i=1

PY |X(yi|x) log
(

PY |X(yi|x)
)

dPX .

As PX )→ H(Y ) is concave and PX )→ H(Y |X) linear, it
follows that I(PX , PY |X) is the difference between a concave
and a linear functional.

Let the set of distributions that induce the optimal output
distribution defined as

P⋆ :=
{

PX ∈ Hk : p⋆Y = ⟨PY |X , PX⟩
}

. (6)

Observe that P⋆ is an intersection of Hk with the N − 1
hyperplanes

Li :=

{

PX :

∫

PY |X(yi|x) dPX = p⋆i

}

,

i = 1, . . . , N − 1. Note that we only consider N − 1
hyperplanes instead of N . This is because in the space of
probability distributions everything adds up to one so that LN

is redundant. Note also that each Li is a closed set, which
follows from Theorem 1 because PY |X(yi|x) is continuous
and bounded in x.

As the intersection of a compact with a closed set is
compact, we have that P⋆ is compact. This implies that

max
PX∈Hk

I(PX , PY |X) = max
PX∈P⋆

I(PX , PY |X).

Moreover, it follows from (5) that

max
PX∈P⋆

I(PX , PY |X) = max
PX∈P⋆

(

H(Y )−H(Y |X)
)

= H(Y ⋆) + max
PX∈P⋆

(

−H(Y ⋆|X)
)

,

where the last step follows from the fact that all distributions
in P⋆ induce the same H(Y ).

Now, as PX )→ H(Y |X) is linear, by means of Theorem 4
we conclude that

max
PX∈P⋆

(

−H(Y |X)
)

= max
PX∈exP⋆

(

−H(Y |X)
)

. (7)

In the following, let P ⋆
X ∈ exP⋆ be a distribution that

maximizes (7). Due to Theorem 3, we have that any PX ∈
exP⋆, and in particular P ⋆

X , can be represented as a convex
combination of at most (N − 1) + 1 = N extreme points of
Hk. Due to Theorem 5, however, the extreme points are given
by discrete distributions with at most k+1 points from which
we conclude that P ⋆

X consists of at most N(k+1) mass points.

Now that we know the maximizing input distribution is
discrete with at most N(k + 1) mass points, we are able to
slightly refine the number under various assumptions. Due to
the lack of space, the corresponding proofs are deferred to the
extended version of this paper.

Remark 1. The original proof by Witsenhausen [12] was
concerned with the scalar case only where Ω = [−a, a] for
some a > 0. All the subsequent extension of this result relied
on reducing the optimization problems to the case of bounded
support. The key novelty in the proof of Theorem 6 is the
application of Theorem 3, which does not require to show or
assume Ω is bounded. In fact, Theorem 3 does not make use
of the spaces underlying X and Y and holds if Ω is a well
behaving set of some vectors space.

Remark 2. If the functions f1, . . . , fk in the definition of Hk

prevent the occurrence of mass points at ±∞, then the bound
on the number of points can be reduced to N+k. An example
of such a function is f(x) = |x|r , r > 0, which naturally forces
probability measures with a finite number of mass points to
have mass points at ±∞ with zero probability.
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Corollary 1. Let U be arbitrary but independent of X . Then,

Theorem 6 is valid for the optimization problem

sup
PX∈Hk

I(X ;Y |U).

We close this section with a historical note. In the context of
discrete memoryless channels, Gallager has shown in [13] that
the cardinality of the input should not exceed the cardinality
of the output. However, Gallager’s result does not apply to
the setting of Theorem 6 in which the input space Ω may not
be discrete a priori. It also does not hold for general input
constraints. The approach in this section has also been applied
for point-to-point channels with output quantization [14], [15].

IV. CONVEX OPTIMIZATION APPROACH

In this section, we follow the convex optimization method
taken by Smith in [16]. Unlike Section III, however, we do not
make any assumption on the channel output alphabets. In order
to determine some properties of the optimal input distributions,
we introduce tools with which we are able to obtain results
for the multivariate case, which is in contrast to the majority
of related works considering the scalar case only.

Whereas in the previous section we were able to obtain
relatively tight bounds on the number of mass points an
optimal distribution must have, to the best of our knowledge
the approach of Smith has never been used to obtain similar
bounds. In Section IV-B, we therefore introduce a method that
can be used to bound the cardinality of the support of the
optimal input distribution provided it is discrete.

A. Necessary and Sufficient Conditions for Optimality

The key tool of this section will the notion of weak or di-
rectional derivative over the space of probability distributions.

Definition 5. Let P be a convex topological space. For any
two distributions P ∈ P and Q ∈ P we define the Gâteaux

derivative of f : P → R at P in the direction of Q as

∆Qf(P ) = lim
ε→0

f
(

(1 − ε)P + εQ
)

− f(P )

ε
.

We will use the Gâteaux derivative together with the following
optimization theorems.

Theorem 7. Let P be a convex topological space and let f :
P → R have a Gâteaux derivative ∆Qf(P ) for every P,Q ∈
P . Suppose that P ⋆ ∈ P is a maximizer of f , then

∀Q ∈ P : ∆Qf(P
⋆) ≤ 0. (8)

If in addition f is concave, (8) is also sufficient.

Theorem 8. (Karush-Kuhn-Tucker Conditions) Let P be a
convex topological space, f : P → R a concave functional,

and g : P → R a convex functional. Assume there exists a

point P ∈ P such that g(F ) < 0. Furthermore, let

µ := sup
P∈P,g(P )≤0

f(P ). (9)

Then, there exists a constant λ ≥ 0 such that

µ = sup
P∈P

(

f(P )− λg(P )
)

. (10)

If the supremum in (9) is attained by some P0, then P0 also

attains the supremum in (10) with λg(P0) = 0.

Unlike its counterparts in finite dimensions, the Gâteaux
derivative may exist without the functional being continuous.
For example, the Gâteaux derivative of a linear functional is
of the form

∆QEP [f(X)] = EQ[f(X)]− EP [f(X)],

which exists as long as EP [f(X)] and EQ[f(X)] are finite.
However, P )→ EP [f(X)] is continuous if and only if f is
bounded and continuous (see Theorem 1).

Another assumption that we make in this section is that the
Gâteaux derivative of the mutual information exists.

Assumption 1. Suppose the Gâteaux derivative of the mutual
information PX )→ I(PX , PY |X) exists for all PX , QX ∈ M
and that it is given by

∆QX
I(PX , PY |X) = IQX

(PX , PY |X)− I(PX , PY |X), (11)

where

IQX
(PX |PY |X) := EQX

[

log

(

PY |X(Y |X)

PY (Y ;PX)

)]

and PY (Y ;PX) denoting the channel output distribution in-
duced by the input distribution PX .

We do not formally prove that the Gâteaux derivative is of
the form (11). However, for all the known cases of interest it
is given by this expression.

Next, we provide a necessary and sufficient condition for
the optimality of an input distribution PX .

Theorem 9. (Necessary and Sufficient Optimality Condition)
Let M be a convex and compact set of channel input distri-

butions. Then, P ⋆
X ∈ M maximizes (1) if and only if

∀QX ∈ M : IQX
(P ⋆

X , PY |X) ≤ I(P ⋆
X , PY |X).

Proof: The proof is based on Theorem 7, the Gâteaux
derivative (11) and the concavity of mutual information.

B. Structure of the Support

In many cases of interest, the set M is equal to Hk with
functions f1, . . . , fk chosen such that Hk is compact. In other
words, M is a moment set, a set of distributions that are
of compact support, or a combination of both. For ease of
presentation, we focus on the case M = H1 only. The results,
however, are extendible to the cases Hk, k ∈ N.

In order to study the support of the optimal input distribution
we will need the following definition.

Definition 6. A point x ∈ Rn is said to be a point of increase

of a distribution PX , if for any open subset O ⊂ Rn containing
x, PX(O) > 0. We denote the set of points of increase of PX

as E(PX) ⊆ Rn.

Observe that PX

(

E(PX)
)

= 1. In fact, E(PX) is the smallest
closed subset of Rn whose probability is 1.
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Theorem 10. (Sufficient and Necessary Condition) Let

i(x;PX , PY |X) : Rn → R be defined as

i(x;PX , PY |X) := E

[

log

(

PY |X(Y |X)

PY (Y ;PX)

)
∣

∣

∣

∣

X = x

]

.

Then, P ⋆
X is an optimizer if and only if there exists a λ ≥ 0

such that the following three conditions are satisfied:

λ
(

EP⋆

X
[f(X)]− c

)

= 0; (12)

∀x ∈ Ω : i(x;P ⋆
X , PY |X)− λ

(

f(x)−EP⋆
X
[f(X)]

)

≤ I(P ⋆
X , PY |X); (13)

i(x;P ⋆
X , PY |X)− λ

(

f(x)− EP⋆

X
[f(X)]

)

= I(P ⋆
X , PY |X),

(14)
where c is a fixed constant as in (3) (i.e., EPX

[f(X)] ≤ c).

Theorem 11. (Identity Theorem for Real-Analytic Functions
[17]) Let f, g : Rn → R be two real-analytic functions that

agree on a set E ⊂ Rn. Then, f and g agree on Rn if one of
the following conditions is satisfied:

1) E is an open set;

2) E is a set of a positive Lebesgue measure;

3) If n = 1, then it suffices for E to be an arbitrary set with

an accumulation point.

We will also need the following definition.

Definition 7. A set A ⊂ X is said to be dense in the set X if
every element x ∈ X either belongs to A or is an accumulation
point of A. A set A ⊂ X is said to be nowhere dense if for
every nonempty open set U ⊂ X , the intersection U ∩ A is
not dense in X .

Theorem 12. (Properties of the Optimal Support) Suppose

that Ω ⊂ Rn contains an open subset and let i(x;P ⋆
X , PY |X)

and f be non-constant, real analytic functions on Ω. Then,

E(P ⋆
X) ⊂ Ω ⊂ Rn is a nowhere dense set of Ω and is of

Lebesgue measure zero. In addition, if n = 1, then for every

finite interval J , the set E(P ⋆
X) ∩ J is of finite cardinality.

Proof: We first show that E(P ⋆
X) is a nowhere dense set.

Towards a contradiction, assume that E(P ⋆
X) is not nowhere

dense in Ω. Therefore, by Definition 7, there exists an open
set U ⊂ Ω such that U ∩ E(P ⋆

X) is dense in Ω. By using (14),
we have that

g(x) := i(x;P ⋆
X , PY |X)− λ

(

f(x)− EP⋆

X
[f(X)]

)

is constant on E(P ⋆
X) and therefore is constant on U ∩E(P ⋆

X).
Since U∩E(P ⋆

X) is dense in Ω by the properties of continuous
functions (analytic functions are continuous), g is also constant
on U . Moreover, since U is an open set and g is analytic
and constant on U by property 1) of Theorem 11, g must be
constant on Ω. However, this leads to a contradiction as we
assumed that g is non-constant on Ω. Therefore, E(P ⋆

X) is a
nowhere dense in Ω.

The conclusion that E(P ⋆
X) has Lebesgue measure zero

follows along similar lines by assuming that E(P ⋆
X) is a set

of positive measure and using property 2) of Theorem 11 to

conclude that g must be constant on all of Ω. This again
leads to a contradiction, which implies that E(P ⋆

X) must have
Lebesgue measure zero.

Remark 3. Note that if f and i(x;P ⋆
X , PY |X) are orthogo-

nally equivariant (i.e., they only depend on ∥x∥), then it is
not difficult to see that E(P ⋆

X) a union of concentric spheres.
That is,

E(P ⋆
X) =

⋃

j

C(rj), (15)

where C(rj) := {x ∈ Rn : ∥x∥ = rj}, for some rj . For
example, this is the case if PY |X = N (x, In) with In the
n × n identity matrix. The example in (15) shows that the
cardinality of E(P ⋆

X) is uncountable and that discrete inputs
are in general not optimal. Theorem 12 can therefore generally
not be improved in the sense that we cannot make statements
about the cardinality of E(P ⋆

X) if Ω = Rn for n > 1. Note,
however, that the magnitude of X ∼ P ⋆

X is discrete.

Remark 4. To the best of our knowledge, the approach taken
in this section has never been used to obtain bounds on
the number of mass points not even for a Gaussian channel
with amplitude-constrained inputs (i.e,. X ∈ [−A,A] for
some A > 0). An attempt to determine the position and
the number of mass points was made in [18], where it was
conjectured that the number of points increases by at most
one. By using tools from complex analysis, one can show that
if x )→ i(x;P ⋆

X , PY |X) has a complex analytic extension to
an open subset of C containing [−A,A], then the number of
mass points is given by

∣

∣E(P ⋆
X)

∣

∣ =
1

2πi

∮

γ

i′(z;P ⋆
X , PY |X)

i(z;P ⋆
X , PY |X)− I(P ⋆

X , PY |X)
dz,

where γ is a regular closed curve that contains [−A,A] and
i′ the derivative of i with respect to z. For details we refer to
the extended version of this paper.

C. Some Remarks on Related Works

As mentioned at the beginning, the approach followed in this
section was first presented in [16] in the context of scalar Gaus-
sian channels with an amplitude or power-constrained input. In
[19], the result was extended to the complex Gaussian case.
The authors of [20] considered the Gaussian noise channel
subject to Rayleigh fading, where channel state information
is not available at the transmitter and the receiver and where
channel input is subject to a power constraint. In particular,
it was shown that the optimal input distribution is discrete
albeit the number of mass points is countably infinite. In [21],
similar result were obtained for power-constrained complex-
valued channels with a rapidly varying phase.

In [22], the approach was applied to a large class of vector
channels that are conditionally Gaussian (i.e., PY |X is Gaus-
sian) and where the input is constrained to an Euclidian ball
and/or has finite power. There are also many works focusing on
non-Gaussian additive noise channels. In [23], scalar additive
noise channels with amplitude-constrained inputs are consid-
ered. The author provides sufficient conditions on the input
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density to guarantee the optimal input distribution is discrete
with finitely many points. For additive noise channels with
arbitrary input constraints, the most general set of conditions
under which the optimal input distribution is bounded or
discrete can be found in [24]. For other results on additive
channels with various input constraints, the interested reader
is referred to [25]–[31]. Finally, it has to emphasized that the
approach of this section has also been applied to non-additive
noise channels [32], [33] as well as to multiuser channels [34].

V. CONCLUSION

In this work, we have focused on two optimization methods
that follow ideas from the theories of linear and convex
optimization. Of course there exist other approaches for finding
capacity-achieving input distributions. For example, a promis-
ing approach is to connect, via I-MMSE type relationships
[35]–[37], the theory of least-favorable prior distributions for
estimation measures with the search for optimal input distri-
butions. Such connections have been made in the context of
Gaussian noise channels [38]–[40]. Another challenging future
direction might be to evaluate how the approaches can be
extended to multiuser settings such as the interference channel.
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