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Introduction

Cloud radio access network (C-RAN) architecture:

Heterogeneous dense networks;

Base stations (BSs), macro, pico, femto, operate as radio units (RUs);

Baseband processing takes place in the “cloud” or a central unit (CU).
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Distributed C-RAN Architecture

Base Band Unit (BBU)

Encoding/decoding of the messages of User Equipment (UEs).

Radio Rersource Unit (RRU)

Radio processing and analog-to-digital conversion.

Fronthaul/Backhaul links (FH)

Carries complex inphase -quadrature (IQ) baseband signals.
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Advantages and challenges of the structure

Advantages of the structure

Higher spectral efficiency: Effective interference mitigation via joint baseband
processing (e.g. CoMP in LTE, 5G);

Dense deployment with enhanced indoor coverage;

Allows a cost effective way to deploy and upgrade wireless platforms;

Flexible radio and computing resource allocation.

Key challenge:

Large amount of I/Q data to be transferred over the FH between BBU and
RRU [Andrews et al JSAC14]
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Cloud Radio Access Networks

Figure: The distribution of backhaul connections for macro BSs (green: fiber, orange: copper,
blue: air) [Segel and Weldon].

mmWave front/backhauling for 5G [Ghosh 13] [Checko et al 15][Fujitsu 15]

Copper (LAN cable) for indoor coverage [Lu et al 14]
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Why Compression?

Common public radio interface (CPRI) standard based on analog-to-digital
(ADC)/digital-to-analog (DAC).

Parameters Settings

Sectors 3
LTE Carriers 5
Bandwidth 100MHz

MIMO 2× 2
Bits per IQ 15 bits

Protocol LTE-A

Required Fronthaul Throughput

Nant × samples/sec× bits/sample

= 13.8Gbps

Higher rate than supported by standard optical fibers (10Gbps).

Need for compression on the fronthaul!

“Death by Starvation ? : backhaul and 5G,” [Lundqvist, CTN-Sep. 2015]
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Uplink Cloud RAN

Multiple access relay channel in which L users communicate with a common
destination through K relay nodes.

Decoder interested in m̂1, . . . , m̂L such that, for n large enough,

Pr{(m1, . . . ,mL) 6= (m̂1, . . . , m̂L)} → 0

The capacity region of this model is still to be found

problem open even in seemingly simpler cases, e.g., one user and two relays
(the diamond channel), parallel Gaussian relay channel [Schein-Gallager ’00]).
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Relay Operations

Main difficulty is in characterizing the optimal relay operation:

Decode-and-Forward: [Cover-ElGamal’97], [Kramer-Gastpar’05] ...

Compute-and-Forward: [Nazer-Gastpar’11], [Nazer et al’12], [Hong-Caire’13]...

Compress-and-Forward: [Sanderovich et al’09], [Park et al’13], [Zhou et at’13]...

Noisy Network Coding: [Lim et al’11]...

Others: Amplify and Forward, Partial-Decode-Compress-and-Forward [Cover-ElGamal’97],

Compute-Quantize-and-Forward [Estella-Zaidi’16]...

Relaying operations can be divided into:

Non-oblivious: relays aware of the users’ codebooks (modulation, coding...) at all
time, e.g., DF, CompF

Oblivious (or Nomadic): [Sanderovich et al’08] relays operate without knowledge of
the users’ codebooks, e.g., CoF, NNC

Oblivious processing motivated mainly by practical constraints
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Randomized Encoding as a Model for Obliviousness

Formally, obliviousness of the relays to actual codebooks is modeled through
randomized encoding [Sanderovich et al’08], [Lapidoth-Narayan’98]:

Encoding function at transmitter

φn : [1, |X|n2
nR

]× [1, 2nR]→ X
n

which maps a a codebook index F ∈ [1, |X|n2
nR

] and a message M ∈ [1, 2nR] into
a codeword Xn(F,M) = φn(F,M).

The pair (pF , φ
n) must satisfy

Prob[Xn(F,M) = xn] =
n∏
i=1

pX(xi)

for some pX(x), x ∈ X, where Prob[·] is calculated with respect to

pF,M (f,m) = pF (f) · 2−nR
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Randomized Encoding as a Model for Obliviousness (Cont.)

Oblivious nodes, e.g., relays, are not aware of the actual users’ codebooks

φnk : Yn → [1, 2nC ]

Non oblivious nodes, e.g., decoder, are aware of the actual users’ codebooks

ψn : [1, |X|n2
nR

]× [1, 2nC ]→ [1, 2nR]

Although multi-letter expressions are precluded, still general enough to encompass
single-letter superposition coding and other schemes
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Oblivious Relay Processing with Enabled Resource-sharing

Resource-sharing random variable Qn available at all terminals [Simeone et al’11]

Qn way easier to share, (e.g., on/off activity )

Memoryless Channel: PY1,...,YK |X1,...,X1

User l ∈ {1, . . . , L}: φnl : [1, |Xl|n2
nRl ]× [1, 2nRl ]× Qn → Xnl

Relay k ∈ {1, . . . ,K}: φnk : Yk
n × Qn → [1, 2nCk ]

Decoder:

ψn : [1, |X1|n2
nR1

]× · · · × [1, 2nCK ]× Qn → [1, 2nR1 ]× . . .× [1, 2nRL ]

14 / 53



Point-to-Point Compression

Point-to-Point Compression (PtP)

Received signals at different RRUs are separately compressed.
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Point-to-Point Compression (cont’d)

A compression strategy exists if the fronthaul capacity Ck satisfies

I(Yk;Uk) ≤ Ck,

After recovering (U1, . . . , UK) jointly, the CP decodes the transmitted signals
by the UEs XL, jointly. For all T ⊆ {1, . . . , L}∑

t∈T

Rt ≤ I(XT;U1, . . . , UK |XTc)

A standard way of modeling compression at RRU k is to adopt the Gaussian
direct “test channel” [El Gamal-Kim’11, Ch. 3]

Uk = Yk + Qk,

where Qk ∼ CN(0,Ωk) represents the quantization noise.

Advantage: Universality [Lapidoth, IT’97]
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Numerical example: Circular Wyner Model

Each cell contains a single-antenna and a single-antenna RU.

Inter-cell interference takes place only between adjacent cells.

Yk = αXk−1 +Xk + αXk+1 +Nk

where Nk ∼ CN(0, 1)

All RRUs have a fronthaul capacity of C.
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Numerical example: Circular Wyner Model (cont’d)

UE transmit power (dB)
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Single cell processing (Non-oblivious): Each cell decodes the signal of the in
cell EU treating the other UEs as noise.

Cut-set Bound [Simeone et all’ 12]
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Distributed Compression with Successive Wyner-Ziv

Successive Wyner-Ziv (SWZ)

Account for correlation between received signals at different RRUs [Sanderovich

et al 09] [dCoso-Simoens 09] [Zhou-Yu 11]

π : K→ K denotes a permutation of RRU’s indices, K = {1, . . . ,K}.
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Wyner-Ziv Source Coding Problem

Wyner-Ziv Rate-distortion function:

RWZ(D) = min
PŶ |Y

I(Y ; Ŷ |Z) s.t. E[d(Y ; g(Ŷ , Z))] ≤ D.

Compression described by test channel PŶ |Y . (Note that Ŷ −
− Y −
− Z).

Gaussian source Y ∼ N(0, σ2) and SI Z, with correlation coeff. ρ,

RWZ(D) =
1

2
log+

(
σ2(1− ρ2)

D

)
.
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Distributed Compression with Successive WZ (cont’d)

Using Wyner-Ziv Compression, a compressor exist if

I(Yπ(k);Uπ(k)|Uπ(1), . . . , Uπ(k−1),Q) ≤ Cπ(k).

After the quantized IQ signals U1, . . . , UK are recovered, the CU successively
decodes signal XL sent by all UEs in a particular order π̄:

Rπ(l) ≤ I(Xπ̄(l);U1, . . . , UK |X π̄(l−1)
π̄(1) , Q).

Compression at RRU k uses the Gaussian direct “test channel”

Uk = Yk + Qk,

where Qk ∼ CN(0,Ωk) represents the quantization noise.

Universality aspects, [Lapidoth-Narayan’98]
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Distributed Fronthaul Compression (cont’d)

Sum-rate maximization problem with fronthaul capacity constraints is
generally challenging.

In [Park et al TVT13], a block-coordinate optimization approach was proposed
for successive WZ decompression case.

One optimizes the covariance matrices Ωπ(1), . . . ,Ωπ(K) following the same
order π employed for decompression.

At the k-th step, for fixed (already optimized) covariances Ωπ(1), . . . ,Ωπ(k−1),
the covariance Ωπ(k) is obtained by solving

max
Ωπ(k)�0

I(XL;Uπ(k)|Uπ(1), . . . , Uπ(k−1))

s.t. I(Yπ(k);Uπ(k)|Uπ(1), . . . , Uπ(k−1)) ≤ Cπ(k).
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Distributed Compression with Successive WZ (cont’d)

Optimal Wyner-Ziv Compressor [dCoso-Simoens 09]

Unitary transform VH
π(k) decorrelates the received signal streams when conditioned

on the side information signals Uπ(1), . . . ,Uπ(k−1)

Stream-wise multiplication by
√
απ(k),1, . . . ,

√
απ(k),Nr,π(k)

represents the

compression rate allocation among the streams.

Signals are compressed separately and quantization noises
Qπ(k),1, . . . ,Qπ(k),Nr,π(k)

independent.
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Numerical example: Circular Wyner Model (cont’d)

UE transmit power (dB)
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The performance advantage of SWZ over PtP compression increases as the
SNR grows larger.

At high SNR, the correlation of the received signals at the RRU’s is more
pronounced.
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Separate Decompression and Decoding

Separate decompression and decoding (SDD)

Concatenation of Joint Decompression (Berger-Tung) and Joint Decoding∑
t∈T

Rt ≤ I(XT ;UK|XTc , Q)

∑
s∈S

Cs ≥ I(YS;US|USc , Q)

25 / 53



Joint Decompression Decoding

Joint decompression and decoding (JDD)
[Sanderovich et al 09][Lim et al 11][Yassaee-Aref 11]

Potentially larger rates can be achieved with joint decompression and
decoding (JDD) at the central unit [Sanderovich et al 09].

Now often seen as an instance of noisy network coding [Lim et al 11].
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Joint Decompression Decoding (cont’d)

Theorem

A rate tuple (R1, . . . , RL) is achievable if for all T ⊆ L, and all S ⊆ K,∑
t∈T

Rt ≤
∑
s∈S

Cs − I(YS ;US |XL, USc , Q) + I(XT;USc |XTc , Q),

for some pmf

PQ

L∏
l=1

PXl|Q PY1,...,YK |X1,...,XL

K∏
k=1

PUk|Yk,Q.

Generalization of scheme from [Sanderovich et al’09] to L users and channel
PY1,...,YK |X1,...,XL , with Q the resource (time)-sharing parameter.

Based on compress-and-forward à la Cover-El Gamal with joint decoding and
decompression at the CP.
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Numerical example: Circular Wyner Model (cont’d)

UE transmit power (dB)
0 5 10 15 20 25 30

P
er

 c
el

l-s
um

 r
at

e 
(b

its
/s

/H
z)

0.5

1

1.5

2

2.5

3
Average per cell sum-rate for K=3 users, C=3

JDD is capacity achieving under oblivious processing.

For this simple network, JDD does not provide much gain compared to SDD
and SWZ.

- Here, the schemes SDD and SWZ do not employ resource-sharing.
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On the Sum Rate of JDD

Sum-rate Rsum =
∑L
l=1Rl achievable with JDD

Rsum
JDD = min

S⊆K

{∑
s∈S

Cs − I(YS ;US |XL, USc , Q) + I(XL;USc |Q)

}
,

for some pmf PQ
∏L
l=1 PXl|QPYK|XL

∏K
k=1 PUk|Yk,Q.

Using properties of sub-modular functions, we show that SWZ achieves same
sum-rate as JDD and SDD

Note, however, that time-sharing is generally needed for the three to achieve
optimal sum-rate!

Theorem

For any PY1,...,YK |X1,...,XL , not necessarily satisfying Yk −
−XL −
− YK\k we have

Rsum
JDD = Rsum

SDD = Rsum
SWZ

In particular, for Gaussian MIMO channels recovers [Zhou et al.’16]

In terms of rate region, JDD generally outperforms SDD.
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Numerical example: 3 Cell Uplink

Optimizing over relay compression ordering π improves performance.

Resource-sharing required to achieve the sum-rate of JDD with SWZ.
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Main Capacity Results

Single-letter characterizations of:

1) Capacity Region of the Class of DM CRAN channels satisfying

Y nk −
−Xn
L −
− Y nK\k,

2) Capacity Region of Gaussian MIMO Channels with Gaussian Inputs

In particular, we show that Gaussian auxiliaries are optimal

We study the role of Resource-sharing

3) Inner and Outer Bounds for General DM Model
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Capacity Region of a Class of CRAN Channels

Theorem

For the class of discrete memoryless channels satisfying

Yk −
−XL −
− YK\k

with oblivious relay processing and enabled resource-sharing, a rate tuple
(R1, . . . , RL) is achievable if and only if for all T ⊆ L and for all S ⊆ K,∑

t∈T

Rt ≤
∑
s∈S

[Cs − I(Ys;Us|XL, Q)] + I(XT;USc |XTc , Q),

for some joint measure of the form

PQ

L∏
l=1

PXl|Q

K∏
k=1

PYk|XL

K∏
k=1

PUk|Yk,Q.

with the cardinality of Q bounded as |Q| ≤ K + 2.
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Direct Part

Capacity region achievable with

Compress-and-Forward with Joint-Decompression-Decoding

Generalization of scheme from [Sanderovich et al’09] to L users

Based on compress-and-forward à la Cover-El Gamal with joint decoding and
decompression at the CP.
Gaussian inputs are not optimal for finite capacity fronthauls

Separate decompression-decoding not optimal in general

Noisy Network Coding

Particular case of [Theorem 1, Lim et al’11]

Sum-rate achievable also with

Compress-and-Forward with Separate-Decompression-Decoding

The CP decodes explicitly the compression indices first and then decodes the
users’ transmitted messages.
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Outline of Converse Part

Define Ui,k , (Jk, Y
i−1
k ) and Q̄i , (Xi−1

L , Xn
L,i+1, Q̃).

Fano’s Inequality: H(mT |JK, FL, Q̃) ≤ εn for T ⊆ L,

Upper bound on entropy term: For T ⊆ L = {1, . . . , L},

H(Xn
T |Xn

Tc , JK, Q
n) ≤

n∑
i=1

H(XT,i|XTc,i, Q̄i)− n
∑
t∈T

Rt , nΓT

- Follows from

n
∑
t∈T

Rt = H(mT) = I(mT ; JK, FL, Q̃) +H(mT |JK, FL, Q̃)

≤ I(mT , FT ; JK|FTc , Q̃) + nεn

≤ H(Xn
T |Xn

Tc , Q̃)−H(Xn
T |Xn

Tc , JK, Q̃) + nεn

Reminiscent of log-loss penalty criterion in multi-terminal source coding
[Courtade-Weissman’14]:

H(Xn|JK) ≤ E[dLL(Xn; X̂n)] ' n(H(X)− I(X; X̂))
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Outline of Converse Part (Cont.)

Bound on users’ rates: For T ⊆ L

n
∑
t∈T

Rt ≤ I(mT , FT ; JK|FTc , Q̃) + nεn ≤
n∑
i=1

I(XT,i;UK,i|XTc,i, Q̄i) + nεn

Bound on relays’ rates: For S ⊆ K = {1, . . . ,K}

n
∑
k∈S

Ck ≥
∑
k∈S

H(Jk) ≥ I(Xn
T , Y

n
S ; JS|Xn

Tc , JSc , Q̃)

≥
n∑
i=1

H(XT,i|XTc,i, USc,i, Q̄i)−nΓT + I(Y nS ; JS|Xn
L, JSc , Q̃)

=nRT −
n∑
i=1

I(XT,i;USc,i|XTc,i, Q̄i) +
∑
k∈S

n∑
i=1

I(Yk,i;Uk,i|XL,i, Q̄i)

where we used the upper bound on the entropy and the Markov chain

Yk −
−XL −
− YK\k
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Memoryless MIMO Gaussian Model

The channel output at relay node k with Mk antennas:

Yk = Hk,L [XT
1 , . . . ,X

T
L ]T + Nk,

where

User l with Nl antennas transmits Xl with E[‖Xl‖2] � Kl

Relay k with Mk antennas

Hk,L = [Hk,1, . . . ,Hk,L], Hk,l channel between user l and relay k

Nk ∼ CN(0,Σk) is AWGN noise at relay k, assumed independent

Outputs satisfy Yk −
−XL −
− YK\k

Theorem 1 characterizes its capacity region. Finding the optimal U1, . . . , UK is
difficult
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Capacity under Gaussian Signaling and Enabled Resource-Sharing

Theorem (Capacity Region under Gaussian Input with Enabled Resource-Sharing)

Let the input vectors use Gaussian Signaling with Enabled Resource-Sharing, i.e.,

Xl,q ∼ CN(0,Kl,q) q ∈ {1, . . . , |Q|}
∑
q∈Q

pQ(q)Kl,q ≤ Kl

The capacity region is given by the set of all rate tuples (R1, . . . , RL) satisfying that for
all T ⊆ L and all S ⊆ K

∑
t∈T

Rt ≤
∑
k∈S

[
Ck − EQ log

|Σ−1
k |

|Σ−1
k −Bk,q|

]
+ EQ log

|
∑
k∈Sc HH

k,TBk,qHk,T + K−1
T, |

|K−1
T,q|,

for some 0 � Bk,q � Σ−1
k , where Hk,T is the channel between XT and Yk.

Extends [Theorem 5, Sanderovich et al’09] to L users and MIMO.

Achievable with Uk,q = Yk,q + Zk,q, Zk,q ∼ CN(0,B−1
k −Σk,q), q ∈ Q

Gaussian signaling can be strictly suboptimal [Sanderovich et al’09]
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Converse Part

For (X,U) arbitrarily correlated,

log |(πe) J−1(X|U)| ≤ h(X|U) ≤ log |(πe) mmse(X|U)|

For each Q = q,

I(Yk; Uk|XL, Q = q) = log |(πe)Σk| − h(Ys|XL,q ,Us,q , Q = q)

≥ log
|Σ−1
k |

|Σ−1
k −Bk,q |

,

where 0 � Bk,q � Σ−1
k is chosen such that

mmse(Yk|XL,q ,Uk,q) = Σk −ΣkBk,qΣk

Also,

I(XT ; USc |XTc , Q = q) = h(XT,q |XTc , q)− h(XT |XTc ,USc,q , Q = q)

≤ log |KT,q |+ log

∣∣∣∣∣∣
∑
k∈Sc

HH
k,TBk,qHk,T + K−1

T,q

∣∣∣∣∣∣
by deBrujin Identity [Palomar-Verdu’06],[Ekrem-Ulukuss’14], [Zhou et al’17]

J(XT,q |XTc,q ,USc,q) =
∑
k∈Sc

HH
k,TBk,qHk,T + K−1

T,q .
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Resource-sharing Enlarges Capacity Region
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JDD without resource (time)-sharing, i.e., Q = ∅

RJDD−w/o−ts(C,P ) =
1

2
log

(
1 + 2a2Pe4C + a2P −

√
(a2P )2 + (1 + 2a2P )e4C

)
JDD with resource (time)-sharing (|Q| = 2. Recall that |Q| ≤ K + 2 = 4 here)

Phase I: UE transmits at P/α for αn samples. Relays compress at Ck/α.

Phase II: UE and Relays remain inactive for (1− α)n remaining samples.

Intuition: For small P , the observations at the relays are too noisy; and, so, it is more
advantageous to increase power and compression rate during shorter time.

Improved (cut-set) upper bound: improved (cut-set) upper bound for the primitive relay
channel of [Wu-Ozgur IT2018, arXiv:1701.02043v2] for our setup with C1 =∞.
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Capacity under Constant Gaussian Signaling

Theorem (Capacity Region under Constant Gaussian Input)

If the input vectors use constant Gaussian Signaling, i.e.,

K1,l = · · · = K|Q|,l = Kl, Xl ∼ CN(0,Kl),

the capacity region is given by the set of all rate tuples (R1, . . . , RL) satisfying that for
all T ⊆ L and all S ⊆ K

∑
t∈T

Rt ≤
∑
k∈S

[
Ck − log

|Σ−1
k |

|Σ−1
k −Bk|

]
+ log

|
∑
k∈Sc HH

k,TBkHk,T + K−1
T |

|K−1
T |,

for some 0 � Bk � Σ−1
k , where Hk,T is the channel between XT and Yk.

Resource-sharing at the relays does not enlarge the capacity region under
constant Gaussian Signaling.

Proof follows from Jensen’s Inequality and concavity of log-det.
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Capacity under Gaussian Signaling in the High SNR Regime

High SNR regime model:

Σk = εΣ̃k; for some Σ̃k � 0, and ε→ 0.

We have RGNS(CK) ⊂ RGTS(CK), where:

RGTS: Capacity under Gaussian Input with Enabled Resource-Sharing

RGNS: Capacity under Gaussian Input without Resource-Sharing (Q = ∅)

Theorem (Capacity Region under Gaussian Input in High SNR)

If (R1, . . . , RL) ∈ RGTS(CK), then for any ε > 0, for some ∆ε ≥ 0,

(R1 −∆ε, . . . , RL −∆ε) ∈ RGNS(CK)

In addition, RGNS(CK) = RGTS(CK) as ε→ 0, since

lim
ε→0

∆ε = 0.

For large SNR, the gains due to resource-sharing become limited.
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Compute-and-Forward

Decode linear integer equations on the transmitted messages. The equations
need to be linearly independent

At the CU, simply invert the system of equations.

Studied in [Nazer et al 09] [Hong and Caire 11].
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Compute-and-Forward (cont’d)

Each RRU decodes an appropriate (modulo-)sum, with integer weights of the
codewords transmitted by the UEs.

Then sends a bit stream on the FH link that identifies the decoded codeword
within the lattice code.

Upon receiving sufficient number of linear combinations, the CP can invert the
resulting linear system and recover the transmitted codewords.

For single-antenna system with L = K, and C1 = · · · = CK = C, the achievable
rate per UE is

Rl = min{C, min
k:ak,l 6=0

R(hl,al, SNR)},

where the computational rate is given by

R(h,a,SNR) = log+

(
SNR

aH(SNR−1I + hhH)−1a

)
.

Integer penalty: The signal received at each RRU is sum with non-integer weights
of the codewords transmitted by EUs.
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Numerical example: Circular Wyner Model (cont’d)

UE transmit power (dB)
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At low SNR, its performance coincides with single-cell processing.

RUs tend to decode trivial combinations.

At high SNR, the fronthaul capacity is the main performance bottleneck, so
CoF shows the best performance.
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Cost of Obliviousness
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Optimal degrees-of-freedom: when fronthaul capacity grows with SNR, e.g.,
C = 5 log10(snr). [Sanderhovich et al’09].

Capacity under Gaussian signaling to within a constant gap of cut-set bound.

If (R1, . . . , RL) is within the cut-set bound, then

((R1 −∆)+, . . . , (RL −∆)+), ∆ ≤
{
N
2

(2.45 + log(KM
N

)) for KM > 2N,
KM+N

2
for KM ≤ 2N
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Outer Bound for General Model

Theorem (Bounds)

For general DM CRAN channels with oblivious relay processing and enabled
resource-sharing, a rate tuple (R1, . . . , RL) is achievable if (only if) for all T ⊆ L

and for all S ⊆ K,∑
t∈T

Rt ≤
∑
s∈S

Cs − I(YS ;US |XL, USc , Q) + I(XT;USc |XTc , Q),

for some (Q,XL, YK, UK,W )

distributed according to PQ
∏L
l=1 PXl|Q PYK|XL

PW |Q

uk = fk(w, yk, q) for k = [1,K] for some random variable W and some
deterministic functions {fk}, k = [1,K].
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Remarks

The DM CRAN problem connects with the CEO source coding problem
under log-loss.

Without Yk −
−XL −
− YK\k the problem is challenging even for one user:

Reason: Berger-Tung coding is strictly suboptimal

Example: Includes Korner-Marton lossless modulo-sum problem
[Korner-Marton’79]

The DM CRAN problem connects with the distributed Information
Bottleneck problem studied in [Aguerri-Zaidi, IZS2018].
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Wrap Up

We have studied transmission over a CRAN under oblivious processing
constraints at the relays and enabled resource-sharing.

i.e., relays are not allowed to know or acquire the users’ codebooks.

Our results shed light on the optimal relay operations:

NNC and CoF-JD optimal when the outputs at the relay nodes are
conditionally independent on the users inputs.

CoF-SD achieves optimal sum-rate.

Computed the Capacity Region under Gaussian Inputs in MIMO CRAN.

Oblivious processing as studied relevant from a practical viewpoint:

Bounded rate loss in comparison with the non-oblivious setting.

Optimal degrees-of-freedom when fronthaul capacity grows with SNR.
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Short Outlook

Duality issues:

Downlink/uplink, e.g., Compute-forward v.s. reverse Compute-forward

Gaussian MAC/BC duality extends also for finite-capacity fronthauls {Ck}
- See, e.g., Liang Liu, Pratik Patil, and Wei Yu, “An Uplink-Downlink Duality for

Cloud Radio Access Network,” ISIT’2016.

Channel/Source coding duality

Gelfand-Pinsker coding/Wyner-Ziv source coding:
- T. Cover and M. Chiang, “Duality between channel capacity and rate distortion with

two-sided state information”, IEEE Transactions on Information Theory, Jun. 2002.

Practical implications: Ankit Gupta, and Sergio Verdù, “Operational Duality

between Gelfand-Pinsker and Wyner-Ziv Coding,” ISIT 2010.

Optimal UE signal distribution, under average power constraint [Sanderovich et al.’09]

Vector distributed bottleneck [Aguerri-Zaidi, IZS2018], with combination of dependent and
independent components: Possible other applications.
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Thank you!
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Shlomo Shamai
The Andrew and Erna Viterbi Department of Electrical Engineering, Technion-Israel Institute of Technology.

Title: “On the Capacity of Oblivious Cloud Relay Access Networks,”’

Abstract: In this overview talk we will address Cloud Radio Access Networks and put focus on the uplink
setting, operating in an oblivious (nomadic) mode. Specifically, we present networks in which users send
information to a remote central destinations through relay nodes (radio units) that are connected to the
destination (central processor) via finite-capacity error-free links. The relays are constrained to operate without
knowledge of the users’ codebooks, i.e., they operate in an oblivious manner. The central processor, however,
is informed about the users’ codebooks, and attempts to decode the users’ information. In particular, we
establish a single-letter characterization of the capacity region of this model for a class of discrete memoryless
channels in which the outputs at the relay nodes are independent given the users’ inputs. We show that both
relaying ‘a-la Cover-El Gamal, i.e., compress-and-forward with joint decompression and decoding, and
quantize-map-forward or noisy network coding, are optimal. The new converse part establishes, and utilizes,
connections with the Chief Executive Officer (CEO) source coding problem under a logarithmic loss distortion
measure. Memoryless vector Gaussian channels are also investigated and the capacity under Gaussian
signaling, is established. For general memoryless models (i.e., networks in which relay outputs are arbitrarily
correlated among them, and with the channel inputs), we develop inner and outer bounds on the capacity
region. Comparisons with unconstrained operation of the relays will also be presented gaining insights to the
penalty associated with the oblivious processing.

Joint work with Abdellatif Zaidi, Inaki Estella Aguerri and Giuseppe Caire
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