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Abdellatif Zaidi (Université Paris-Est, Paris) and Giuseppe Caire (TUB, Berlin)

sshlomo@ee.technion.ac.il

2018 ICSEE-Eilat Israel, 12–14 December, 2018

1 / 30



Outline

∗ Information Bottleneck:

∗ Connections:

- Remote Source Coding.

- Common Reconstruction.

- Information Combining.

- Wyner-Ahlswede-Korner Problem.

- Efficiency of Investment Information.

∗ Distributed Information Bottleneck:

- CEO Source Coding Problem under Log-Loss.

- Oblivious Relay Processing (7,8).

- Distributed Information Bottleneck for Learning.

∗ A Short Outlook
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Information Bottleneck

Efficiency of a given representation U = f(Y ) measured by the pair

Rate (or Complexity): I(U ;Y ) and Information (or Relevance): I(U ;X)

Information I(X;U) can be achieved by OBLIVIOUS coding Y while with
the logarithmic distortion with respect to X

Single letter-wise, U is not necessarily a deterministic function of Y

The non-oblivious bottleneck problem is immediate as the min(I(X;Y ), R)
is achievable by having the relay decoding the message transmitted by X

The bottleneck problem connects to many timely aspects, such as ’deep
learning’ [Tishby-Zaslavsky, ITW’15].
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Digression: Learning via the Information Bottleneck
Method

Px,Y 
X ---

Features Observation 

Limited Complexity 

Encoder Decoder Estimate 

Preserving all the information about X that is contained in Y , i.e., I(X;Y ),
requires high complexity (in terms of minimum description coding length).

Other measures of complexity may be (Vapnik-Chervonenkis) VC-dimension,
covering numbers, ..

Efficiency of a given representation U = f(Y ) measured by the pair

Complexity: I(U ;Y ) and Relevance: I(U ;X)

Example:

max
p(u|x)

I(U ;X) s.t. I(U ;Y ) ≤ R, for 0 ≤ R ≤ H(Y )

min
p(u|x)

I(U ;Y ) s.t. I(U ;X) ≥ ∆, for 0 ≤ ∆ ≤ I(X;Y )
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Basically, a Remote Source Coding Problem !

Reconstruction at decoder is under log-loss measure,

R(∆) = min
p(u|y)

I(U ;Y )

where the minimization is over all conditional pmfs p(u|y) such that

E[`log(X,U)] ≤ H(X)−H(X|U) = H(X)−∆

- R. L. Dobrushin and B. S. Tsybakov, “Information transmission with additional noise”, IRE Tran. Info.
Theory, Vol. IT-8, pp. 293-304, 1962.

- H. Witsenhausen, A. Wyner, “A conditional entropy bound for a pair of discrete random variables”,

IEEE Trans. on Info. Theory, Vol. 21, pp. 493-501, 1975.

Solution also coined as the Information Bottleneck Method [Tishby’99]

LIB(β, PX,Y ) = min
p(u|y)

I(Y ;U)− βI(X;U)
5 / 30



Other Connections

The Efficiency of Investment Information

- X - Stock Market Data.

Y - Correlated Information about X.

∆(C) the maximum increase in growth rate when Y is described to the
investor at rate C (a logarithmic distortion that relates to the
Wyner-Ahlswede-Korner Problem).

- Solution of the bottleneck for: (X,Y ) are binary and (X,Y ) Gaussian
(horse race examples).

- E. Erkip and T. M. Cover, “The Efficiency of Investment Information”,
IEEE Trans. on Info. Theory, Vol. 44, May 1975.
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Other Connections (Cont.)

Common Reconstruction. Because U −
− Y −
−X, we have

I(U ;X) = I(U ;Y )− I(U ;Y |X)

≤ R− I(U ;Y |X)

- Y. Steinberg, “Coding and common reconstruction”, IEEE Trans. on Info. Theory, vol. 55,

no. 11, pp. 4995–5010, Nov. 2009 (X – side information is not used for the ‘source’ Y common

reconstruction).

Information Combining

I(Y ;U,X) = I(U ;Y ) + I(X;Y )− I(U ;X) (since U −
− Y −
−X)

Since I(X;Y ) is given and I(Y ;U) = R, maximizing I(U ;X) is equivalent to
minimizing I(Y ;U,X).

- I. Sutskover, S. Shamai and J. Ziv, “Extremes of Information Combining”, IEEE Trans. Inform.
Theory, vol. 51, no. 4, pp. 1313–1325, April 2005.

- I. Land and J. Huber, ”Information combining,” Foundations and trends in Commun. and

Inform. Theory, vol. 3, pp. 227–330, Nov. 2006.
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Other Connections (Cont.)

Elegant Proofs of Classical Bottleneck Results

- X,Y binary symmetric connected through a Binary Symmetric Channel
(error probability e): U -Y , also a BSC, I(U ;X) = {1− h(e∗v)} where
e∗v = e(1− v) + v(1− e), R = 1− h(v).

Directly extends to X − Y symmetric, where Y is symmetric binary (one bit
output quantization).

- X Gaussian, and Y =
√

(snr))X +N (N standard Gaussian). Elegant
proof via I-MMSE [Guo-Shamai-Verdu, FnT’13].

I(U ;X) =
1

2
log(1 + snr)− 1

2
log
(

1 + snr exp(−2R)
)
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Other Connections (Cont.)

Wyner-Ahlswede-Körner Problem

If X and Y are encoded at rates RX and RY , respectively. For given
RY = R, the minimum rate RX that is needed to recover X losslessly is

R?
X(R) = min

p(u|y) : I(U ;Y )≤ R
H(X|U)

So, we get
max

p(u|y) : I(U ;Y )≤R
I(U ;X) = H(X)−R?

X(R)

- R. F. Ahlswede and J. Korner, “Source coding with side information and a converse for
degraded broadcast channels”, IEEE Trans. on Info. Theory, Vol. 21, pp. 629-637, 1975.

- A. D. Wyner, “On source coding with side information at the decoder”, IEEE Trans. on

Info. Theory, Vol. 21, pp. 294-300, 1975.
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Vector Gaussian Information Bottleneck

(X,Y) jointly Gaussian, X ∈ RN and Y ∈ RM

Optimal encoding PU |Y is a noisy linear projection to a subspace whose
dimensionality is determined by the bottleneck Lagrangian multiplier β
[Chechik et al. ’05]

U = AY + Z, Z ∼ N(0, I)

where

A =


[0T ; . . . ; 0T ], if 0 ≤ β ≤ βc

1

[α1v
T
1 ; 0T ; . . . ; 0T ], if βc

1 ≤ β ≤ βc
2

[α1v
T
1 ;α2v

T
2 ; 0T ; . . . ; 0T ], if βc

2 ≤ β ≤ βc
3

...

and {vT
1 , . . . ,v

T
N} are the left eigenvectors of Σy|xΣ−1y , sorted by their

ascending eigenvalues {λ1, . . . , λN}; βc
i = 1/(1− λi) are critical β values;

ri = vT
i Σyvi and

αi =

√
β(1− λi)− 1

λiri
Rate-Information Trade-off Gaussian Vector Channel [Winkelbauer-Matz, ISIT’14]. 10 / 30



Rate-Information Curve
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CEO Source Coding Problem under Log-Loss

CEO source coding problem under log-loss distortion:

dlog(x, x̂) := log

(
1

x̂(x)

)
where x̂ ∈ P(X) is a probability distribution on X.

Characterization of rate-distortion region in [Courtade-Weissman’14]

Key step: log-loss admits a lower bound in the form of conditional entropy of
the source conditioned on the compression indices:

nD ≥ E[dlog(Xn; X̂n)] ≥ H(Xn|JK) = H(Xn)− I(Xn; JK)
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CEO Source Coding Problem under Log-Loss (Cont.)

Converse of Theorem 1 for Oblivious CRAN leverages on this relation applied
to multiple channel inputs, which can be designed.

Multiple description CEO problem-logloss distortion
[Pichler-Piantanida-Matz, ISIT’17].

Vector Gaussian CEO Problem Under Logarithmic Loss and Applications
[Ugur-Aguerri-Zaidi, arxiv:1811.03933]: Accounts also for Gaussian side
information about the source at the decoder.

- Full characterization
(not the case for MMSE Distortion, [Ekrem-Ulukos, IT0214]).

Implications [Ugur-Aguerri-Zaidi, arxiv:1811.03933] Solutions of:

- Vector Gaussian distributed hypothesis testing against conditional
independence [Rahman-Wagner, IT2012].

- A quadratic vector Gaussian CEO problem with determinant constraint.

- Vector Gaussian distributed Information Bottleneck Problem.
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Distributed Information Bottleneck

Information Bottleneck introduced by [Tishby’99] and [Witsenhausen’80]

“Indirect Rate Distortion Problems”, IT–26, no. 5, pp. 518–521, Sept. 1980.

It is a CEO source-coding problem under log-loss!

Theorem (Distributed Information Bottleneck [ Estella-Zaidi, IZS’18 ] )

The D-IB region is the set of all tuples (∆, R1, . . . , RK) which satisfy

∆ ≤
∑
k∈S

[Rk−I(Yk;Uk|X,Q)] + I(X;USc |Q), for all S ⊆ K

for some joint pmf p(q)p(x)
∏K

k=1 p(yk|x)
∏K

k=1 p(uk|yk, q).
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Vector Gaussian Distributed Information Bottleneck

(Y1, · · · ,YK ,X) jointly Gaussian, Yk ∈ RN and X ∈ RM ,

Yk = HkX + Nk, Nk ∼ N(0,Σnk
)

Optimal encoding P ∗Uk|Yk
is Gaussian and Q = ∅ [Estella-Zaidi’17]

Theorem ([Estella-Zaidi, IZS’18], [Ugur-Aguerri-Zaidi, arxiv:1811.03933] )

If (X,Y1, . . . ,YK) are jointly Gaussian, the D-IB region is given by the set of all
tuples (∆, R1, . . . , RL) satisfying that for all S ⊆ K

∆ ≤
∑
k∈S

[Rk + log |I−Bk|] + log

∣∣∣∣∣∑
k∈Sc

H̄H
k BkH̄k + I

∣∣∣∣∣
for some 0 � Bk � I, where H̄k = Σ

−1/2
nk HkΣ

1/2
x , and achievable with

p∗(uk|yk, q) = CN(yk,Σ
1/2
nk

(Bk − I)Σ1/2
nk

)

Reminiscent of the sum-capacity in Gaussian Oblivious CRAN with Constant
Gaussian Input constraint.

15 / 30



Example
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Optimal information (relevance):

∆∗(R, snr) = log2

(
1 + 2 snr 2−2R

(
22R + snr−

√
snr2 + (1 + 2 snr) 22R

))
Collaborative encoding upper bound: (Y1, Y2) encoded at rate 2R

∆ub(R, sr) = log2(1 + 2 snr)− log2(1 + 2 snr 2−2R)

Lower bound: Y1 and Y2 independently encoded

∆i(R, snr) = log2(1 + 2 snr− snr 2−R)− log2(1 + snr 2−R)
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Oblivious Relay Processing

Resource-sharing random variable Qn available at all terminals [Simeone et al’11].

Qn way easier to share, (e.g., on/off activity ).

Memoryless Channel: PY1,...,YK |X1,...,X1

User l ∈ {1, . . . , L}: φnl : [1, |Xl|n2nRl ]× [1, 2nRl ]× Qn → Xn
l

Relay k ∈ {1, . . . ,K}: gnk : Yk
n × Qn → [1, 2nCk ]

Decoder:

ψn : [1, |X1|n2nR1
]× · · · × [1, 2nCK ]× Qn → [1, 2nR1 ]× . . .× [1, 2nRL ]
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Capacity Region of a Class of CRAN Channels

Theorem (Aguerri-Zaidi-Caire-Shamai ’17)

For the class of discrete memoryless channels satisfying

Yk −
−XL −
− YK\k

with oblivious relay processing and enabled resource-sharing, a rate tuple
(R1, . . . , RL) is achievable if and only if for all T ⊆ L and for all S ⊆ K,∑

t∈T

Rt ≤
∑
s∈S

[Cs − I(Ys;Us|XL, Q)] + I(XT;USc |XTc , Q),

for some joint measure of the form

PQ

L∏
l=1

PXl|Q

K∏
k=1

PYk|XL

K∏
k=1

PUk|Yk,Q,

with the cardinality of Q bounded as |Q| ≤ K + 2.
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The Distributed Information Bottleneck for Learning

For simplicity, we look at the D-IB under sum-rate [Estella-Zaidi’18]

P ∗Uk|Yk
= arg min

PUk|Yk

I(X;UK) + β

K∑
k=1

[I(Yk;Uk)− I(X;Uk)]

The optimal encoders-decoder of the D-IB under sum-rate constraint satisfy
the following self consistent equations,

p(uk|yk) =
p(uk)

Z(β, uk)
exp (−ψs(uk, yk)) ,

p(x|uk) =
∑

yk∈Yk

p(yk|uk)p(x|yk)

p(x|u1, . . . , uK) =
∑

yK∈YK

p(yK)p(uK|yK)p(x|yK)/p(uK)

where

ψs(uk, yk) :=DKL(PX|yk ||QX|uk
) +

1

s
EUK\k|yk [DKL(PX|UK\k,yk

||QX|UK\k,uk
))].

Alternating iterations of these equations converge to a a solution for any
initial p(uk|xk), similarly to a Blahut-Arimoto algorithm.
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D-IB for Vector Gaussian Sources: Iterative Optimization

(Y1, · · · ,YK ,X) jointly Gaussian, Yk ∈ RN and X ∈ RM ,

Yk = HkX + Nk, Nk ∼ N(0, I)

Optimal encoding P ∗Uk|Yk
is Gaussian [Estella-Zaidi’17] and given by

Uk = AkYk + Zk, Zk ∼ N(0,Σz,k)

For this class of distributions, the updates in the Blahut-Arimoto type
algorithm simplify to:

Σ
zt+1
k

=

((
1 +

1

β

)
Σ−1

ut
k
|x −

1

s
Σ−1

ut
k
|ut

K\k

)−1

,

At+1
k =Σ−1

zt+1
k

((
1 +

1

β

)
Σ−1

ut
k
|xAt

k(I−Σyk|xΣ−1
yk

)

− 1

β
Σ−1

ut
k
|ut

K\k
At

k(I−Σyk|ut
K\k

Σ−1
yk

)

)
.
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D-IB for Vector Gaussian Sources (cont’d)
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Performance of distributed-IB is close to that of centralized IB
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Short Outlook

Optimal input distributions for the input power constrained Gaussian
bottleneck model.

Discrete signaling is already known to sometimes outperform Gaussian
signaling for single-user Gaussian CRAN [Sanderovich et al. ’08].

It is conjectured that the optimal input distribution is discrete.

Improved upper bounds (over cut-set) for non-oblivious relay based schemes,
to better evaluate the cost of oblivious processing (á la: Vu-Barnes-Ozgur,
arXiv:1701.02043 Gaussian primitive relay).

Connections between classical bottleneck problems and Common Information
[Wyner’75], [Gacs-Korner ’73].

Lossy common information [Viswanatha-Akyol-Rose, IT2014].

Network source-coding [Gray-Wyner’74].

Information Decomposition, Common Information and Bottleneck
[Banerjee, arXiv: 1503.00709].
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Short Outlook cont.’

Bounds on general information bottleneck problems [Painsky-Tishby,
arXiv:1711.02421], [Eswaran-Gastpar, arXiv:1805.06515].

A variety of related C-RAN & Distributed bottleneck problems:

Impact of block length n [C may not scale linearly with n ⇒ Courtade
conjecture (C = 1)] [Courtade-Kumar, IT’14],
[Yang-Wesel, arXiv:1807.11289, July’18],
The C = n− 1 case [Huleihel-Ordentlich, arXiv:1701.03119v2, May’17].

Bandlimited time-continuous models (Homri-Peleg-Shamai, arXiv:1510.08202).

Multi-layer Information Bottleneck Problem (Yang-Piantanida-Gündüz,
arXiv:1711.05102).

Distributed Information-Theoretic Clustering (Pichler-Piantanida-Matz,
arXiv:1602.04605, Dictator Functions, arXiv:1604.02109).
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Short Outlook cont.’

Entropy constraint bottleneck:
X − Y − U
max I(X;U) under the constraint H(U) ≤ C
practical applications: LZ distortionless compression.

⇒ U = f(y) a deterministic function [Homri-Peleg-Shamai, Oblivious
Processing in a Fronthaul Constrained Gaussian Channel, arXiv:1510.08202].

The deterministic bottleneck: advantages in complexity as compared to a
classical bottleneck: [Strouse-Schwab, arXiv:1604.00268].

Privacy Funnel, dual of bottleneck: X − Y − U , minimize: I(X;U), under
the constraint: I(Y ;U) = C. [Calmon-Makhdoumi-Medard-Varia-Christiansen-Duffy IT2017].

Direct connection to Information combining, maximize:
I(Y ;U,X) = I(X;Y ) + I(U ;Y )− I(U ;X), under the constraint:
I(U ;Y ) = C.
Example: (X,Y ) binary symmetric connected via a BSC, X − Y . The channel
Y − U is an Erasure Channel.
Example: For the Gaussian model: Y =

√
(snr)X +N , where (X,N) are

unit norm independent Gaussians: Take U to be a deterministic function of Y ,
say describes the m last digits of a b long (b→∞) binary description of Y ,
such that I(U ;Y ) = H(U) = C (m is C dependent). Evidently I(U ;X)→ 0,
as I(Y ;U,X)→ C + I(X;Y ). 24 / 30
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“Distributed Information Bottleneck, and more: A Unified Information Theoretic View”

Abstract:

In this talk we discuss the distributed information bottleneck problem with emphasis on the
Gaussian model. We highlight the basic connection of this problem to the uplink Cloud
Radio Access Networks (CRAN) with oblivious processing. For this model, we characterize
the optimal tradeoffs between rates (i.e.,‘complexity’) and information (i.e.,‘accuracy’) in the
discrete and vector Gaussian frameworks. Further connections to ‘information combining’
and ‘common reconstruction’ and the Wyner-Ahlswede-Korner problem are also pointed out.
In the concluding outlook, some interesting problems are mentioned such as the character-
ization of the optimal inputs (‘features’) distributions under power limitations maximizing
the ‘accuracy’ for the Gaussian information bottleneck, under ‘complexity’ constraints.
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Thank you!
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