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Introduction

Cloud
Central Unit

@ Cloud radio access network (C-RAN) architecture:
o Heterogeneous dense networks;

e Base stations (BSs), macro, pico, femto, operate as radio units (RUs);

e Baseband processing takes place in the “cloud” or a central unit (CU).
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Uplink Cloud RAN
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@ Multiple access relay channel in which L users communicate with a common
destination through K relay nodes.

@ Decoder interested in 71, ..., such that, for n large enough,
Pr{(m,...,mr) # (M1,...,7r)} =0

@ The capacity region of this model is still to be found

e problem open even in seemingly simpler cases, e.g., one user and two relays
(the diamond channel), parallel Gaussian relay channel [Schein-Gallager '00].
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Relay Operations

@ Main difficulty is in characterizing the optimal relay operation:

Decode-and-Forward (DF): [Cover-ElGamal’97], [Kramer-Gastpar'05] ...
Compute-and-Forward (CompF): [Nazer-Gastpar'11], [Nazer et al'12], [Hong-Caire’13]...
Compress-and-Forward (CoF): [Sanderovich et al'09], [Park et al'13], [Zhou et at'13]...
Noisy Network Coding (NNC): [Lim et al'11]...

@ Others: Amplify and Forward, Partial-Decode-Compress-and-Forward [Cover-ElGamal’97],
Compute-Quantize-and-Forward [Estella-Zaidi’16].

@ Relaying operations can be divided into:

o Non-oblivious: relays aware of the users’ codebooks (modulation, coding...) at all
time, e.g., DF, CompF.

o Oblivious (or Nomadic): [Sanderovich et al’08] relays operate without knowledge of
the users’ codebooks, e.g., CoF, NNC.

@ Oblivious processing motivated mainly by practical constraints.

@ Formally, obliviousness of the relays to actual codebooks is modeled through
randomized encoding [Sanderovich et al'08], [Lapidoth-Narayan'98].
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Randomized Encoding as a Model for Obliviousness

@ Encoding function at transmitter
o" LX) ¢ 1,27 - 0

which maps:

e a codebook index F' € [1, \X|”2nR] and
o a message M € [1,2"%]

into a codeword

X"(F,M) = ¢"(F,M).

@ The pair (pr, »™) must satisfy
Prob[ X" (F, M) = «" pr (1)

for some px(z), © € X, where Prob[-] is calculated with respect to

prv (fym) =pr(f) 27"
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Oblivious Relay Processing with Enabled Resource-sharing
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@ Resource-sharing random variable Q™ available at all terminals [Simeone et al'11].

@ Q" way easier to share, (e.g., on/off activity ).

@ Memoryless Channel: PY1,~~,YK\X1,~-~7X1

@ Userle{l,...,L}: o7 1,192 x [1,27F] x 9 — X7
@ Relay ke {1,...,K}: gr Y™ x Q" — [1,27Ck)

@ Decoder:

on Ry

P [ ]X1 2T ] x e x [1,270K ) x Q7 — 1,27 ) L x (1, 20 B
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Main Capacity Results

Single-letter characterizations of:

1) Capacity Region of the Class of DM CRAN channels satisfying
Yy - X7 - Yit\y,

2) Capacity Region of Gaussian MIMO Channels with Gaussian Inputs

e In particular, we show that Gaussian auxiliaries are optimal.

e And, time (frequency) sharing is in general needed.

3) Inner and Outer Bounds for General DM Model (i.e., Without the Markov Chain).
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Capacity Region of a Class of CRAN Channels

Theorem

For the class of discrete memoryless channels satisfying
Y e Xp - Yoo\

with oblivious relay processing and enabled resource-sharing, a rate tuple
(R1,...,Rp) Is achievable if and only if for all T C L and for all § C X,

ZRt<Z I(Ys; Us| Xz, Q)] + I(Xq; Use| Xe, Q),

teT SES

for some joint measure of the form

L K K
Pq HPXL\Q HPYHXL HPUkm,Q,
=1 k=1 k=1

with the cardinality of Q bounded as |Q| < K + 2.




Direct Part

Capacity region achievable with
@ Compress-and-Forward with Joint-Decompression-Decoding

o Generalization of scheme from [Sanderovich et al'09] to L users.

o Based on compress-and-forward a la Cover-El Gamal with joint decoding and
decompression (JDD) at the CP.

e Gaussian inputs are not optimal for finite capacity fronthauls.
@ Separate Decompression-Decoding not optimal in general.
@ Noisy Network Coding

o Particular case of [Theorem 1, Lim et al'11].

Sum-rate achievable also with
@ Compress-and-Forward with Separate Decompression-Decoding (SDD)

e The CP decodes explicitly the compression indices first and then decodes the
users’ transmitted messages.
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Outline of Converse Part

@ Define Uik = (Je, Y1) and Qi = (X', X2 ,41,Q).
Fano's Inequality: H(m7|Jg<7F/;,Q) <e€, for TCL,
@ Upper bound on entropy term: For 7 C £ :={1,...,L},
H(X3?|X%e, Jx, Q <ZH X7,i|Xge:,Qi) —n Y _ Ry :=nl'y
teT
- Follows from

nZRt: (mg) = I(mg; Jx, Fe, Q) + H(ms|Jx, Fc, Q)
teT < I(me,Frr, Jg<|F7'r )+7L6n

< H(XF|X§e,Q) — H(XF|XFe, Jx, Q) + nen

@ Reminiscent of log-loss penalty criterion in multi-terminal source coding
[Courtade-Weissman’14]:

H(X" i) < Bldiog(X"; X™)] ~ n(H(X) — I(X; X))

11/44
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Outline of Converse Part (Cont.)

@ Bound on users’ rates: For T C [

n
n> Ry < I(mg, Fr; Jx|Fre, Q) +nen < Y I(Xg i3 Usc i Xe 1, Qi) + nen
teT i=1

@ Bound on relays’ rates: For § C X :={1,..., K}

nYy Cp>> H(J) > I(XF, Y Js| X5, Jse, Q)
keS keS

n
>N H(Xy,i| Xge,i,Use 3, Qi) —nlg + 1(Y{'; Js| X2, Jse, Q)
=1
n

n
=nRy — Y (X7 Use il Xge i, Qi) + > > I(Vei; Un il X i, Qi)

i=1 kes i=1

where we used the upper bound on the entropy and the Markov chain

Yi o X - Yi\i



Remarks

@ Sum-rate achievable with CF with JDD given by

sum __ : _ . .
Jbb = max min {> Co—I1(Ys;Us| X, Use,Q) + 1(X; Use|Q) }.-
sES
@ Using properties of sub-modular functions, we show that CF with SDD (and
even the low-complexity version of it, consisting in sequential decompression
followed by sequential decoding, denoted as SWZ) achieve the same
sum-rate as CF with JDD.
o Note, however, that time-sharing is generally needed for the three to achieve
optimal sum-rate!

Theorem
For any Py, . vy |x,,..,x., ot necessarily satisfying Yy, o~ X —o- Ygc\r, we have

Sum SuIm SuIm

JDD — fY'SDD — f'SWZ

@ In particular, for MIMO Gaussian channels recovers [Zhou et al.’16].
@ In terms of rate-region, CF with JDD generally outperforms CF with SDD.
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Numerical example: 3 Cell Uplink Wyner Model
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cutset upper bound
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o For SWZ, optimizing over relay ordering improves performance, in general

@ Without time (or resource)-sharing, as is in the figure, SDD may achieve
smaller sum-rate than JDD.
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Memoryless MIMO Gaussian Model

@ The channel output at relay node k£ with M}, antennas:
Yi=Hc [XI,...,X7]" + Ny,
where
o User | with N; antennas transmits X; with E[||X;]|?] < K;.
o Relay k with M}, antennas.
o Hy . =[Hk,,...,Hg ], Hi,; channel between user [ and relay k.

o Ny ~ CN(0,X%) is AWGN noise at relay k, assumed independent.

@ Outputs satisfy Yy o~ X1 —e- Yio\k.

@ Theorem 1 characterizes its capacity region. Finding the optimal Uy,...,Uxk is
generally not easy.

15/ 44



Capacity under Gaussian Signaling and Enabled Resource-Sharing

Theorem (Capacity Region under Gaussian Input with Enabled Resource-Sharing)
Let the input vectors use Gaussian Signaling with Enabled Resource-Sharing, i.e
0~ CN(0,K; o) qe{l,...,]Q} > pe(@)Ki <K
qeQ

The capacity region is given by the set of all rate tuples (Rx,

..., Rr) satisfying that for
allT C L and all § C XK

| Zkesc Hkaer qu,T + K;,1|
KLl

SR <> |Ck —Eqlog —*—— 1=,

= + Eq log
teT kes |2 ! qu|

for some 0 <X By 4 = 2,;1, where Hy, 5 is the channel between Xy and Y.

@ Extends [Theorem 5, Sanderovich et al'09] to L users and MIMO.
@ Achievable with Uy g = Yk, + Zk,q, Z,q ~ GN(O,B;’}] —kq) g €9Q.

@ Gaussian signaling can be strictly suboptimal [Sanderovich et al'09)].

16
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Converse Part

@ For (X, U) arbitrarily correlated,
log |(me) I~H(X|U)| < h(X|U) < log |(me) mmse(X|U)|
@ For each Q =g,
I(Y3; U|Xg, Q = q) = log |[(me) B | — h(Ys|Xg g, Us,q, Q@ = q)
=5
1=t = Bl

> log
where 0 <X By 4 = Z;l is chosen such that
mmse(Y| Xz g, Ur,q) = g — By o 3
@ Also,
I(X7;Uge|Xge,Q = q) = h(Xq 4| Xge,q) — M(Xg|Xge, Uge ¢,Q = q)
<log Ky o +log| > H By ;Hp g+ K7
ke8c
by deBrujin Identity [Palomar-Verdu'06],[Ekrem-Ulukuss’'14], [Zhou et al'17]

J(Xg,q|Xge,g, Uge q) = Z HkH,iTBkquk,T + K;lq
kes8e

17 /44



Resource-sharing Enlarges Capacity Region

m -

a:
E[XP <P 2

5%

R L] c
—| Relay 2

CP

Yk = a1 X + Ny, with E[X?] < P and Ny, ~ N(0,1), k = 1,2

Achievable Rate

3l

—— Cut-set Bound
JDD with Time-sharing
—— JDD w/o time-sharing

@ JDD without resource (time)-sharing, i.e., Q = 0

5 10 15 20 25

Available Power P (dB)

@ JDD with resource (time)-sharing (|Q| = 2. Recall that |Q] < K + 2 = 4 here)

@ Phase I: UE transmits at P/a for an samples. Relays compress at Cj/a.

@ Phase Il: UE and Relays remain inactive for (1 — a)n remaining samples.

@ Intuition: For small P, the observations at the relays are too noisy; and, so, it is more
advantageous to increase power and compression rate during shorter time.
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Capacity under Constant Gaussian Signaling

Theorem (Capacity Region under Constant Gaussian Input)
If the input vectors use constant Gaussian Signaling, i.e.,

Kii=--=Kjq =K, X; ~ EN(0, K;),

the capacity region is given by the set of all rate tuples (R, .

.., Rr) satisfying that for
all T C L and all § C X

= HI BH, s +K;!
ZRtSZ{Ck—IOg Lk | +10g|2k65 k,T —kl kT 7 |
teT k€S 1%~ — Bl K,

for some 0 < B < 2;1, where Hy, 5 is the channel between X5 and Y.

@ Resource-sharing at the relays does not enlarge the capacity region under
constant Gaussian Signaling.

@ Proof follows from Jensen's Inequality and concavity of log-det.

19/44
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Capacity under Gaussian Signaling in the High SNR Regime

@ High SNR regime model:
i = ef]k; for some X, = 0, ande— 0.
e We have Rans(Cx) C Rars(Cx), where:

o Rars: Capacity under Gaussian Input with enabled resource-sharing.

o Rins: Capacity under Gaussian Input without resource-sharing (Q = 0).
Theorem (Capacity Region under Gaussian Input in High SNR)
If (R1,...,Rr) € Rars(Cx), then for any € > 0, for some A. > 0,
(Ri — A, ..., R — A.) € Rans(Cx)
In addition, fRGNS (Cg{) = fRGTs(Cg() as e — 0, since

lim A = 0.

e—0

@ For large SNR, the gains due to resource-sharing become limited.



Numerical example: Circular Wyner Model

Cloud
Central Unit

@ Each cell contains a single-antenna and a single-antenna RU.

o Inter-cell interference takes place only between adjacent cells (circular).
Y =aXp_ 1 + X +aXpp1 + Nig
where Ny, ~ CN(0, 1)
@ All RRUs have a fronthaul capacity of C'.



Numerical example: Circular Wyner Model (cont'd)

Average per cell sum-rate for K=3 users, C=3

3r
Cut-Set upper Bound

Cloud
Central Unit

251 - . :
Succ. Wyner-Ziv

JDD

N

Point-to-point Compression

Per cell-sum rate (bits/s/Hz)

Single Cell-Processing

0 é 1‘0 1‘5 2‘0 2‘5 3‘0
UE transmit power (dB)
@ JDD is capacity achieving under oblivious processing.

@ For this simple network, JDD does not provide much gain compared to SDD
and SWZ.

- Here, the schemes SDD and SWZ do not employ resource-sharing.



Cost of Obliviousness

Average per cell sum-rate for K=3 users, C=3

Average per cell sum-rate for K=3 users, C=5 Log10 P
Cut-Set upper Bound

Suce. Wyner-Ziv JDD

sl Suce. Wyner-Ziv

Compute-and-Forward Point-to-point Compression

Cut-Set upper Bound

Compute-and-Forward

Per cell-sum rate (bits/s/Hz)
Per cell-sum rate (bits/s/Hz)

Single Cell-Processing Stugte Cell; Provessiig

05 " " L L L 2 L L L L L L L s
0 5 10 15 20 25 0 5 10 15 20 25 30 35 40
UE transmit power (dB) UE transmit power (dB)

@ Optimal degrees-of-freedom: when fronthaul capacity grows with SNR, e.g.,
C = 5logyy(snr). [Sanderhovich et al’09].

@ Capacity under Gaussian signaling to within a constant gap of cut-set bound.

o If (R1,...,Ryz) is within the cut-set bound, then

for KM < 2N

(R = A, (R = A, A s o
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Inner and Outer Bounds for General CRAN Models

Theorem (Bounds)

For general DM CRAN channels with oblivious relay processing and enabled

resource-sharing, a rate tuple (Ry, ..., Ry) is achievable if (only if) for all T C L
and for all § C X,

Y R <Y Co—I(Ys;Us| Xz, Use, Q) + (X3 Use| X7e, Q),

teT SES
Inner bound: for some pmf Pg H1L=1 Px,10 Py x, Hszl Py, vi,q-
Outer bound: for some (Q, Xz, Yy, Usc, W)
e distributed according to Pg HZL:1 Px, 10 Pyyix. Pwio

e ug = fr(w,yk,q) for some random variable W and some deterministic
functions { fi.}, k € K.

@ Problem is challenging, as it includes Korner-Marton modulo-sum problem
[Korner-Marton’79] as a special case.



Information Bottleneck

X — Y — U

o Efficiency of a given representation U = f(Y') measured by the pair
Rate (or Complexity): I(U;Y) and Information (or Relevance): 1(U; X)

@ Information I(X;U) can be achieved by OBLIVIOUS coding Y while with
the logarithmic distortion with respect to X

@ Single letter-wise, U is not necessarily a deterministic function of Y

@ The non-oblivious bottleneck problem is immediate as the min(I(X;Y), R)
is achievable by having the relay decoding the message transmitted by X

@ The bottleneck problem connects to many timely aspects, such as 'deep
learning’ [Tishby-Zaslavsky, ITW'15].



Digression: Learning via the Information Bottleneck
Method

Limited Complexity

Pxy R n
X— v— f() > g9() |—> E
Features Observation Encoder Decoder Estimate

@ Preserving all the information about X that is contained in Y, ie., I(X;Y),
requires high complexity (in terms of minimum description coding length).

o Other measures of complexity may be (Vapnik-Chervonenkis) VC-dimension,
covering numbers, ..

o Efficiency of a given representation U = f(Y') measured by the pair

Complexity: I(U;Y) and Relevance: I(U;X)
o Example:
max [(U;X) st I(U;Y) <R for 0<R<H(Y)
p(u|z

min I(U;Y) st. I(U;X)>A, for 0<A<I(X;Y)

p(ulx) 26/ 44
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Basically, a Remote Source Coding Problem !

Latent Space

Pxy U
X —— Y —| Fuyy

Y

PX|U — > X

Features Observation Encoder Decoder Estimate

@ Reconstruction at decoder is under log-loss measure,
R(A) = min I(U;Y)
p(uly)
where the minimization is over all conditional pmfs p(uly) such that
Elfog(X, U)] < H(X) — H(X|U) = H(X) - A
- R. L. Dobrushin and B. S. Tsybakov, “Information transmission with additional noise”, IRE Tran. Info.
Theory, Vol. IT-8, pp. 293-304, 1962.
- H. Witsenhausen, A. Wyner, “A conditional entropy bound for a pair of discrete random variables”,
IEEE Trans. on Info. Theory, Vol. 21, pp. 493-501, 1975.
@ Solution also coined as the Information Bottleneck Method [Tishby'99]
LIB(ﬂ, nyy) = I(Illn) I(Y, U) - 6I(X, U)
p

uly 27 / 44



Other Connections

@ Common Reconstruction. Because U - Y -~ X, we have

I(U; X) = I(U;Y) - I(U;Y|X)
< R-I(U;Y|X)
- Y. Steinberg, “Coding and common reconstruction”, IEEE Trans. on Info. Theory,

vol. 55, no. 11, pp. 4995-5010 (X — side information is not used for the ‘source’ Y’
common reconstruction).

@ Information Combining
IY;U,X)=I1U;Y)+ I(X;Y) - I(U; X) (since U-eY o X)
Since I(X;Y) is given and I(Y;U) = R, maximizing I(U; X) is equivalent

to minimizing I(Y;U, X).

- |. Sutskover, S. Shamai and J. Ziv, “Extremes of Information Combining”, IEEE Trans.
Inform. Theory, vol. 51, no. 4, pp. 1313-1325, April 2005.

- 1. Land and J. Huber, "Information combining,” Foundations and trends in Commun. and
Inform. Theory, vol. 3, pp. 227-330, Nov. 2006.
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Other Connections (Cont.)

o Wyner-Ahlswede-Korner Problem

If X and Y are encoded at rates Rx and Ry, respectively. For given
Ry = R, the minimum rate Rx that is needed to recover X losslessly is

R%(R) = min H(X|U
() pluly) : I{U5Y) < R (XIU)

So, we get

max I(U; X)=H(X)—- R%(R
p(uly) : I(U;Y)<R ( ) (X) % (R)

- R. F. Ahlswede and J. Korner, “Source coding with side information and a converse for
degraded broadcast channels”, IEEE Trans. on Info. Theory, Vol. 21, pp. 629-637, 1975.

- A. D. Wyner, “On source coding with side information at the decoder”, IEEE Trans. on
Info. Theory, Vol. 21, pp. 294-300, 1975.

29 /44
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Vector Gaussian Information Bottleneck

o (X,Y) jointly Gaussian, X € R" and Y € RM

@ Optimal encoding Py is a noisy linear projection to a subspace whose
dimensionality is determined by the bottleneck Lagrangian multiplier 3
[Chechik et al. '05]

U=AY +7Z, Z ~N(0,I)

where

[07;...;07], if 0<8<p¢

[avi; 075507, if 87 < <p%

o v avys 07 07], if 55 < B < 5

and {v{,..., vy} are the left eigenvectors of 3,3, sorted by their
ascending eigenvalues {\1,...,An}; B = 1/(1 — \;) are critical § values;
T = VZ-TEyvi and
BL—N) -1

)\ﬂ’i

Rate-Information Trade-off Gaussian Vector Channel [Winkelbauer-Matz, I1SIT’14].

a; =

44



Rate-Information Curve

Relevance I(X;U)

Iy -
rank{ A} 23
e
rank{ A} 9
1‘ank{ A} 1
5 10 P - R

Complexity I(Y;U)

30

31/44



|
CEO Source Coding Problem under Log-Loss

Y Ry
Encoder 1 }

Pyix

> X : Eldig(X; X)) <D

Decoder

Encoder K |

@ CEO source coding problem under log-loss distortion:

diog (z, &) :=log (33(135))

where & € P(X) is a probability distribution on X.

@ Characterization of rate-distortion region in [Courtade-Weissman’'14]
o Key step: log-loss admits a lower bound in the form of conditional entropy of
the source conditioned on the compression indices:
nD > Eldiog(X™; X™)] > H(X"|Jx) = H(X"™) — I(X"; Jx)
@ Converse of Theorem 1 for Oblivious CRAN leverages on this relation applied to multiple

channel inputs, which can be designed.
Multiple description CEO problem-logloss distortion (Pichler-Piantanida-Matz, ISIT’17].



Distributed Information Bottleneck

Ry

Encoder 1

> X A<I(X;X)

Decoder

Ry

Encoder K

@ Information Bottleneck introduced by [Tishby’99] and [Witsenhausen'80]
“Indirect Rate Distortion Problems”, IT-26, no. 5, pp. 518-521, Sept. 1980.

@ It is a CEO source-coding problem under log-loss!

Theorem (Distributed Information Bottleneck [ Estella-Zaidi, 125’18 ] )

The D-IB region is the set of all tuples (A, Ry, ..., Rk) which satisfy

A<D [Re—I(Yi; UnlX, Q)] + I(X;Use|Q),  forall§ C X
kes

for some joint pmf p(q)p(z) [Ty P(yr|z) TTrey p(urlye, @)-

33/44




Vector Gaussian Distributed Information Bottleneck

e (Yy, -+, Yg,X) jointly Gaussian, Y € RY and X € RM,
Y, =H,. X+ Nk, N ~ N(O, Enk)

@ Optimal encoding P, |y, is Gaussian and Q = () [Estella-Zaidi'17]

Theorem (Estella-Zaidi, 1ZS'18)

If (X,Y1,...,Yx) are jointly Gaussian, the D-IB region is given by the set of all
tuples (A, Ry, ..., Ry) satisfying that for all $ C X

A < " [Ry +log [T — By + log
keS8

ke8¢

for some 0 < By, < I, where H, = 35,/*H,XX?, and achievable with
P (Wklyr, q) = CN(yk, Z2(Br — DEH?)

@ Reminiscent of the sum-capacity in Gaussian Oblivious CRAN with Constant
Gaussian Input constraint.

34 /44



4
N 351 = —
R
Enc. 1 3k
: <
< N L

X ~N(0,1) S bX 0%
N ) S

2 a g,
\/snr Ys R 5

Enc. 2 5 7
B15F /.
m /
Vi = anrX + N, with Ny, ~ N°(0,1), k= 1,2 /
Tl ’ 1+ Upper bound (R = o0)
Distributed encoding (Theorem)
ost Independent PtP compression |
Upper bound (Collaborative encoding)
0 ‘
0 1 2 3 4 5 6 7 8 9 10

e Optimal information (relevance): Rate 1t

A*(R,snr) = log, (1 +2snr27 20 (22R + snr — \/snr2 + (14 2snr) 22R>)

@ Collaborative encoding upper bound: (Y7,Y3) encoded at rate 2R
Ay (R, st) = logy (1 4 2snr) — logy (1 + 2snr 27 2F)
@ Lower bound: Y; and Y5 independently encoded
Ai(R,snr) = logy (1 + 2snr — snr 27 ) —logy (1 + snr2™F)
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The Distributed Information Bottleneck for Learning

@ For simplicity, we look at the D-IB under sum-rate [Estella-Zaidi'18]
K

Py, = arg min I(X;Ux)+ B Y _[I(Ye;Uy) — I(X;Uy)]

Puiivy, k=1

@ The optimal encoders-decoder of the D-IB under sum-rate constraint satisfy
the following self consistent equations,

plunl) = 5 exp (~v k).

plalur) = > plyelur)p(elyr)
YR E€YR

plalur,. . ur) = Y plyso)p(usclyx)p(elys) /p(us)

Yyx €9
where
1
s (uk, Yi) =DKL(Px |y, |Qx|uy) + ;EUK\k\yk (DKL (PX U g wi 1QX U )]

o Alternating iterations of these equations converge to a a solution for any
initial p(uk|xk), similarly to a Blahut-Arimoto algorithm.

36 /44
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D-IB for Vector Gaussian Sources: lterative Optimization

e (Yy, -+, Yg,X) jointly Gaussian, Y € RY and X € RM,
Y. =H X + Ny, N ~ N(0,1I)
@ Optimal encoding P, |Y is Gaussian [Estella-Zaidi’17] and given by
Up =AY, +Zy, Z;, ~N(0,%, 1)

@ For this class of distributions, the updates in the Blahut-Arimoto type
algorithm simplify to:

-1

Y i1 = 1+ 3 t - 2 t )
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D-IB for Vector Gaussian Sources (cont’'d)
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@ Performance of distributed-IB is close to that of centralized IB
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Wrap Up

@ We have studied transmission over a CRAN under oblivious processing
constraints at the relays and enabled resource-sharing.

e i.e., relays are not allowed to know or acquire the users’ codebooks.

@ Our results shed light on the optimal relay operations:

e NNC and CF with JDD optimal when the outputs at the relay nodes are
conditionally independent on the users inputs.

o Computed the Capacity Region under Gaussian Inputs in MIMO CRAN.

@ Oblivious processing relevant from a practical viewpoint:

e Bounded rate loss in comparison with the non-oblivious setting.

@ Discussed relevant connections with CEO under logarithmic loss and
Information Bottleneck Method.
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Short Outlook

@ Duality issues:
e Downlink/uplink, e.g., Compute-forward v.s. reverse Compute-forward

e Gaussian MAC/BC duality extends also for finite-capacity fronthauls {C}}

- See, e.g., Liu-Patil-Yu, “An Uplink-Downlink Duality for Cloud Radio Access
Network”, 1SIT'2016. More advanced downlink: Multi-Marton Coding:
[Patil-Yu, 1801.00394]. Also “Channel Diagonalization for Cloud Radio
Access”, [Liu-Patil-Yu, arXiv:1802.01807]

e Duality aspects via information bottleneck interpretations.

@ Optimal input distributions under rate-constrained compression at relays.
o Discrete signaling is already known to sometimes outperform Gaussian
signaling for single-user Gaussian CRAN [Sanderovich et al. '08].

o It is conjectured that the optimal input distribution is discrete.

o Improved upper bounds (over cut-set) for non-oblivious relay based schemes,
to better evaluate the cost of oblivious processing (4 la: Vu-Barnes-Ozgur,
arXiv:1701.02043 Gaussian primitive relay).
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Short Outlook cont.’

@ Bounds on general information bottleneck problems [Painsky-Tishby,
arXiv:1711.02421], [Eswaran-Gastpar, arXiv:1805.06515].

@ A variety of related C-RAN & Distributed bottleneck problems:

o Impact of block length n [C' may not scale linearly with n = Courtade
conjecture (C' = 1)] [Courtade-Kumar, 1T'14],
[Yang-Wesel, arXiv:1807.11289, July'18],
The C' = n — 1 case [Huleihel-Ordentlich, arXiv:1701.03119v2, May'17].

e Bandlimited time-continuous models (Homri-Peleg-Shamai, arXiv:1510.08202).

e Multi-layer Information Bottleneck Problem (Yang-Piantanida-Giindiiz,
arXiv:1711.05102).

e Distributed Information-Theoretic Clustering (Pichler-Piantanida-Matz,
arXiv:1602.04605, Dictator Functions, arXiv:1604.02109).
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Short Outlook cont.’

@ Entropy constraint bottleneck:
X-Y-U
max I(X;U) under the constraint H({U) < C
practical applications: LZ distortionless compression.

= U = f(y) a deterministic function [Homri-Peleg-Shamai,
Oblivious Processing in a Fronthaul Constrained Gaussian Channel,
arXiv:1510. 08202].

o The deterministic bottleneck: advantages in complexity as compared to a
classical bottleneck: [Strouse-Schwab, arXiv:1604.00268].
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