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Multi-Tenant C-RAN With Spectrum Pooling:
Downlink Optimization Under Privacy Constraints
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Abstract—Spectrum pooling allows multiple operators, or ten-
ants, to share the same frequency bands. This paper studies the op-
timization of spectrum pooling for the downlink of a multi-tenant
cloud radio access network system in the presence of inter-tenant
privacy constraints. The spectrum available for downlink transmis-
sion is partitioned into private and shared subbands, and the par-
ticipating operators cooperate to serve the user equipment (UEs)
on the shared subband. The network of each operator consists
of a cloud processor (CP) that is connected to proprietary radio
units (RUs) by means of finite-capacity fronthaul links. In order
to enable inter-operator cooperation, the CPs of the participat-
ing operators are also connected by finite-capacity backhaul links.
Inter-operator cooperation may, hence, result in loss of privacy.
Fronthaul and backhaul links are used to transfer quantized base-
band signals. Standard quantization is considered first. Then, a
novel approach based on the idea of correlating quantization noise
signals across RUs of different operators is proposed to control the
trade-off between distortion at UEs and inter-operator privacy.
The problem of optimizing the bandwidth allocation, precoding,
and fronthaul/backhaul compression strategies is tackled under
constraints on backhaul and fronthaul capacity, as well as on per-
RU transmit power and inter-operator privacy. For both cases,
the optimization problems are tackled using the concave convex
procedure, and extensive numerical results are provided.

Index Terms—C-RAN, multi-tenant, spectrum pooling, RAN
sharing, privacy constraint, precoding, fronthaul compression,
multivariate compression.

I. INTRODUCTION

S PECTRUM pooling among multiple network operators, or
tenants, is an emerging technique for meeting the rapidly
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increasing traffic demands over the available scarce spectrum
resources [1]–[6]. Spectrum pooling can be implemented by
means of orthogonal or non-orthogonal resource allocation. In
orthogonal spectrum pooling, the frequency channels are ex-
clusively, but dynamically, allocated to the participating oper-
ators [2]. In contrast, with non-orthogonal spectrum pooling,
parts of the spectrum can be shared between operators. In addi-
tion to spectrum pooling, radio access network (RAN) sharing,
whereby RAN infrastructure nodes are shared by the tenants,
has also been considered [4], [5]. RAN sharing and spectrum
pooling are two examples of network slicing, a key technology
for the upcoming 5G wireless systems [3], [7].

In a Cloud RAN (C-RAN) architecture, a Cloud Processor
(CP) carries out centralized baseband signal processing on be-
half of a number of the connected Radio Units (RUs). The CP
communicates quantized baseband signals over fronthaul links,
while the RUs only perform radio frequency functionalities [8],
[9]. Motivated by the promised reduction in capital and opera-
tional expenditures, the C-RAN technology is currently being
deployed for testing. In this paper, we focus on the optimiza-
tion of spectrum pooling across multiple tenants in a C-RAN
architecture, as illustrated in Fig. 1.

Existing papers on C-RAN downlink optimization, such as
[10]–[16], have focused on single-tenant systems. These works,
and related references, study the design of coordinated precod-
ing and fronthaul compression strategies. Specifically, refer-
ences [10], [15], [16] consider the use of standard point-to-point
fronthaul compression and quantization strategies, whereas
[11], [12], [14] investigate a more advanced approach based on
multivariate compression and quantization. These perform the
joint compression and quantization of baseband signals across
multiple RUs, with the aim of controlling the impact of quanti-
zation distortion at the user equipment (UEs). Dual approaches
for the uplink of C-RAN were studied in, e.g., [17], [18]. We
refer to [8], [9] for a comprehensive review.

Tackling the optimization of C-RAN systems in the pres-
ence of multiple operators presents novel optimization de-
grees of freedom and technical challenges. As a key novel
design dimension, the available bandwidth may be optimally
split into private and shared subbands, where the private sub-
bands are exclusively used by the respective operators while the
shared subband is shared by all the participating operators (see
Fig. 2). Furthermore, cooperation and coordination on the shared
subband are facilitated by communication between the CPs,
which requires the design of the signals exchanged on the inter-
CP interface as a function of the inter-CP capacity. Finally, the
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Fig. 1. Illustration of the downlink of a multi-tenant C-RAN system.

Fig. 2. Illustration of frequency band splitting for the downlink transmission
into private and shared bands.

optimization problem entails a trade-off between the benefits
accrued from inter-operator cooperation and the amount of in-
formation exchanged about the respective users’ data.

In this paper, we study the design of the mult-tenant C-RAN
system illustrated in Fig. 1 under the assumption that fronthaul
and inter-CP backhaul links carry quantized baseband signals.
Note that this is the standard mode of operation for C-RAN
CP-to-RUs links. We tackle the joint optimization of bandwidth
allocation and of precoding and quantization strategies under
constraints on fronthaul and backhaul capacity and privacy for
the inter-CP communications.

To this end, we first consider standard point-to-point quanti-
zation as in most prior work on C-RAN. Then, a novel quanti-
zation scheme based on multivariate compression [11], [14] is
proposed. Through this approach, the CP of an operator is able
to correlate the quantization noise signals across the RUs of
both operators, so as to better control the trade-off between the
distortion observed by the UEs and inter-operator privacy. Note
that the crucial element of inter-operator privacy was not present
in prior works [11], [12], [14]. In this regard, we note that the
CP and RUs of one operator act as untrusted relays for the other
operators, and hence the proposed technique can also be applied
for the relay channels with untrusted relays studied in [19], [20].
We remark that the proposed physical layer security approach
is unconditionally secure, rather than computationally secure
as conventional cryptographic methods. Furthermore, it can be
directly implemented using baseband processing by designing
the fronthaul quantizers at the CPs without requiring additional
encryption and decryption mechanisms. Finally, the proposed
system can be generalized so as to include also cryptographic

operations at higher layers on top of the physical layer (see, e.g.,
[21]).

The rest of the paper is organized as follows. The system
model is described in Sec. II, and Sec. III presents the operation
of the multi-tenant C-RAN system with spectrum pooling. We
discuss the optimization of the multi-tenant C-RAN system in
Sec. IV. The novel multivariate compression scheme is intro-
duced in Sec. V. We provide numerical results that validate the
advantages of optimized spectrum pooling and of multivariate
compression in Sec. VI, and the paper is concluded in Sec. VII.

Some notations used throughout the paper are summarized
as follows. The mutual information between the random vari-
ables X and Y is denoted as I(X;Y ), and h(X|Y ) denotes
the conditional differential entropy of X given Y . We use the
notation CN (µ,R) to denote the circularly symmetric com-
plex Gaussian distribution with mean µ and covariance ma-
trix R. The set of all M ×N complex matrices is denoted
by CM×N , and E(·) represents the expectation operator. The
operation (·)† denotes Hermitian transpose of a matrix or
vector.

II. SYSTEM MODEL

We consider the downlink of a multi-tenant C-RAN with NO

operators. As shown in Fig. 1, we focus on the case of NO = 2
operators, but the treatment could be generalized for any NO at
the cost of a more cumbersome notation. We assume that each
operator has a single CP, NR RUs and NU UEs. We denote
the rth RU and the kth UE of the ith operator as RU (i, r) and
UE (i, k), respectively. We consider a general MIMO set-up in
which RU (i, r) and UE (i, k) have nR,i,r and nU,i,k antennas,
respectively, and define the number nR,i �

∑
r∈NR

nR,i,r of
total RU antennas of each operator. The sets of RU and UE
indices for either operator are denoted asNR � {1, 2, . . . , NR}
and NU � {1, 2, . . . , NU }, respectively, while NO � {1, 2} is
the set of operator indices.

The CP of each operator i, indicated as CP i, has a message
Mi,k ∈ {1, 2, . . . , 2nRi , k } to deliver to UE (i, k), where n is the
coding block length, assumed to be sufficiently large, and Ri,k

denotes the rate of the message Mi,k in bits per second (bit/s).
As in related works for C-RAN systems (see, e.g., [10]–[12]),

we assume that CP i is connected to RU (i, r) by a fronthaul
link of capacity CF,i,r bit/s. In addition, in order to enable inter-
operator cooperation, we assume that, as suggested in [4], the
CPs of two operators are connected to each other. Specifically,
CP i can send information to the other CP ī on a backhaul
link of capacity CB,i bit/s, where ī indicates ī = 3− i, i.e.,
1̄ = 2 and 2̄ = 1. We note that it would be generally useful to
deploy interfaces between the RUs of different operators [4], but
this work focuses on investigating the advantages of inter-CP
connections only.

Inter-operator cooperation via RAN sharing, as enabled by the
inter-CP backhaul links, may cause information leakage from
one operator to the other, which may degrade the confidentiality
of the UE messages. When designing the multi-tenant C-RAN
system, we will hence impose privacy constraints such that the
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inter-operator information leakage rate does not exceed a given
tolerable threshold value.

We assume flat-fading channel models, and divide the down-
link bandwidth as shown in Fig. 2 into private and shared sub-
bands. The signal y(i)

i,k ∈ CnU , i , k ×1 received by UE (i, k) on
private subband i can be written as

y(i)
i,k =

∑

r∈NR

Hi,r
i,kx

(i)
i,r + z(i)

i,k , (1)

where Hj,r
i,k ∈ CnU , i , k ×nR , j , r represents the channel matrix from

RU (j, r) to UE (i, k); x(i)
i,r ∈ CnR , i , r ×1 is the signal transmitted

by RU (i, r) on the private subband i; and z(i)
i,k ∼ CN (0, I) de-

notes the additive noise. Similarly, the signal y(S )
i,k ∈ CnU , i , k ×1

received by UE (i, k) on the shared subband is given as

y(S )
i,k =

∑

r∈NR

Hi,r
i,kx

(S )
i,r +

∑

r∈NR

Hī,r
i,kx

(S )
ī,r

+ z(S )
i,k , (2)

where x(S )
i,r ∈ CnR , i , r ×1 is the signal transmitted by RU (i, r) on

the shared subband; and z(S )
i,k ∼ CN (0, I) is the additive noise.

As illustrated in Fig. 1, in a manner similar to, e.g., [4], [22]–
[24], we assume that there is a spectrum pooling server that
carries out the centralized optimization of the signal process-
ing strategies, that determine spectrum sharing on behalf of the
two operators. For this purpose, the server needs to have the
knowledge of the channel matrices {Hj,r

i,k}i,j∈NO ,r∈NR ,k∈NU
,

inter-CP backhaul links’ capacity {CB,i}i∈NO
and CP-to-RUs

fronthaul links’ capacity {CF,i,r}i∈NO ,r∈NR
. In this work, as

in [25, Sec. II-C], we focus on a slow-fading environment so
that the overhead for acquiring accurate CSI is negligible. How-
ever, in practice, CSI available at the spectrum pooling server
may not be perfect due to both channel estimation errors and
distortions related to the communication between the CPs and
the server. Nevertheless, imperfect CSI can be accounted for
by using standard methods that have been widely investigated
considering either a deterministic worst-case model as in, e.g.,
[26] or a stochastic model as in, e.g., [27]. We leave a full in-
vestigation of this aspect to future research in order to focus
in this work on the key aspects of multi-tenancy and privacy.
Furthermore, we assume that each RU uses Non-Orthogonal
Multiple Access (NOMA), which is known to be information-
theoretically superior to the orthogonal allocation of resources
to users in the same cell [28]–[30].

III. MULTI-TENANT C-RAN WITH SPECTRUM POOLING

In this section, we describe the operation of the multi-tenant
C-RAN system with spectrum pooling and RAN infrastructure
sharing by means of inter-CP connections.

A. Overview

As illustrated in Fig. 2, we split the frequency band of band-
width W [Hz] into three subbands, where the first two subbands
are exclusively used by the respective operators, while the last
subband is shared by both operators. Accordingly, the band-

Fig. 3. Illustration of fronthaul and backhaul quantization at CP 1.

width W is decomposed as

W = WP,1 + WP,2 + WS , (3)

where WP,i is the bandwidth of the private subband assigned to
operator i, and WS is the bandwidth of the shared subband.

The private subbands are used by each operator to commu-
nicate to their respective UEs with no interference from the
other operators’ RUs using standard fronthaul-enabled C-RAN
transmission [8]. In contrast, the shared subband is used si-
multaneously by the two operators, which can coordinate their
transmission through the inter-CP links. In the following, we
detail the operation of CPs, RUs and UEs.

B. Encoding at CPs

In order to enable transmission over the private and shared
subbands, we split the message Mi,k intended for each UE
(i, k) into two submessages Mi,k,P and Mi,k,S of rates Ri,k,P

and Ri,k,S , respectively, with Ri,k,P + Ri,k,S = Ri,k . The sub-
messages Mi,k,P and Mi,k,S are communicated to the UE (i, k)
on the private and shared subbands, respectively. Each submes-
sage Mi,k,m , m ∈ {P, S}, is encoded by CP i in a baseband
signal si,k ,m ∈ Cdi , k , m ×1. We consider standard random cod-
ing with Gaussian codebooks, and hence each symbol si,k ,m is
distributed as si,k ,m ∼ CN (0, I).

1) Linear Precoding for Private Subband: CP i linearly pre-
codes the signals {si,k ,P }k∈NU

to be transmitted on the private
subband as

x̃(i)
i =

[
x̃(i)†

i,1 · · · x̃(i)†
i,NR

]†
=
∑

k∈NU

V(i)
i,ksi,k ,P , (4)

where the subvector x̃(i)
i,r ∈ CnR , i , r ×1 is to be transferred to

RU (i, r) on the fronthaul link, and V(i)
i,k ∈ CnR , i×di , k , P is the

precoding matrix for the signal si,k ,P .
2) Linear Precoding for Shared Subband: On the shared

subband, the CPs and RUs of both operators are activated to
cooperatively serve all the UEs. To this end, CP i precodes the
signal si,k ,S for each UE (i, k) into two precoded signals: signal

x̃(S )
i ∈ CnR , i×1 to be transmitted by its RUs and signal r̃(S )

ī
∈

CnR , ī×1 to be sent by the other operator ī. This is illustrated in
Fig. 3. As we will discuss, the transmission through the RUs of
the other operator is enabled by the inter-CP backhaul link and
is subject to privacy constraints.
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Mathematically, we write the precoded signals in the shared
subband as

x̃(S )
i =

[
x̃(S )†

i,1 · · · x̃(S )†
i,NR

]†
=
∑

k∈NU

V(S )
i,k si,k ,S , (5)

r̃(S )
ī

=
[
r̃(S )†

ī,1 · · · r̃(S )†
ī,NR

]†
=
∑

k∈NU

T(S )
ī,k

si,k ,S , (6)

where the subvectors x̃(S )
i,r ∈ CnR , i , r ×1 and r̃(S )

ī,r
∈ CnR , ī , r ×1

are communicated to the RUs (i, r) and (̄i, r), respectively; and
V(S )

i,k ∈ CnR , i×di , k , S and T(S )
ī,k
∈ CnR , ī×di , k , S are the precoding

matrices for the signal si,k ,S associated with the RUs (i, r) and
(̄i, r), respectively.

3) Fronthaul Compression: CP i is directly connected to
the RUs (i, r) in its network via fronthaul links. Therefore,
following the standard C-RAN operation, the CP i quantizes the
precoded signals x̃(i)

i,r and x̃(S )
i,r for transmission on the fronthaul

link to RU (i, r) on private and shared subbands. Assuming
vector quantization, we model the quantized signals x̂(m )

i,r , m ∈
{i, S}, as

x̂(m )
i,r = x̃(m )

i,r + q(m )
i,r , (7)

where q(m )
i,r represents the quantization noise. Adopting a

Gaussian test channel as in [10]–[12], the quantization noise
q(m )

i,r is independent of the precoded signal x̃(m )
i,r and distributed

as q(m )
i,r ∼ CN (0,Ω(m )

i,r ). We recall that a Gaussian test channel
can be well approximated by vector lattice quantizers [31].

We first adopt standard point-to-point compression, whereby
the signals {x̃(m )

i,r }r∈NR ,m∈{i,S} for different RUs and subbands
are compressed independently. A more sophisticated approach
based on multivariate compression will be discussed in Sec. V.
Accordingly, with point-to-point compression, the rate, in bit/s,
needed to send x̂(m )

i,r to RU (i, r) is given as Wi,m I(x̃(m )
i,r ; x̂(m )

i,r )

[32, Ch. 3], where the mutual information I(x̃(m )
i,r ; x̂(m )

i,r ) can be
written as

I
(
x̃(m )

i,r ; x̂(m )
i,r

)
= g

(m )
i,r (V,Ω)

= Φ

(
∑

k∈NU

K
(
E†i,rV

(m )
i,k

)
, Ω(m )

i,r

)

. (8)

Here we defined the functions

Φ(A,B) = log2 det(A + B)− log2 det(B), (9)

and K(A) = AA†; the shaping matrix Ei,r ∈ CnR , i×nR , i , r that
has all-zero elements except the rows from

∑r−1
q=1 nR,i,q + 1 to

∑r
q=1 nR,i,q which contains an identity matrix; and the notation

Wi,m = WP,i · 1(m = i) + WS · 1(m = S). Here 1(·) repre-
sents the indicator function that returns 1 if the input argument
is true and 0 otherwise.

4) Backhaul Compression: As seen in Fig. 3, since there is
no direct link between CP i and the RUs (̄i, r) of the other tenant,
CP i sends the precoded signal r̃(S )

ī,r
to the RU (̄i, r) through CP

ī. The CP ī forwards the received bit stream from CP i to RU

(̄i, r). Since both the backhaul link from CP i to CP ī and the
fronthaul link from CP ī to RU (̄i, r) have finite capacities, CP
i quantizes the signal r̃(S )

ī,r
to obtain the quantized signal

r(S )
ī,r

= r̃(S )
ī,r

+ e(S )
ī,r

, (10)

where e(S )
ī,r

represents the quantization noise. Using the same
quantization model discussed above, this is distributed as
e(S )

ī,r
∼ CN (0,Σ(S )

ī,r
). As mentioned, we assume here the in-

dependent compression of the signals {r̃(S )
ī,r
}r∈NR

for different

RUs, so that the rate needed to convey each signal r(S )
ī,r

is given

as WS I(r̃(S )
ī,r

; r(S )
ī,r

), with

I
(
r̃(S )

ī,r
; r(S )

ī,r

)
= γ

(S )
ī,r

(T,Σ)

= Φ

(
∑

k∈NU

K
(
E†

ī,r
T(S )

ī,k

)
, Σ(S )

ī,r

)

. (11)

The capacity constraint for the backhaul link from CP i to CP ī
can be written as

∑

r∈NR

WS γ
(S )
ī,r

(T,Σ) ≤ CB,i , i ∈ NO , (12)

since the backhaul link needs to carry the baseband signals for
all the RUs. Similarly, the capacity constraint for the fronhtaul
link from CP i to RU (i, r) can be expressed as
∑

m∈{i,S}
Wi,m g

(m )
i,r (V,Ω) + WS γ

(S )
i,r (T,Σ) ≤ CF,i,r , (13)

for i ∈ NO , r ∈ NR , since the fronthaul link needs to support
transmission of the signals for both private and shared subbands.

5) Power Constraints: The signals x(i)
i,r and x(S )

i,r transmitted
by RU (i, r) on the private and shared subbands are given as
x(i)

i,r = x̂(i)
i,r and x(S )

i,r = x̂(S )
i,r + r(S )

i,r , respectively. We impose
per-RU transmission power constraints as

WP,ip
(i)
i,r (V,Ω) + WS p

(S )
i,r (V,T,Ω,Σ) ≤ Pi,r , (14)

for i ∈ NO , r ∈ NR , where Pi,r represents the maximum
transmission power allowed for RU (i, r), and the functions
p

(i)
i,r (V,Ω) and p

(S )
i,r (V,T,Ω,Σ) measure the transmission

powers per unit bandwidth on the private and shared subbands,
respectively, as

p
(i)
i,r (V,Ω) � E

∥
∥
∥x(i)

i,r

∥
∥
∥

2

=

(
∑

k∈NU

tr
(
K
(
E†i,rV

(i)
i,k

))
+ tr

(
Ω(i)

i,r

)
)

, (15)

p
(S )
i,r (V,T,Ω,Σ) � E

∥
∥
∥x(S )

i,r

∥
∥
∥

2

=

⎛

⎝

∑
k∈NU

tr
(
K
(
E†i,rV

(S )
i,k

))
+ tr

(
Ω(S )

i,r

)

+
∑

k∈NU
tr
(
K
(
E†i,rT

(S )
i,k

))
+ tr

(
Σ(S )

i,r

)

⎞

⎠ . (16)
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C. Decoding at UEs and Achievable Rates

Each UE (i, k) decodes the the submessage Mi,k,P transmit-

ted on the private subband based on the received signal y(i)
i,k ,

while treating the interference signals as additive noise. Then,
the maximum achievable rate Ri,k,P of the submessage Mi,k,P

can be written as

Ri,k,P = WP,iI
(
si,k ,P ; y(i)

i,k

)
, (17)

where

I
(
si,k ,P ; y(i)

i,k

)
= fi,k ,P (V,Ω)

= Φ

⎛

⎝K
(
Hi

i,kV
(i)
i,k

)
,

⎛

⎝

∑
l∈NU \{k}K

(
Hi

i,kV
(i)
i,l

)

+Hi
i,kΩ

(i)
i Hi †

i,k + I

⎞

⎠

⎞

⎠ .

(18)

Here we defined the channel matrix Hj
i,k = [Hj,1

i,kH
j,2
i,k · · ·

Hj,NR

i,k ] from all the RUs of operator j to UE (i, k), and the

matrix Ω(i)
i = diag(Ω(i)

i,1 , . . . ,Ω
(i)
i,NR

).
In a similar manner, we assume that UE (i, k) decodes the

submessage Mi,k,S sent on the shared subband from the received

signal y(S )
i,k by treating the interference signals as noise, so that

the maximum achievable rate Ri,k,S is given as

Ri,k,S = WS I
(
si,k ,S ; y(S )

i,k

)
, (19)

with the mutual information I(si,k ,S ; y(S )
i,k ) given as

I(si,k ,S ; y(S )
i,k ) = fi,k ,S (V,T,Ω,Σ) =

Φ

⎛

⎜
⎜
⎜
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⎜
⎜
⎜
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⎜
⎜
⎜
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⎜
⎜
⎜
⎜
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+Hī
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⎠
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⎛

⎝
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i,kT
(S )
i,l

+Hī
i,kV

(S )
ī,l

⎞

⎠

+Hi
i,k

(
Ω(S )

i + Σ(S )
i

)
Hi †

i,k

+Hī
i,k

(
Ω(S )

ī
+ Σ(S )

ī

)
Hī †
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⎟
⎟
⎟
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,

(20)

where we defined the matrices Ω(S )
i = diag(Ω(S )

i,1 , . . . ,Ω(S )
i,NR

)

and Σ(S )
i = diag(Σ(S )

i,1 , . . . ,Σ(S )
i,NR

).

D. Privacy Constraints

As discussed, inter-operator cooperation on the shared sub-
band requires the transmission of precoded and quantized sig-
nals {r(S )

ī,r
}r∈NR

between CP i and CP ī on the backhaul link.

As a result, CP ī can infer some information about the mes-
sages {Mi,k,S}k∈NU

intended for the UEs (i, k), k ∈ NU , of
the operator i. In order to ensure that this leakage of infor-
mation is limited, one can design both the precoding matri-
ces T and the quantization covariance matrices Σ under the

information-theoretic privacy constraint

WS I

(

si,k ,S ;
{
r(S )

ī,r

}

r∈NR

)

≤ Γprivacy. (21)

In (21), the mutual information I(si,k ,S ; {r(S )
ī,r
}r∈NR

) measures
the amount of the information that can be inferred about each
signal si,k ,S by the CP ī of the other operator based on the

observation of {r(S )
ī,r
}r∈NR

. This mutual information can be
written as

I

(

si,k ,S ;
{
r(S )

ī,r

}

r∈NR

)

= βi,k,S (T,Σ)

= Φ

⎛

⎝K
(
T(S )

ī,k

)
,
∑

l∈NU \{k}
K
(
T(S )

ī,l

)
+ Σ(S )

ī

⎞

⎠ . (22)

The condition (21) imposes that the amount of leaked infor-
mation does not exceed a predetermined threshold value Γprivacy.
This value has a specific operational meaning according to stan-
dard information-theoretic results [33, Ch. 4, Problem 33]. In
particular, a privacy level of Γprivacy implies that, if a user re-
ceives at rate R (bit/s) on shared subband, a bit stream of rate
(R− Γprivacy)+ can be received securely, while the remaining
rate min(Γprivacy, R) (bit/s) can be eavesdropped by the other
operator. Here [·]+ is defined as [a]+ = max{a, 0}.

In ensuring the satisfaction of the privacy constraint (21),
the quantization noise introduced by the fronthaul quantization
plays an important role. In fact, the fronthaul quantization noise
is instrumental in masking information about the UE messages at
the cost of a more significant degradation of the signals received
by the UEs. A more advanced quantization scheme will be
considered in Sec. V.

IV. OPTIMIZATION OF MULTI-TENANT C-RAN

We aim at jointly optimizing the bandwidth allocation W, the
precoding matrices {V,T} and the quantization noise covari-
ance matrices {Ω,Σ}, with the goal of maximizing the sum-rate
RΣ �

∑
i∈NO

∑
k∈NU

(Ri,k,P + Ri,k,S ) of all the UEs, under
constraints on backhaul and fronthaul capacity, per-RU transmit
power and inter-operator privacy levels. The problem can be
stated as

maximize
V ,T ,Ω ,Σ ,W ,R

∑

i∈NO

∑

k∈NU

(Ri,k,P + Ri,k,S ) (23a)

s.t. Ri,k,P ≤WP,ifi,k ,P (V,Ω) ,

i ∈ NO , k ∈ NU , (23b)

Ri,k,S ≤WS fi,k,S (V,T,Ω,Σ) ,

i ∈ NO , k ∈ NU , (23c)
∑

r∈NR

WS γ
(S )
ī,r

(T,Σ) ≤ CB,i, i ∈ NO , (23d)

∑

m∈{i,S}
Wi,m g

(m )
i,r (V,Ω)+WS γ

(S )
i,r (T,Σ)

≤CF,i,r , i ∈ NO , r ∈ NR , (23e)
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WS βi,k,S (T,Σ) ≤ Γprivacy,

i ∈ NO , k ∈ NU , (23f)

WP,ip
(i)
i,r (V,Ω) + WS p

(S )
i,r (V,T,Ω,Σ)

≤ Pi,r , i ∈ NO , r ∈ NR , (23g)

WP,1 + WP,2 + WS = W. (23h)

In (23), constraints (23b)–(23c) follow from the achievable
rates (17) and (19); (23d)–(23e) are the backhaul and fronthaul
capacity constraints (12) and (13); (23f) is the inter-operator
privacy constraint (21); (23g) is the per-RU transmit power con-
straint (14); and (23h) is the sum-bandwidth constraint (3).

Since the problem (23) is non-convex, we adopt a Succes-
sive Convex Approximation (SCA) approach to obtain an ef-
ficient local optimization algorithm. To this end, we equiva-
lently rewrite the constraints (23b) and (23c) using the epigraph
form as

log Ri,k,P ≤ log WP,i + log tf ,i,k ,P , i ∈ NO , k ∈ NU ,
(24)

tf ,i,k ,P ≤ fi,k ,P (V,Ω) , i ∈ NO , k ∈ NU , (25)

and

log Ri,k,S ≤ log WS + log tf ,i,k ,S , i ∈ NO , k ∈ NU , (26)

tf ,i,k ,S ≤ fi,k ,S (V,T,Ω,Σ) i ∈ NO , k ∈ NU , (27)

respectively. We note that the conditions (24) and (26) are
difference-of-convex (DC) constraints (see, e.g., [11], [13]),
and that the conditions (25) and (27) can be converted into
DC constraints by expressing them with respect to the vari-
ables Ṽ(i)

i,k = V(i)
i,kV

(i)†
i,k and Ũ(S )

i,k = U(S )
i,k U(S )†

i,k with U(S )
i,k =

[V(S )†
i,k T(S )†

i,k ]†. Similarly, the other non-convex constraints
(23e)–(23g) can also be transformed into DC conditions by
relaxing the non-convex rank constraints rank(Ṽ(i)

i,k ) ≤ di,k ,P

and rank(Ũ(S )
i,k ) ≤ di,k ,S . As a result of these manipulations,

we finally obtain the DC problem (31) reported in Appendix.
We tackle the obtained DC problem by deriving an itera-

tive algorithm based on the standard concave convex proce-
dure (CCCP) approach [11], [13]. The detailed algorithm is
described in Algorithm 1. In our simulations, we used the CVX
software [34] to solve the convex problem (32) (see Appendix)
at Step 2. The complexity of Algorithm 1 is given as the num-
ber of iterations multiplied by the complexity of solving each
convex program (32) shown in Appendix. The latter can be
seen to be polynomial in the problem size, which is given as
O(NO n2

R (NU + NR )) assuming nR,i,r = nR for all i ∈ NO

and r ∈ NR , by the use of interior point algorithms (see [35,
Ch. 1 and Ch. 11]). For the number of iterations, we provide
numerical evidence of the fast convergence of the proposed al-
gorithm in Sec. VI.

After the convergence of the algorithm, we need to project the
variables Ṽ(i)′′

i,k and Ũ(S )′′
i,k onto the spaces of limited-rank ma-

trices satisfying rank(Ṽ(i)
i,k ) ≤ di,k ,P and rank(Ũ(S )

i,k ) ≤ di,k ,S ,
respectively. Without claim of optimality, we use the standard
approach of obtaining the variables Ṽ(i)

i,k and Ũ(S )
i,k by including

Algorithm 1: CCCP Algorithm For Problem (31).

1. Initialize the variables Ṽ′, Ũ′, Ω′, Σ′, W′ and R′ to
arbitrary feasible values that satisfy the constraints of
problem (31).
2. Update the variables Ṽ′′, Ũ′′, Ω′′, Σ′′, W′′ and R′′ as a
solution of the convex problem (32) in Appendix.
3. Stop if a convergence criterion is satisfied. Otherwise,
set Ṽ′ ← Ṽ′′, Ũ′ ← Ũ′′, Ω′ ← Ω′′, Σ′ ← Σ′′,
W′ ←W′′ and R′ ← R′′ and go back to Step 2.

the di,k ,P and di,k ,S leading eigenvectors of the matrices Ṽ(i)′′
i,k

and Ũ(S )′′
i,k , respectively, as columns.

V. MULTIVARIATE COMPRESSION

In this section, we propose a novel quantization approach for
inter-CP communication that aims at controlling the trade-off
between the distortion at the UEs and inter-operator privacy. The
approach is based on multivariate compression, first studied for
single-tenant systems in [11], [14]. To highlight the idea, we
focus on the case of single RU per operator, i.e., NR = 1, but
extensions follow in the same way, albeit at the cost of a more
cumbersome notation.

The key idea is for each CP i to jointly quantize the precoded
signals to be transmitted by the tenants’ RUs. In so doing, one
can better control the impact of the quantization noise on the
UEs’ decoders, while still ensuring a given level of privacy with
respect to CP ī.

Mathematically, CP i produces the linearly precoded signals
x̃(S )

i,1 and r̃(S )
ī,1 according to (5) and (6), respectively, and obtains

the quantized signals x̂(S )
i,1 = x̃(S )

i,1 + q(S )
i,1 and r(S )

ī,1 = r̃(S )
ī,1 +

e(S )
ī,1 that are transferred to RUs (i, 1) and (̄i, 1), respectively.

With multivariate compression of the precoded signals x̃(S )
i,1 and

r̃(S )
ī,1 , CP i can ensure that the quantization noise signals q(S )

i,1 and

e(S )
ī,1 have a correlation matrix Θ(S )

i = E[q(S )
i,1 e(S )†

ī,1 ]. As a result,
the effective quantization noise signal that affects the received
signal y(S )

j,k of UE (j, k) on the shared subband is given as q̃(S )
j,k =

Hi
j,kq

(S )
i,1 + Hī

j,ke
(S )
ī,1 , whose covariance matrix depends on the

correlation matrix Θ(S )
i as

E
[
q̃(S )

j,k q̃(S )†
j,k

]
= Gi

j,kΛiG
i †
j,k , (28)

where the matrix Λi represents the covariance matrix of the
stacked quantization noise signals [q(S )†

i,1 e(S )†
ī,1 ]† as

Λi = E

[[
q(S )

i,1

e(S )
ī,1

]
[
q(S )†

i,1 e(S )†
ī,1

]
]

=

[
Ω(S )

i,1 Θ(S )
i

Θ(S )†
i Σ(S )

ī,1

]

� 0.

(29)
Designing Θ(S )

i hence allows us to control the effective noise
observed by the UE, while also affecting the inter-operator pri-
vacy constraint (21).

For the optimization under multivariate compression, it was
shown in [32, Ch. 9] that correlating the quantization noise sig-
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nals imposes the following additional constraint on the variables
tg ,i,1,S and tγ ,ī,r,S in the DC problem (31) detailed in Appendix:

h
(
x̂(S )

i,1

)
+ h

(
r(S )

ī,1

)
− h

(
x̂(S )

i,1 , r(S )
ī,1 |x̃

(S )
i,1 , r̃(S )

ī,1

)

= log2 det

(
∑

k∈NU

Ẽ†i,1Ũ
(S )
i,k Ẽi,1 + Ω(S )

i,1

)

+ log2 det

(
∑

k∈NU

Ē†i,1Ũ
(S )
i,k Ēi,1 + Σ(S )

ī,1

)

− log2 det (Λi) ≤ tg ,i,1,S + tγ ,ī,r,S . (30)

The optimization under multivariate quantization is stated as the
problem (31) in Appendix with the constraint (30) added. We
can handle the problem following Algorithm 1 since the added
condition is a DC constraint.

VI. NUMERICAL RESULTS

In this section, we present numerical results that validate
the performance of multi-tenant C-RAN systems with spectrum
pooling in the presence of the proposed optimization and quan-
tization strategies. We assume that the positions of the RUs
and UEs are uniformly distributed within a circular area of ra-
dius 100 m. For given positions of the RUs and the UEs, the
channel matrix Hj,r

i,k from RU (j, r) to UE (i, k) is modeled as

Hj,r
i,k =

√
ρj,r

i,kH̃
j,r
i,k , where ρj,r

i,k = 1/(1 + (Dj,r
i,k /D0)α ) repre-

sents the path-loss, Dj,r
i,k is the distance between the RU (j, r)

to UE (i, k), and the elements of H̃j,r
i,k are independent and

identically distributed (i.i.d.) as CN (0, 1). In the simulation,
we set α = 3 and D0 = 50 m. Except for Fig. 9, we focus on
the point-to-point compression strategy studied in Sec. III and
Sec. IV.

To validate the effectiveness of the proposed designs, we
compare the following three schemes:

� Spectrum pooling with optimized bandwidth allocation
WP,1, WP,2 and WS ;

� Spectrum pooling with equal bandwidth allocation WP,1 =
WP,2 = WS = W/3;

� No spectrum pooling with equal bandwidth allocation
WP,1 = WP,2 = W/2 and WS = 0.

The first approach adopts the proposed optimization algo-
rithm (see Algorithm 1) discussed in Sec. IV. Instead, the other
two baseline approaches are obtained by using the proposed
algorithm with the added linear equality constraints WP,1 =
WP,2 = WS = W/3, or WP,1 = WP,2 = W/2 and WS = 0, re-
spectively. Except for the last scheme with no spectrum pooling,
all schemes exhibit a trade-off between the achievable sum-rate
and the guaranteed privacy level Γprivacy. A smaller Γprivacy, i.e., a
stricter privacy constraint, generally entails a smaller sum-rate,
and vice versa for a larger Γprivacy. To quantify this effect, we de-
fine the per-UE secrecy rate RU,sec as RU,sec = [RU − Γprivacy]+ ,
where RU is the average per-UE achievable rate. The rate RU

is given by the total sum-rate RΣ divided by the number of
total UEs, i.e., RU = RΣ/(2NU ). Following the discussion in
Sec. III-D, the quantity RU,sec measures the rate at which in-

Fig. 4. Average per-UE rate versus the number of iterations (NR = NU ∈
{1, 2}, nR ,i,r ∈ {1, 2}, nU,i,k = 1, CB ,i = 1 Gbit/s, CF ,i,r = 500 Mbit/s,
W = 100 MHz, Γprivacy = 200 Mbit/s and 0, 10 dB SNRs).

formation is transmitted privately to each UE. In contrast, RU

represents the overall transmission rate, including both secure
and insecure data streams.

In Fig. 4, we elaborate on the convergence speed of
Algorithm 1 by plotting the average per-UE rate versus
the number of iterations for NR = NU ∈ {1, 2}, nR,i,r ∈
{1, 2}, nU,i,k = 1, CB,i = 1 Gbit/s, CF,i,r = 500 Mbit/s,
W = 100 MHz, Γprivacy = 200 Mbit/s and 0, 10 dB SNRs.
The figure suggests, along with our extensive experiments,
that the proposed algorithm converges with a few tens of
iterations.

Fig. 5 plots the average per-UE rate RU versus the aver-
age per-UE secrecy rate RU,sec for a multi-tenant C-RAN with
NR = NU = 2, nR,i,r = nU,i,k = 1, CB,i = 1 Gbit/s, CF,i,r =
500 Mbit/s, W = 100 MHz and 10, 15 and 20 dB signal-to-
noise ratios (SNRs). The curves are obtained by varying the
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Fig. 5. Average per-UE rate RU versus average per-UE secrecy rate
RU,sec (NR = NU = 2, nR ,i,r = nU,i,k = 1, CB ,i = 1 Gbit/s, CF ,i,r =
500 Mbit/s and W = 100 MHz).

Fig. 6. Bandwidth allocation versus average per-UE secrecy rate
RU,sec (NR = NU = 1, nR ,i,r = nU,i,k = 1, CB ,i = 1 Gbit/s, CF ,i,r =
500 Mbit/s and W = 100 MHz).

privacy threshold levels ranging from 5 Mbit/s to 60 Mbit/s
in the constraints (23f). In the figure, the multi-tenant C-RAN
system with the proposed optimization achieves a significantly
improved rate-privacy trade-off as compared to the other two
strategies with no spectrum pooling or uniform spectrum allo-
cation. The gain becomes more significant at lower SNR and
larger privacy levels, since the impact of inter-operator cooper-
ation in the shared subband is more pronounced in this regime.
As an example, in order to guarantee the per-UE secrecy rate of
20 Mbit/s, the proposed multi-tenant C-RAN system achieves a
gain of about 47% gain in terms of per-UE rates at 10 dB SNR
with respect to the traditional C-RAN system without spectrum
pooling.

Fig. 6 plots the average bandwidth allocation between the
private and shared subbands versus the average per-UE secrecy
rate RU,sec for the set-up considered in Fig. 5, but with NR =
NU = 1. Consistently with the discussion above, as the SNR

Fig. 7. Average per-UE rate RU versus average per-UE secrecy rate
RU,sec (NR = NU = 2, nR ,i,r = 2, nU,i,k = 1, CB ,i = 1 Gbit/s, CF ,i,r =
500 Mbit/s and W = 100 MHz).

Fig. 8. (a) Average sum-rate RΣ . (b) Bandwidth allocation versus the
backhaul capacity CF ,i (NR = NU = 1, nR ,i,r = nU,i,k = 1, CF ,i,r =
500 Mbit/s, W = 100 MHz, Γprivacy = 300 Mbit/s and 15, 20 dB SNRs).
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Fig. 9. (a) Average per-UE rate RU . (b) Bandwidth allocation versus average
per-UE secrecy rate RU,sec (NR = NU = 1, nR ,i,r = nU,i,k = 1, CB ,i = 1
Gbit/s, CF ,i,r = 500 Mbit/s and W = 100 MHz).

decreases, it is seen that more spectrum resources are allocated
to the shared subband in order to leverage the opportunity of
inter-operator cooperation.

In Fig. 7, we elaborate on the effect of the number of antennas.
To this end, we show the average per-UE rate RU versus the
average per-UE secrecy rate RU,sec for a multi-tenant C-RAN
with the same set-up as in Fig. 5 except for nR,i,r = 2 instead
of nR,i,r = 1. We can see that, compared to the single-antenna
case, all the three schemes become more robust to the privacy
constraint with an increased number of RU and UE antennas.
This is due to the additional degrees of freedom in the precoding
design that is afforded by the larger number of antennas.

In Fig. 8, we plot the average sum-rate and the optimized
bandwidth allocation versus the backhaul capacity CB,i for a
multi-tenant C-RAN with NR = NU = 1, nR,i,r = nU,i,k = 1,
CF,i,r = 500 Mbit/s, W = 100 MHz, Γprivacy = 300 Mbit/s and
10, 15 dB SNRs. The figure shows that, as the backhaul capacity

increases, a larger bandwidth is allocated to the shared subband,
since the CPs can exchange better descriptions of the precoded
signals through the backhaul links of larger capacity. However,
if the backhaul capacity exceeds a threshold value, both the
sum-rate performance and the optimized bandwidth saturate,
since the presence of inter-operator privacy constraints limits
the opportunities for inter-operator cooperation.

We now study the impact of correlating the quantization noise
signals across the RUs of operators by means of the multivariate
compression strategy proposed in Sec. V. In Fig. 9(a), we plot
the average per-UE rate RU versus the average per-UE secrecy
rate RU,sec for the same multi-tenant C-RAN set-up considered
in Fig. 6 assuming spectrum pooling with optimized bandwidths
{WP,1,WP,2,WS }. We observe that multivariate compression
is instrumental in improving the trade-off between inter-operator
cooperation and privacy. The accrued performance gain in-
creases with the SNR, since the performance degradation due to
quantization is masked by the additive noise when the SNR is
small. Fig. 9(b) plots the optimized bandwidth allocation versus
the average per-UE secrecy rate RU,sec for a 20 dB SNR. The
figure suggests that, with multivariate compression, it is desir-
able to allocate more bandwidth to the shared subband, given
the added benefits of inter-operator cooperation in the presence
of multivariate compression.

VII. CONCLUSION

In this work, we have studied the design of multi-tenant
C-RAN systems with spectrum pooling under inter-operator
privacy constraints. Assuming the standard C-RAN operation
with quantized baseband signals, we first considered the stan-
dard point-to-point compression strategy, and then proposed
a novel multivariate compression to achieve a better trade-off
between the inter-operator cooperation and privacy. For both
cases, we tackled the joint optimization of the bandwidth al-
location among the private and shared subbands and of the
precoding and fronthaul/backhaul compression strategies while
satisfying constraints on fronthaul and backhaul capacity, per-
RU transmit power and inter-operator privacy levels. To tackle
the non-convex optimization problems, we converted the prob-
lems into DC problems with rank relaxation and derived iterative
algorithms based on the standard CCCP. We provided extensive
numerical results to validate the effectiveness of the multi-tenant
C-RAN system with the proposed optimization algorithm and
multivariate compression. From the numerical results, we can
conclude that the gain of optimized pooling is more signifi-
cant for lower SNR levels and smaller number of RU and UE
antennas, as long as the privacy constraint is not too strict.
Furthermore, multivariate compression generally increases the
gain of spectrum pooling. These results confirm the intuition
that spectrum pooling is useful in improving the performance of
networks with individually limited resources, e.g., limited SNR
and number of antennas, provided that inter-operator privacy
constraints are not excessively constraining. We note that, with
standard multicarrier transmission, the design problem under
study would include joint power, fronthaul and secrecy con-
straints on the optimization variables across all subcarriers. The
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resulting problem can be dealt with by using a standard dual de-
composition approach [36] by leveraging the approach proposed
in this paper. Among open problems, we mention the extension
of the design and analysis to models with RAN sharing at the
level of RUs; the consideration of hierarchical fog architectures;
and the investigation of the effect of noisy or delayed CSI at the
spectrum pooling server [26], [27].

APPENDIX

By relaxing the non-convex rank constraints rank(Ṽ(i)
i,k ) ≤

di,k ,P and rank(Ũ(S )
i,k ) ≤ di,k ,S explained in Sec. IV, the prob-

lem (23) can be converted into the DC problem

maximize
Ṽ , Ũ , Ω , Σ , W ,
R , t , g̃ , γ̃, p̃

∑

i∈NO

∑

k∈NU

(Ri,k,P + Ri,k,S )

s.t. log Ri,k,P ≤ logWP,i +log tf ,i,k ,P , i∈NO , k∈NU ,

tf ,i,k ,P ≤fi,k ,P

(
Ṽ,Ω

)
, i∈NO , k∈NU ,

log Ri,k,S ≤ log WS + log tf ,i,k ,S , i∈NO , k∈NU ,

tf ,i,k ,S ≤fi,k ,S

(
Ṽ, Ũ,Ω,Σ

)
, i∈NO , k∈NU ,

g̃
(i)
i,r + g̃

(S )
i,r +γ̃

(S )
i,r ≤ CF,i,r , i∈NO , r∈NR ,

log Wi,m + log tg ,i,r,m ≤ log g̃
(m )
i,r ,

i ∈ NO , r ∈ NR , m ∈ {i, S},

g
(i)
i,r

(
Ṽ,Ω

)
≤ tg ,i,r,i , i ∈ NO , r ∈ NR ,

g
(S )
i,r

(
Ũ,Ω

)
≤ tg ,i,r,S , i ∈ NO , r ∈ NR ,

log WS + log tγ ,i,r,S ≤ log γ̃
(S )
i,r ,

i ∈ NO , r ∈ NR ,

γ
(S )
i,r

(
Ũ,Σ

)
≤ tγ ,i,r,S , i ∈ NO , r ∈ NR ,

∑

r∈NR

γ̃
(S )
ī,r
≤ CB,i, i ∈ NO ,

logWS +log tβ ,i,k ,S ≤ log Γprivacy, i∈NO , k∈NU ,

βi,k ,S

(
Ũ,Σ

)
≤ tβ ,i,k ,S , i ∈ NO , k ∈ NU ,

p̃
(i)
i,r + p̃

(S )
i,r ≤ Pi,r , i ∈ NO , r ∈ NR ,

log Wi,m + log tp,i,r,m ≤ log p̃
(m )
i,r ,

i ∈ NO , r ∈ NR , m ∈ {i, S},

p
(m )
i,r

(
Ṽ, Ũ,Ω,Σ

)
≤ tp,i,r,m ,

i ∈ NO , r ∈ NR , m ∈ {i, S},
WP,1 + WP,2 + WS = W. (31)

Furthermore, at Step 2 in Algorithm 1, the CCCP approach
solves the convex problem obtained by linearizing the terms that

induce non-convexity of problem (31). This can be written as

maximize
Ṽ , Ũ , Ω , Σ , W ,
R , t , g̃ , γ̃, p̃

∑

i∈NO

∑

k∈NU

(Ri,k,P + Ri,k,S )

s.t. ϕ
(
Ri,k,P , R′i,k ,P

) ≤ log WP,i + log tf ,i,k ,P ,

i ∈ NO , k ∈ NU ,

tf ,i,k ,P ≤ f̂i,k ,P

(
Ṽ,Ω, Ṽ′,Ω′

)
, i∈NO , k ∈ NU ,

ϕ
(
Ri,k,S , R′i,k ,S

) ≤ log WS + log tf ,i,k ,S ,

i ∈ NO , k ∈ NU ,

tf ,i,k ,S ≤ f̂i,k ,S

(
Ṽ, Ũ,Ω,Σ, Ṽ′, Ũ′,Ω′,Σ′

)
,

i ∈ NO , k ∈ NU ,

g̃
(i)
i,r + g̃

(S )
i,r +γ̃

(S )
i,r ≤CF,i,r , i∈NO , r∈NR ,

ϕ
(
Wi,m ,W ′

i,m

)
+ϕ
(
tg ,i,r,m , t′g ,i,r,m

)≤ log g̃
(m )
i,r ,

i ∈ NO , r ∈ NR , m ∈ {i, S},
ĝ

(i)
i,r

(
Ṽ,Ω, Ṽ′,Ω′

)
≤ tg ,i,r,i , i ∈ NO , r ∈ NR ,

ĝ
(S )
i,r

(
Ũ,Ω, Ũ′,Ω′

)
≤ tg ,i,r,S , i ∈ NO , r ∈ NR ,

ϕ (WS ,W ′
S ) + ϕ

(
tγ ,i,r,S , t′γ ,i,r,S

) ≤ log γ̃
(S )
i,r ,

i ∈ NO , r ∈ NR ,

γ̂
(S )
i,r

(
Ũ,Σ, Ũ′,Σ′

)
≤ tγ ,i,r,S , i ∈ NO , r ∈ NR ,

∑

r∈NR

γ̃
(S )
ī,r
≤ CB,i, i ∈ NO ,

ϕ (WS ,W ′
S ) + ϕ

(
tβ ,i,k ,S , t′β ,i,k ,S

)

≤ log Γprivacy, i ∈ NO , k ∈ NU ,

β̂i,k ,S

(
Ũ,Σ, Ũ′,Σ′

)
≤ tβ ,i,k ,S , i∈NO , k ∈ NU ,

p̃
(i)
i,r + p̃

(S )
i,r ≤ Pi,r , i ∈ NO , r ∈ NR ,

ϕ
(
Wi,m ,W ′

i,m

)
+ϕ

(
tp,i,r,m , t′p,i,r,m

)

≤ log p̃
(m )
i,r , i ∈ NO , r ∈ NR , m ∈ {i, S},

p
(m )
i,r

(
Ṽ, Ũ,Ω,Σ

)
≤ tp,i,r,m ,

i ∈ NO , r ∈ NR , m ∈ {i, S},
WP,1 + WP,2 + WS = W, (32)

where we defined the functions

f̂i,k ,P

(
Ṽ,Ω, Ṽ′,Ω′

)

= log2 det

(
∑

l∈NU

Hi
i,kṼ

(i)
i,l H

i†
i,k + Hi

i,kΩ
(i)
i Hi †

i,k + I

)

− 1
ln 2

ϕ

⎛

⎝

∑
l∈NU \{k}H

i
i,kṼ

(i)
i,l H

i†
i,k + Hi

i,kΩ
(i)
i Hi †

i,k + I,
∑

l∈NU \{k}H
i
i,kṼ

(i)′
i,l Hi†

i,k + Hi
i,kΩ

(i) ′
i Hi †

i,k + I

⎞

⎠,
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f̂i,k ,S

(
Ṽ, Ũ,Ω,Σ, Ṽ′, Ũ′,Ω′,Σ′

)
=

log2 det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑
l∈NU

Gi
i,kŨ

(S )
i,l Gi †

i,k

+
∑

l∈NU
Gī

i,kŨ
(S )
ī,l

Gī †
i,k

+Hi
i,k (Ω(S )

i + Σ(S )
i )Hi †

i,k

+Hī
i,k (Ω(S )

ī
+ Σ(S )

ī
)Hī †

i,k + I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

− 1
ln 2

ϕ

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑
l∈NU \{k}G

i
i,kŨ

(S )
i,l Gi †

i,k

+
∑

l∈NU
Gī

i,kŨ
(S )
ī,l

Gī †
i,k

+Hi
i,k (Ω(S )

i + Σ(S )
i )Hi †

i,k

+Hī
i,k (Ω(S )

ī
+ Σ(S )

ī
)Hī †

i,k + I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑
l∈NU \{k}G

i
i,kŨ

(S )′
i,l Gi †

i,k

+
∑

l∈NU
Gī

i,kŨ
(S )′
ī,l

Gī †
i,k

+Hi
i,k (Ω(S ) ′

i + Σ(S ) ′
i )Hi †

i,k

+Hī
i,k (Ω(S ) ′

ī
+ Σ(S ) ′

ī
)Hī †

i,k + I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

ĝ
(i)
i,r

(
Ṽ,Ω, Ṽ′,Ω′

)
=

1
ln 2

ϕ

(∑
k∈NU

E†i,rṼ
(i)
i,kEi,r + Ω(i)

i,r ,∑
k∈NU

E†i,rṼ
(i)′
i,k Ei,r + Ω(i) ′

i,r

)

− log2 det
(
Ω(i)

i,r

)
,

ĝ
(S )
i,r

(
Ũ,Ω, Ũ′,Ω′

)
=

1
ln 2

ϕ

(∑
k∈NU

Ẽ†i,rŨ
(S )
i,k Ẽi,r + Ω(S )

i,r ,
∑

k∈NU
Ẽ†i,rŨ

(S )′
i,k Ẽi,r + Ω(S ) ′

i,r

)

− log2 det
(
Ω(S )

i,r

)
,

γ̂
(S )
i,r

(
Ũ,Σ, Ũ′,Σ′

)
=

1
ln 2

ϕ

(∑
k∈NU

Ē†
ī,r

Ũ(S )
ī,k

Ēī,r + Σ(S )
i,r ,

∑
k∈NU

Ē†
ī,r

Ũ(S )′
ī,k

Ēī,r + Σ(S ) ′
i,r

)

− log2 det
(
Σ(S )

i,r

)
,

β̂i,k ,S

(
Ũ,Σ, Ũ′,Σ′

)
=

1
ln 2

ϕ

(∑
l∈NU

Ē†iŨ
(S )
i,k Ēi + Σ(S )

ī
,

∑
l∈NU

Ē†iŨ
(S )′
i,k Ēi + Σ(S ) ′

ī

)

− log2 det

⎛

⎝
∑

l∈NU \{k}
Ē†iŨ

(S )
i,k Ēi + Σ(S )

ī

⎞

⎠ .

with the notations ϕ(A,B) = ln det(B) + tr(B−1(A−B)),
Gj

i,k = [Hj
i,k Hj̄

i,k ], Ẽi,r = [E†i,r 0†nR , ī×nR , i , r
]†, Ēi,r =

[0†nR , i×nR , ī , r
E†

ī,r
]† and Ēi = [0†nR , i×nR , ī

InR , ī
]†.
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