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Abstract—This paper considers a problem of lossy compres-
sion of generalized Gaussian (GG) sources (i.e., sources with
the probability density functions proportional to e−

|x|s
2 , s > 0)

with an `r, r > 0, distortion measure.
It is shown that an optimal reconstruction distribution

always exists and properties of this distribution are studied.
In particular, it is shown that if s ≤ r − 1 then an optimal
reconstruction must have unbounded support and for s > r an
optimal reconstruction must have bounded support. Further,
it is shown that Shannon’s lower bound is achievable if and
only if r = s ∈ (0, 1] ∪ {2}, or in other words when the
GG distribution is self-decomposable. Finally, conditions are
shown under which an optimal reconstruction is discrete with
finitely many mass points.

I. INTRODUCTION

A classical rate-distortion problem, first formulated by
Shannon in [1], considers a source with the distribution PX
on X , a reconstruction alphabet X̂ , and a distortion measure
d : X × X̂ → R+. One of the crowning achievements
of Shannon is an exact expression for the rate-distortion
function given by

R(D) = inf
PX̂|X :E[d(X,X̂)]≤D

I(X; X̂). (1)

For continuous sources the rate-distortion function has
been found for Laplace sources with absolute error distor-
tion d(x, x̂) = |x−x̂| [2], exponential sources with absolute
error distortion [3], and Gaussian sources with square error
distortion d(x, x̂) = |x − x̂|2 [1]. In this paper, we will
enlarge this set of known cases by considering the rate-
distortion problem for generalized Gaussian (GG) sources.

A. Problem Formulation

We shall refer to Xs with a GG distribution given by the
probability density function (pdf)

fXs(x) =
cs
α

e−
|x−µ|s

2αs , (2a)

cs =
s

2
s+1
s Γ

(
1
s

) , x ∈ R, (2b)

as Xs ∼ Ns(µ, αs). Well-known examples of this family of
distributions include: the Laplace distribution for s = 1; the
Gaussian distribution for s = 2; and the uniform distribution
on [−β, β] for s =∞ and α = lims→∞

(
1
2

) 1
s β.

1A. Dytso and H.V. Poor are with the Department of Electrical Engi-
neering, Princeton University, NJ, Princeton 08544, USA (email: adytso,
poor@princeton.edu).

2R. Bustin and S. Shamai (Shitz) are with the Department of Electrical
Engineering, Technion-Israel Institute of Technology, Technion City, Haifa
32000, Israel (e-mail: bustin@technion.ac.il, sshlomo@ee.technion.ac.il).

The work of A. Dytso and H.V. Poor was supported by the National
Science Foundation under Grant CNS-1702808. The work of R. Bustin
and S. Shamai has been supported by the European Union’s Horizon 2020
Research and Innovation Programme, grant agreement no. 694630.

We consider the rate-distortion problem with a GG source
and a distortion measure that corresponds to an `r-norm

d(x, x̂) = |x− x̂|r, r > 0. (3)

Formally, we seek to solve

Rr,s(α,D) = inf
PXsX̂∈Pr,s(D)

I(Xs; X̂), (4)

where Xs ∼ Ns(µ, αs) and

Pr,s(D) =

{
PXsX̂ : E[|Xs − X̂|r] ≤

2Dr

r
,

and PXs = Ns(µ, αs) is the marginal of PXsX̂
}
.

(5)

B. Why Generalized Gaussian Sources?

The flexible parametric form of the pdf of GG distribu-
tions allows for tails that are either heavier than Gaussian
(s < 2) or lighter than Gaussian (s > 2) which makes
it an excellent choice for many modeling scenarios. For
example, GG distributions appear naturally in a number of
quantization problems [4] and [5]. For a detailed survey
of applications of GG distributions in engineering, the
interested reader is referred to [6].

From an information theoretic perspective the GG distri-
bution is interesting because it maximizes the entropy and
Réyni entropy under a s-th absolute moment constraint [7],
[8].

Theorem 1. Let X ∈ R such that E[|X|s] ≤ 2αs

s . Then,

h(X) ≤ 1

s
log

(
se

2css
· E[|X|s]

)
≤ 1

s
log

(
αse

css

)
. (6)

The inequality in (6) is attained with equality if and only if
X ∼ Ns(0, αs).

Proof: This result can be proved via the method
outlined in [7, Chapter 12].

II. ON THE EXISTENCE OF AN OPTIMAL
RECONSTRUCTION

We begin our analysis by first showing that the infimum
in (4) is attainable.

Theorem 2. The infimum in (4) is achievable. In other
words,

inf
PX̂Xs∈Pr,s(D)

I(X; X̂) = min
PX̂Xs∈Pr,s(D)

I(X; X̂). (7)

Proof: The proof of the result is rather involved and is
shown in Appendix A.

Note that Theorem 2 does not claim that a reconstruction
distribution PX̂ is unique. However, we conjecture that this



is the case and the optimal input distribution is indeed
unique.

III. A CHARACTERIZATION OF OPTIMAL
RECONSTRUCTION DISTRIBUTIONS

In order to study the support of optimal input distributions
we need the following definition.

Definition 1. A point x ∈ R is said to be a point of
increase of a distribution PX , if for any open subset O ⊂ R
containing x, PX(O) > 0. We denote the set of points of
increase of PX as E(PX) ⊆ R.

Theorem 3. Let Xs ∼ Ns(0, αs) and (r, s) ∈ R2
+. For X̂

distributed according to PX̂ define the following function:

g(x̂;PX̂) = EXs
[

e−λ|x̂−Xs|
r

hλ(Xs;PX̂)

]
, (8a)

where for λ > 0

hλ(x;PX̂) = EX̂
[
e−λ|X̂−x|

r
]
. (8b)

Then, P ?
X̂

is an optimal reconstruction in (4) if and only if
there exists some λ > 0 such that

g(x̂;P ?
X̂

) ≤ 1,∀x̂ ∈ R, (8c)

g(x̂;P ?
X̂

) = 1,∀x̂ ∈ E
(
P ?
X̂

)
. (8d)

Proof: The proof follows by setting d(x̂, x) = |x− x̂|r
in the proof giving sufficient and necessary conditions for
an arbitrary distortion, d(x̂, x), found in [7, Chapter 10.7]
and [9].

IV. WHEN IS AN OPTIMAL RECONSTRUCTION
BOUNDED?

In this section we provide conditions under which the
reconstruction distribution P ?

X̂
has bounded support.

Theorem 4. For the optimization problem in (4) an optimal
reconstruction P ?

X̂
satisfies the following properties:

• for s ≤ r − 1 an optimal reconstruction distribution
P ?
X̂

has unbounded support; and
• for s > r an optimal reconstruction distribution P ?

X̂
has bounded support.

Proof: We first prove that an optimal reconstruction X̂
must be unbounded for s ≤ r− 1. Towards a contradiction
suppose that X̂ is bounded. In other words, suppose that
there exists some A such that |X̂| ≤ A. Next, we lower
bound g(x̂;PX̂) as

g(x̂;PX̂) = EXs
[

e−λ|x̂−Xs|
r

hλ(Xs;PX̂)

]
≥ EXs

[
e−λ|x̂−Xs|

r

hλ(X;PX̂)
· 1|Xs|≥A

]
≥ EXs

[
e−λ|x̂−Xs|

r

e−λ|A−Xs|r
· 1|Xs|≥A

]
(9)

=
cs
α

∫
R\[−A,A]

e−λ|x̂−x|
r+λ|A−x|r− |x|

s

2αs dx,

(10)

where the lower bound in (9) follows by using the bound
e−λ|X̂−x|

r ≤ e−λ|A−x|
r

for |X̂| ≤ A and |x| ≥ A.
Clearly, there exists an x̂ such that for s ≤ r − 1 the

integral in (10) integrates to infinity. Therefore, there exists
an x̂ such that the inequality in (8c) does not hold and the
reconstruction X̂ must be unbounded.

Next we prove that an optimal reconstruction X̂ must be
bounded for s > r. Towards a contradiction suppose that X̂
is unbounded and let X̂ ′ and X ′s denote independent copies
of X̂ and Xs

g(x̂;PX̂)

= EXs
[

e−λ|x̂−Xs|
r

hλ(Xs;PX̂)

]
a)

≤ EXs
[

e−λ|x̂−Xs|
r

e−λEX̂′ [|Xs−X̂
′|r]

]
= EXs

[
e−λ|x̂−Xs|

r+λEX̂′ [|Xs−X̂
′|r]
]

b)

≤ EXs
[
e−λ|x̂−Xs|

r+λmax(2r−1,1)(|X|r+EX̂′ [|X̂
′|r])

]
= eλmax(2r−1,1)E[|X̂′|r]EXs

[
e−λ|x̂−Xs|

r+λmax(2r−1,1)|Xs|r
]

= eλmax(2r−1,1)E[|X̂′|r]

·
∫
R

e−λ|x̂−x|
r+λmax(2r−1,1)|x|r− |x|

s

2αs dx, (11)

where the inequalities follow from: a) applying Jensen’s
inequality to hλ(x;PX̂) = EX̂

[
e−λ|X̂−x|

r
]

≥

e−λEX̂ [|X̂−x|r]; and b) using the bound |a + b|r ≤
max(2r−1, 1)(|a|r + |b|r) for any r > 0.

Clearly, the integral in (11) converges for all x̂ and λ as
long as s > r since x 7→ e−λ|x̂−x|

r+λmax(2r−1,1)|x|r− |x|
s

2αs

is a bounded function for s > r.
Now since X̂ is unbounded there exists a sequence

{x̂n}∞n=1 ⊆ E(P ?X) such that limn→∞ x̂n = ∞. Applying
this sequence to the function g(x̂;PX̂) and using the bound
in (11) together with the dominated convergence theorem
we have that

lim
n→∞

g(x̂n;PX̂) = 0. (12)

Clearly, (12) contradicts the condition in (8d). This
implies that for s > r an optimal reconstruction must be
bounded. This concludes the proof.

The result of Theorem 4 is depicted in Fig. 1.

Remark 1. Note that in the regime r − 1 < s < r it
is not clear whether an optimal reconstruction is bounded
or not. In the the next section, we will show that for the
case of r = s ∈ (0, 1] ∪ {2} the optimal reconstruction is
unbounded. Also, in the regime s < r we conjecture that
an optimal reconstruction is unbounded. This conjecture is
supported by the fact that in the proof of Theorem 4 for the
regime s ≤ r − 1 we have made the integral in (10) to be
equal to infinity. However, to reach a contradiction it would
have sufficed to make the integral in (10) larger than one
rather than equal to infinity. Hence, we suspect that with
a better bound (10) one might close the gap in the regime
when r − 1 < s < r.
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Fig. 1: Depiction of the result in Theorem 4.

V. SHANNON’S LOWER BOUND

Interestingly, in some cases we can give an exact solution
for the optimization problem in (4). Specifically, this is
possible when Xs has a self-decomposable distribution
which is defined as follows.

Definition 2. A random variable X is self-decomposable
if for every α ≥ 1 there exist an independent random X̂α

such that

αX
d
= X̂α +X ′, (13)

where X ′ is an independent copy of X .

In [1] Shannon developed a technique for constructing a
lower bound on the rate-distortion function which we now
explore in our context. The following result provides a lower
bound on the rate-distortion function for arbitrary values of
(r, s) ∈ R2

+ and shows that this lower bound is tight in
cases when the GG distribution is self-decomposable.

Theorem 5. For Xs ∼ Ns(0, αs) and (r, s) ∈ R2
+

Rr,s(α,D) ≥
[
log
( α
D

)
+ log

(
cr
cs

e
1
s−

1
r

)]+
. (14)

Moreover, the bound in (14) is achievable if r = s ∈ (0, 1]∪
{2}.

Proof: The proof of the lower bounds goes as follows:

I(Xs; X̂)

= h(Xs)− h(Xs|X̂)

= h(Xs)− h(Xs − X̂|X̂)

a)

≥ h(Xs)− h(Xs − X̂) (15a)
b)

≥ 1

s
log

(
E[|Xs|s] · se

2css

)
− 1

r
log

(
E[|Xs − X̂|r] · re

2crr

)
(15b)

c)

≥ log
( α
D

)
+ log

(
cr
cs

e
1
s−

1
r

)
, (15c)

where the inequalities follow from: a) the fact that con-
ditioning reduces entropy; b) the maximum entropy prin-
ciple from Theorem 1; and c) the distortion constraint
E
[
|Xs − X̂|r

]
≤ 2Dr

r .
The inequalities in (15) are tight if there exists a back-

ward test channel such that for some random variable X̂
we have that

Xs = X̂ + Zr, (16)

and where Zr ∼ Nr(0, Dr) and independent of X̂ . Showing
the existence of a test channel in (16) is equivalent to
showing that the function

φ(s,r, αD )(t) =
φs(αt)

φr(Dt)
, (17)

is a valid characteristic function of some random variable
X̂ where φs(t) is characteristic function of Xs and φr(t)
is a characteristic function of Zr.

Observe that in (17) if r = s we are exactly concerned
with the self-decomposability property of the GG distribu-
tion. Thus, in a sense, when r 6= s (17) is a generalization
of the self-decomposability property. A question of whether
a GG distribution is self-decomposable was only recently
answered in [6]. The following theorem, which looks at the
more general case of decomposability, provides a partial
answer to when a GG distribution can be additively trans-
formed into another GG distribution, and a complete answer
to when a GG distribution is self-decomposable.

Theorem 6. For (r, s) ∈ R2
+ let

S = S1 ∪ S2,
S1 = {(r, s) : 2 < s < r},
S2 = {(r, s) : s = r ∈ (0, 1] ∪ {2}}.

Then the function φ(s,r,α)(t) in (17) has the following
properties:
• for (r, s) ∈ S2, φ(s,r,α)(t) is a characteristic function

(i.e., Xr is self-decomposable for s = r ∈ (0, 1]∪{2});
• for (r, s) ∈ R2

+ \ S, φ(s,r,α)(t) is not a characteristic
function for any α ≥ 1; and

• for (r, s) ∈ S1 and almost all1 α ≥ 1, φ(s,r,α)(t) is
not a characteristic function.

The result of Theorem 6 is depicted in Fig. 2.
Note that by Theorem 6 the function in (17) is a valid

characteristic function if and only if r = s ∈ (0, 1] ∪ {2}.
This concludes the proof.

Remark 2. Note that using an additive backward test
channel is not the only way of achieving equalities in (15).
However, this is one of the most commonly used techniques
and understanding its limitations can be very valuable.

Note that Theorem 5 characterizes the distribution of an
optimal reconstruction through its characteristic function.

1In other words, the set of α for which the statement does not hold has
Lebesgue measure zero.
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Fig. 2: In the regime
S2 = {(r, s) : 0 < r = s < 1 or r = s = 2} (the dashed

line) φ(s,r,α)(t) is self-decomposable. We also emphasize
the point (r, s) = (2, 2) (the black square) corresponds to

the Gaussian characteristic function, and the point
(r, s) = (1, 1) (the black circle) corresponds to the

Laplace characteristic function. The regime
S1 = {(r, s) : 2 < s < r} (the gray triangle) is where
φ(s,r,α)(t) is not a characteristic function for almost all
α ≥ 1. The white space is the regime where φ(s,r,α)(t) is

not a characteristic function for all α ≥ 1.

However, this expression can be difficult to analyze. The
following result offers some additional details about an
optimal reconstruction. We will also need the following
definition.

Definition 3. A random variable X is infinitely divisible if,
for every positive integer n, there exist n independent and
identically distributed random variables Xn1, ..., Xnn such
that

X
d
= Xn1 + ...+Xnn. (18)

Proposition 1. Let r ∈ (0, 1] ∪ {2}. Then, for every α ≥
1 there exists an infinitely divisible random variable X̂α,
which is an optimal reconstruction in Theorem 5, such that

αXr
d
= X̂α +X ′r, (19)

where X ′r is an independent copy of Xr. Moreover, for α >
1 the random variable X̂α is unbounded.

Proof: The existence of X̂α and the fact that X̂α

achieves Shannon’s lower bound was shown in Theorem 5.
The fact that a component X̂α of a self-decomposable
distribution is an infinitely divisible random variable follows
from [10, Corollary 5.11.1].

Next we show that this random variable must be un-
bounded. Assume that |X̂α| ≤ A for some A. Then by
the triangle inequality, for all k ≥ 1

E
1
k

[
|αXr|k

]
= E

1
k

[
|X̂α +X ′r|k

]
≤ E

1
k

[
|X̂α|k

]
+ E

1
k

[
|X ′r|k

]
. (20)

Moreover, since E
1
k

[
|Xr|k

]
= E 1

k

[
|X ′r|k

]
the bound in

(20) implies that

(α− 1)E
1
k

[
|Xr|k

]
≤ E

1
k

[
|X̂α|k

]
≤ A. (21)

However, since Xr is an unbounded random variable we
have that limk→∞ E 1

k

[
|Xr|k

]
= ∞ which clearly violates

(21). Therefore, X̂α is not bounded. This concludes the
proof.

Remark 3. Observe that if one can argue that for all
r = s > 2 the backward test channel is an additive
transformation, then the technique used in Proposition 1
can be used to show that an optimal reconstruction is an
unbounded random variable for all r = s > 2.

VI. ON DISCRETENESS OF AN OPTIMAL
RECONSTRUCTION

In this section we show conditions under which an
optimal reconstruction is discrete. The following theorem,
the proof of which can be found in the extended version of
the paper [11], is the main result of this section.

Theorem 7. For r < s < 2 an optimal reconstruction
distribution P ?

X̂
is discrete with finitely many points.

Proof: The proof can be found in the extended version
of the paper and relies on techniques introduced in [12] and
[13].

Theorem 7 is interesting because it gives an example
which shows that an optimal reconstruction of a continuous
and unbounded random variable must be discrete with
finitely many points and, hence, is also bounded.

VII. CONCLUSION

The lossy compression of GG sources of order s under
`r distortion has been considered. It has been shown that
for all (r, s) ∈ R+ an optimal reconstruction exists and
properties of this reconstruction have been characterized. In
particular, it has been shown that if s ≤ r−1 then an optimal
reconstruction is unbounded, and if s > r then an optimal
reconstruction is bounded. Further, it has been shown that
for r = s ∈ (0, 1]∪{2} Shannon’s lower bound on the rate-
distortion function is achievable by a random variable that is
unbounded and infinitely divisible. Finally, conditions under
which an optimal reconstruction distribution is discrete with
finitely many points have been demonstrated.

As a future direction it would be interesting to consider
a remote rate-distortion problem where the goal is to
compress a noisy version of the source [14]. Also, it would
be interesting to consider dualities between the source and
channel coding to address additive channels with GG noises
[15].



APPENDIX

To show the existence of an optimizer we demonstrate
that the set Pr,s(D) is compact in the topology of weak
convergence. This together with the fact that mutual in-
formation is lower semicontinuous in the joint distribution
PXX̂ implies, by the extreme value theorem, that the infi-
mum is attainable. Before showing that Pr,s(D) is compact
we present some definitions and results needed for the proof.

Definition 4. A probability measure PXY defined on R2

has a marginal distribution PX on R if and only if for all
bounded and continuous functions f : R→ R∫

f(x)dPX,Y (x, y) =

∫
f(x)dPX(x). (22)

Next, we show that the set of joint distributions with
a fixed marginal distribution is closed in the topology of
weak convergence where the notion of weak convergence
is defined as follows.

Definition 5. A sequence of probability measures {Pn}n∈N
is said to converge weakly to the probability measure P if

lim
n→∞

EPn [φ(X)]→ EP [φ(X)] , (23)

for all bounded and continuous functions φ.

Another main ingredient comprises linear functionals.
The following theorem gives a necessary and sufficient
condition for a linear functional to be weakly continuous
[16, Lemma 2.1].

Theorem 8. A linear functional L : P → R is weakly
continuous on P if and only if it can be represented as

L(P ) = EP [φ(X)], ∀P ∈ P

for some bounded and continuous function φ.

Theorem 9. For some fixed PX define

PM(PX) = {PXY ∈ P(R2) : PX is a marginal of PXY }.

where P(R2) is the set of all joint distributions on (X,Y ) ∈
R2. Then PM(PX) is a closed subset of P(R2).

Proof: Let Cb be a set of continuous and bounded
functions on R and define the following operators:

L1(PXY ; f) = EPXY [f(X)], (24)
L2(PX ; f) = EPX [f(X)], (25)

for f ∈ Cb. Clearly, PXY 7→ L1 and PX 7→ L2 are weakly
continuous linear functionals in view of Theorem 8. Now
for a fixed PX define

P(f ;PX) = {PXY ∈ P(R2) : L1(PXY ; f) = L2(PX ; f)},
(26)

which is closed in view of the fact that PXY 7→ L1 is
weakly continuous. Therefore, using Definition 4 we can
write PM(PX) as

PM(PX) =
⋂
f∈Cb

P(f ;PX). (27)

Since an arbitrary intersection of closed sets is closed, we
have that PM(PX) is closed. This concludes the proof.

Proposition 2. For fixed r, s,D > 0 and PXs = N (0, αs),
the set Pr,s(D) (defined in (5)) is a compact set.

Proof: We note that the proof does not use the fact
PXs = N (0, αs). Let

PXX̂ =

{
PXX̂ : E[|X − X̂|r] ≤ 2

r
Dr

}
. (28)

From Prohorov’s theorem and Markov’s inequality it is not
difficult to show that the set PXX̂ is compact.

By Theorem 9 we have that Pr,s(D) is a closed subset
of a compact set PXX̂ . Since an intersection of a compact
set with a closed set is compact, we have that Pr,s(D) is
compact. This concludes the proof.

Finally, since the mapping PXX̂ 7→ I(X; X̂) is lower
semicontinuous and by Proposition 2 the set Pr,s(D) is
compact, the extreme value theorem asserts that the infimum
in (4) is attainable. This concludes the proof.
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