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Abstract—We consider a state-dependent parallel Gaussian
channel with independent states and a common cognitive helper,
in which two transmitters wish to send independent information
to their corresponding receivers over two parallel subchannels.
Each channel is corrupted by independent additive Gaussian
state. The states are not known to the transmitters nor to the
receivers, but known to a helper in a noncausal manner. The
helper’s goal is to assist a reliable communication by mitigating
the state. Outer and inner bounds are derived and segments of the
capacity region is characterized for various channel parameters.

Index Terms—Dirty paper coding, Gel’fand-Pinsker scheme,
noncausal channel state information, parallel channel.

I. INTRODUCTION

In this paper we consider a communication scenario where
two transmitters wish to send messages to their corresponding
receivers over a parallel state-dependent channel and a helper
who knows the state in a noncausal manner, wishes to assist
each receiver to mitigate the interference caused by the state.
The motivation to study such a model arises from practical
considerations. For example, consider a situation where there
are two Device to Device (D2D) links located in two distinct
cells and there is a downlink signal sent from the base-station
to some conventional mobile user in the cell. In addition there
is some central unit that knows in a noncausal manner the
signal to be sent by each base-station, the helper in our model,
and tries to assist the D2D communication links by mitigating
the interference.

The model addressed in this paper has a mismatched prop-
erty, that is the state sequence is known only to some nodes,
which differs it from the classical study on state-dependent
channels. The study of channels with side information goes
back to Shannon who considered a DMC channel with random
parameters with casual side information at the transmitter. The
case of noncausal side information was solved by Gel’fand and
Pinsker (GP) [1] for the discrete memoryless channel. Costa
[2] considered a Gaussian version of the GP channel, and
derived a surprising result, such that the interference can be
completely canceled. Such a phenomena is known as Writing
on Dirty Paper (WDP) property. Steinberg and Shamai [3]
proposed an achievable scheme for the broadcast channel with
random parameters, where they have shown that the WDP
property holds for the Gaussian BC with additive state. In this
work a similar scheme would be used to derive an inner bound.

The type of channels with mismatched property has been
addressed in the past for various models, for example, in [4]
the state dependent MAC channel is studied with the state
known at only one transmitter. The best outer bound for the
Gaussian MAC setting was recently reported in [5]. The point
to point helper channel studied in [6] and [7] can be considered
as a special case of [4], where the cognitive transmitter does
not send any message. Authors of [8] have recently considered
a scenario with a state cognitive relay. The state dependent Z-
IC with common state known in noncausal manner only to the
primary user was studied in [9].

Our previous work [10] studied a situation where each
channel is corrupted by same but differently scaled state was
considered. In [11] a similar setup was considered but with
infinite state power. The achievabilty scheme in latter paper
was a time-sharing version of point-to-point helper channel,
such that the helper alternatively assists receivers. This work
differs from the previous ones in that we address a situation
where the states are independent with arbitrary state power.

Our main contribution in this paper is derivation of inner
bound which is an extension of the Marton coding scheme for
discrete broadcast channel to the current model. We will apply
this bound for the Gaussian setting and characterize the seg-
ments of the capacity region for various channel parameters.

II. NOTATIONS AND PROBLEM FORMULATION

Random variables are denoted using a sans-serif font, e.g.,
X, their realizations are denoted by the respective lower case
letters, e.g., x, and their alphabets are denoted by the respective
calligraphic letter, e.g., X . The expectation of X is denoted by
E [X]. Let Xn stand for the set of all n-tuples of elements from
X . An element from Xn is denoted by xn = (x1, x2, . . . , xn)
and substrings by xji = (xi, xi+1, . . . , xj).

We consider a 3-transmitter, 2-receiver state dependent
parallel discrete memoryless channel depicted in Figure 1,
where Transmitter 1 wishes to communicate a message M1

to Receiver 1, and similarly Transmitter 2 wishes to transmit
a message M2 to its corresponding Receiver 2. The messages
M1 and M2 are independent. The communication takes over a
parallel state-dependent channel characterized by a probability
transition matrix p(y1, y2|x0, x1, x2, s). The Transmitter at the
helper has noncausal knowledge of the state and tries to
mitigate the interference caused in both channels. The state
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Fig. 1: State-Dependent Parallel Channel with a Helper.

variable S is random taking values in S and drawn from a
discrete memoryless source (DMS)

PSn(sn) =

n∏
i=1

PS(si)

A (2nR1 , 2nR2 , n) code for the parallel state-dependent chan-
nel with state known non-causally at the helper consists of
• Two message sets [1 : 2nR1} and [1 : 2nR2 ].
• Three encoders, where encoder at the helper assigns a

sequence xn0 (s
n) to each state sequence sn ∈ Sn, encoder

1 assigns a codeword xn1 (m1) to each message m1 ∈ [1 :
2nR1 ] and encoder 2 assigns a codeword xn2 (m2) to each
message m2 ∈ [1 : 2nR2 ].

• Two decoders, where decoder 1 assigns an estimate m̂1 ∈
[1 : 2nR1 ] or an error message e to each received sequence
yn1 , and decoder 2 assigns an estimate m̂2 ∈ [1 : 2nR2 ]
or an error message e to each received sequence yn2 .

We assume that the message pair (M1,M2) is uniformly
distributed over [1 : 2nR1 ]×[1 : 2nR2 ]. The average probability
of error for a length-n code is defined as

P (n)
e = P

{
M̂1 6= M1 or M̂2 6= M2

}
. (1)

A rate pair (R1, R2) is said to be achievable if there exists a se-
quence of (2nR1 , 2nR2 , n) codes such that limn→∞ P

(n)
e = 0.

The capacity region C is the closure of the set of all achievable
rate pairs (R1, R2).

Our goal is to characterize the capacity region C for the
state-dependent Gaussian parallel channel with additive state
known at the helper, where the outputs at the receivers for one
channel use are described by the equations

Y1 = η1X0 + X1 + S1 + Z1 (2a)

Y2 = η2X0 + X2 + S2 + Z2 (2b)

where Z1 ∼ N (0, 1) and Z2 ∼ N (0, 1) are additive Gaussian
noise of Y1 and Y2, S1 ∼ N (0, Q1) and S2 ∼ N (0, Q2)
are additive Gaussian state, both known noncausally at the
transmitter, and ηj , j = 1, 2, is the channel gain from the
helper to receiver j. The Gaussian random variables Z1, Z2,
S1, S2 are independent of each other. The channel inputs Xj,
j = 0, 1, 2 are power constrained: E

[
Xj

2
]
≤ Pj .

III. MAIN RESULTS

A. Outer and Inner Bounds

In order to characterize the capacity region of this channel,
we first provide an outer bound on the capacity region as
follows

Proposition 1. Every achievable rate pair (R1, R2) of the
state-dependent parallel Gaussian channel with a helper must
satisfy the following inequalities

R1 ≤ min

{
1

2
log

[
1 +

P1

η21P0 + 2η1ρ0S1

√
P0Q1 +Q1 + 1

]
+

1

2
log
(
(1− ρ20S1

− ρ20S2
)η21P0 + 1

)
,
1

2
log(1 + P1)

}
(3a)

R2 ≤ min

{
1

2
log(1 +

P2

η22P0 + 2η2ρ0S2

√
P0Q2 +Q2 + 1

)

+
1

2
log
(
(1− ρ20S1

− ρ20S2
)η22P0 + 1

)
,
1

2
log(1 + P2)

}
(3b)

for some ρ0S1
and ρ0S2

that satisfy

ρ20S1
+ ρ20S2

≤ 1. (3c)

Proof: This outer bound is an extension of the outer
bound derived in [6]. For a complete proof see Appendix A
of the extended version of the paper in [12].

The upper bound for each rate consists of two terms, the
first one reflects the scenario when the interference cannot be
completely canceled, and the second is simply the point-to-
point capacity of channel without state.

We next derive an achievable region for the channel based
on an achievable scheme that integrates Marton’s coding,
single-bin dirty paper coding and state cancellation. More
specifically, we generate two auxiliary random variables, U
and V to incorporate the state information so that Receiver 1
(and respectively 2) decodes U (and respectively V) and then
decodes the respective transmitter information. Based on such
achievable scheme, we derive the following inner bound on
the capacity region for the DM case.

Proposition 2. An inner bound on the capacity region of the
discrete memoryless parallel state-dependent channel with a
helper consists of rate pairs (R1, R2) satisfying:

R1 ≤ min{I(U,X1;Y1)− I(U;S), I(X1;Y1|U)} (4a)

R2 ≤ min{I(V,X2;Y2)− I(V;S), I(X2;Y2|V)} (4b)

R1 +R2 ≤ min{I(U,X1;Y1)− I(U;S) + I(V,X2;Y2)

− I(V;S)− I(V;U|S),
I(X1;Y1|U) + I(X2;Y2|V)} (4c)

for some pmf p(u, v, x0|s)p(x1)p(x2).
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Remark 1. The achievable region in Proposition 2 is equiv-
alent to the following region

R1 ≤ min{I(U1,X1;Y1)− I(U1;S), I(X1;Y1|U1)} (5a)

R2 ≤ min{I(U2,X2;Y2)−I(U2;U1,S), I(X2;Y2|U2)} (5b)

for some pmf p(u1, u2, x0|s)p(x1)p(x2).

Proof: See Appendix B of the extended version of this
paper in [12].

Denote

α1 , (α11, α12) α2 , (α20, α21, α22) β , (β1, β2).

Let f1(·), g1(·), f2(·) and g2(·) be defined as

fk(αk, β, γ)=
1

2
log

η2kγP
′
0 · σ2

Yk
(βk)

hk(αk, β, γ)

gk(αk, β, γ) =
1

2
log

(
1 +

Pk · σ2
Uk

(αk)

hk(αk, β, γ)

)
where

hk(αk, β, γ) = σ2
Yk|Xk

(βk) · σ2
Uk

(αk)− σ2
UkYk

(αk, β)

σ2
Yk
(βk) = η2kP0 + (2βkηk + 1)Qk + Pk + 1

σ2
Yk|Xk

(βk) = η2kP0 + (2βkηk + 1)Qk + 1

σ2
U1
(α1) = η21γP

′
0 + α2

11Q1 + α2
12Q2

σ2
U2
(α2) = η22(γ + α2

20γ)P
′
0 + α2

21Q1 + α2
22Q2

σU1,Y1
(α1, β) = η21γP

′
0 + (1 + β1η1)α11Q1 + α12β2η1Q2

σU2Y2
(α2, β)=η

2
2(P
′
02+α20P

′
01)+α22Q2(1+β2η2)+α21β1η2Q1

Based on the above inner bound, we obtain an achievable
region for the Gaussian channel by setting an appropriate joint
input distribution.

Proposition 3. An inner bound on the capacity region of
the parallel state-dependent Gaussian channel with a helper
consists of rate pairs (R1, R2) satisfying;

R1 ≤ min{f1(α1, β, γ), g1(α1, β, γ)} (6a)

R2 ≤ min{f2(α2, β, γ), g2(α1, β, γ)} (6b)

for some real constants α11, α12, α20, α21, α22, β1, β2 and
γ satisfying β2

1Q1 + β2
2Q2 ≤ P0, γ ∈ [0, 1] and γ = 1− γ.

Proof: The region follows from Remark 1 by choosing
the joint Gaussian distribution for random variables as follows:

U = X′01 + η−11 (α11S1 + α12S2)

V = X′02 + α20X
′
01 + η−12 (α21S1 + α22S2)

X0 = X′01 + β1S1 + X′02 + β2S2

X′01 ∼ N (0, γP ′0) X′02 ∼ N (0, γP ′0)

X1 ∼ N (0, P1) X2 ∼ N (0, P2)

where X′01,X
′
02,X1,X2,S1,S2 are independent. The constraint

on β1 and β2 follows from power constraint on X0.

Now we provide our intuition behind such construction of
the r.v.’s in the proof of Proposition 3. X0 contains two parts,
the one with βj , j = 1, 2 controls the direct state cancellation
of each state. The second part X′0j, j = 1, 2, is used for dirty
paper coding via generation of the state-correlated auxiliary
r.v.’s U and V.

Another important result of Proposition 3 is a constraint on
β1 and β2

β2
1Q1 + β2

2Q2 ≤ P0 (7)

we now define βj , ρ0Sj

√
P0

Qj
, and use this setting to write

(7) as
ρ20S1

+ ρ20S2
≤ 1 (8)

which is equivalent to (3c).

B. Capacity Region Characterization
In this section we will characterize segments on the capacity

boundary for various channel parameters using the inner and
outer bounds that were derived in Section III-A. Consider
the inner bounds in (6a) - (6b). Each bound has two terms
in the argument of min. We suggest to optimize each term
independently and then compare it to the outer bounds in (3a)-
(3b). In the last step we will state the conditions under which
those terms are valid. We first consider the bound on R1. Let

αa
11 =

(1 + η1β1)η
2
1γP

′
0

η21P
′
0 + 1

αa
12 =

β2η
3
1γP

′
0

η21P
′
0 + 1

(9)

Then f1(αa
1 , β, γ) takes the following form

f1(α
a
1 , β, γ)

=
1

2
log

(
1 +

P1

η21P0 + 2η1ρ0S1

√
P0Q1 +Q1 + 1

)
+

1

2
log

(
1 +

η21γP
′
0

1 + η21γP
′
0

) (10)

If f1(αa
1 , β, γ) ≤ g1(α

a
1 , β, γ), then R1 = f1(α

a
1 , β, γ) is

achievable. Moreover, if we choose γ = 1, then R1 =
f1(α

a
1 , β, 1) meets the outer bound (the first term in "min"

in (3a)). Furthermore, by setting

αb
11 = 1 + η1β1 αb

12 = η1β2

we obtain

g1(α
b
1, β, γ) =

1

2
log

(
1 +

P1

1 + η21γP
′
0

)
If g1(αb

1, β, γ) ≤ f1(αb
1, β, γ), then

R1 =
1

2
log

(
1 +

P1

1 + η21γP
′
0

)
is achievable. Similarly, by choosing γ = 1, then R1 =
1
2 log(1+P1) is achievable and this meets the outer bound (the
second term in "min" in (3a)). Next we consider the bound on
R2. Let

αa
20 =

η22γP
′
0

η22γP
′
0 + 1

αa
21 =

β1η
3
2γP

′
0

η22γP
′
0 + 1

αa
22 =

(1 + η2β2)η
2
2γP

′
0

η22γP
′
0 + 1

(11)
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Then f2(α2, β, γ) takes the following form

f2(α
a
2 , β, γ)

=
1

2
log

(
1 +

P2

η22P0 + 2η2ρ0S2

√
P0Q2 +Q2 + 1

)
+

1

2
log
(
1 + η22γP

′
0

) (12)

If f2(αa
2 , β, γ) ≤ g2(α

a
2 , β, γ), then R2 = f2(α

a
2 , β, γ) is

achievable. Moreover, if we choose γ = 0, then R2 =
f2(α

a
2 , β, 0) meets the outer bound (the first term in "min"

in (3b)).
Furthermore, we set

αb
20 = 1 αb

21 = η2β1 αb
22 = 1 + η2β2 (13)

and then obtain

g2(α
b
2, β, γ) =

1

2
log (1 + P2) (14)

If g2(αb
2, β, γ) ≤ f2(α

b
2, β, γ), then R2 = 1

2 log (1 + P2) is
achievable and this meets the outer bound. This also equals
the maximum rate for R2 when the channel is not corrupted
by state.

For simplicity of representation, we denote η , (η1, η2),
P , (P1, P2), Q , (Q1, Q2).

Summarizing the above analysis, we obtain the following
characterization of segments of the capacity region boundary.

Theorem 1. For every choice of γ, the channel parameters
(η, P0, P ,Q) can be partitioned into the setsA1,B1, C1, where

A1 = {(η, P0, P ,Q) : f1(α
a
1 , β, γ) ≤ g1(αa

1 , β, γ)

C1 = {(η, P0, P ,Q) : f1(α
b
1, β, γ) ≥ g1(αb

1, β, γ)}
B1 = (A1 ∪ C1)c.

If (η, P0, P ,Q) ∈ A1, then R1 = f1(α
a
1 , β, 1) captures

one segment of the capacity region boundary, where the
state cannot be fully cancelled. If (η, P0, P ,Q) ∈ C1, then
R1 = 1

2 log(1 + P1) captures one segment of the capac-
ity region boundary where the state is fully cancelled. If
(η, P0, P ,Q) ∈ B1, then the R1 segment of the capacity region
boundary is not characterized.

The channel parameters (η, P0, P ,Q) can also be parti-
tioned into the sets A2,B2, C2, where

A2 = {(η, P0, P ,Q) : f2(α
a
2 , β, γ) ≤ g2(αa

2 , β, γ)

C2 = {(η, P0, P ,Q) : f2(α
b
2, β, γ) ≥ g2(αb

2, β, γ)

B2 = (A2 ∪ C2)c.

If (η, P0, P ,Q) ∈ A2, then R2 = f2(α
a
2 , β, 0) captures one

segment of the capacity region boundary, where the state
cannot be fully cancelled. If (η, P0, P ,Q) ∈ C2, then R2 =
1
2 log(1+P2) captures one segment of the capacity boundary
where the state is fully cancelled. If (η, P0, P ,Q) ∈ B2,
then the R2 segment of the capacity region boundary is not
characterized.

The above theorem describes two partitions of the channel
parameters, respectively under which segments on the capacity

region boundary corresponding to R1 and R2 can be char-
acterized. Intersection of two sets, each from one partition,
collectively characterizes the entire segments on the capacity
region boundary.

C. Numerical Results

In this section, we demonstrate our results using various
channel parameters. We plot the inner and outer bounds for
various values of helper power P0, channel gains, η1 and η2
and different state power. The results are shown in Figure
2. The outer bound is based on Proposition 1. The inner
bound is the convex hull of all the achievable regions, with
interchange between the roles of the decoders. The time shar-
ing inner bound is according to point-to-point helper channel
achievable region. The scenario where the helper power is
less than the users power is depicted in subfigures 2a and 2b,
while the channel gains in subfigure 2a are equal, they are
mismatched in subfigure 2b. Note that in both cases our inner
bound outperforms the time-sharing bound, especially in the
mismatched case, and some segments of the capacity region
are characterized.

The scenario with helper power being higher than the
users power and matched and mismatched channel gain is
depicted in subfigures 2c and 2d respectively. Similarly as for
low helper power regime, our proposed achievability scheme
performs better than time-sharing.

IV. CONCLUSION

We have studied a parallel state-dependent Gaussian channel
with a cognitive helper with independent states and arbitrary
state power. Inner and outer bounds were derived and seg-
ments of the capacity region boundary were characterized for
various channel parameters. We have also demonstrated our
results using numerical simulation and have shown that our
achievability scheme outperforms time-sharing that was shown
to be optimal for the infinite state power regime in [11]. In our
previous work [10], a model with same but differently scaled
states was considered. These two models represent a special
case of more general scenario with correlated states, our results
in both studies imply that as the states are more correlated
than it easier to mitigate the interference. Furthermore the gap
between the inner bound and the outer bound in this work
suggests that a new techniques for outer bound derivation
is needed as we believe that the inner bounds consisting of
pairs (R1, R2) = (f1(α

a
1 , β, γ), f2(α2, β, γ)) is indeed tight

for some set of channel parameters.
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Fig. 2: Numerical Results

REFERENCES

[1] S. Gel’fand and M. Pinsker. Coding for channels with ramdom
parameters. Probl. Contr. Inf. Theory, 9(1):19–31, January 1980.

[2] M. H. M. Costa. Writing on dirty paper. IEEE Trans. Inform. Theory,
29(3):439–441, May 1983.

[3] Y. Steinberg and S. Shamai (Shitz). Achievable rates for the broadcast
channel with states known at the transmitter. In Proceedings. Inter-
national Symposium on Information Theory, 2005. ISIT 2005., pages
2184–2188, Sept 2005.

[4] A. Zaidi, S. P. Kotagiri, J. N. Laneman, and L. Vandendorpe. Multiaccess
channels with state known to one encoder: Another case of degraded
message sets. In 2009 IEEE International Symposium on Information
Theory, pages 2376–2380, June 2009.

[5] Wei Yang, Yingbin Liang, Shlomo Shamai Shitz, and H Vincent Poor.
State-dependent Gaussian multiple access channels: New outer bounds
and capacity results. IEEE Transactions on Information Theory, 2018.

[6] S. Mallik and R. Koetter. Helpers for cleaning dirty papers. In 7th
International ITG Conference on Source and Channel Coding, pages
1–5, Jan 2008.

[7] Yunhao Sun, Ruchen Duan, Yingbin Liang, Ashish Khisti, and
Shlomo Shamai Shitz. Capacity characterization for state-dependent

Gaussian channel with a helper. IEEE Transactions on Information
Theory, 62(12):7123–7134, 2016.

[8] Jafar Boostanpour and Ghosheh Abed Hodtani. Impact of relay side
information on the coverage region for the wireless relay channel with
correlated noises. IET Communications, 2018.

[9] Shahab Ghasemi-Goojani and Panos Papadimitratos. On the capacity
of Gaussian “dirty” z-interference channel with common state. In
Information Sciences and Systems (CISS), 2018 52nd Annual Conference
on, pages 1–6. IEEE, 2018.

[10] Michael Dikshtein, Ruchen Duan, Yingbin Liang, et al. State-dependent
parallel Gaussian channels with a state-cognitive helper. In The Interna-
tional Zurich Seminar on Information and Communication (IZS 2018)
Proceedings, pages 74–78. ETH Zurich, 2018.

[11] R. Duan, Y. Liang, A. Khisti, and S. Shamai (Shitz). State-dependent
parallel Gaussian networks with a common state-cognitive helper. IEEE
Transactions on Information Theory, 61(12):6680–6699, Dec 2015.

[12] Michael Dikshtein, Ruchen Duan, Yingbin Liang and Shlomo Shamai.
Parallel Gaussian Channels Corrupted by Independent States With a
State-Cognitive Helper, 2018; arXiv:1807.03518.


