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Abstract—We study the problem of coding over a general
discrete memoryless broadcast channel controlled by random
parameters. The parameters are available at the transmitter in a
non-causal manner and are subject to a state masking constraint
on the receivers. We derive inner and outer bounds on the
achievable region and show that for the special case of Gaussian
broadcast channel with private messages, these bounds are tight.

Index Terms—Dirty paper coding, Gelf’and-Pinsker scheme,
noncausal CSI, Broadcast channel, state masking.

I. INTRODUCTION

We consider a discrete memoryless broadcast channel
(DMBC) with random parameters and channel side informa-
tion (CSI) known in a noncausal manner to the transmitter
subject to a state masking criterion at the receivers, depicted
in Figure 1.

The single-letter expression for the capacity of the point
to point discrete memoryless channel (DMC) with noncausal
CSI at the encoder (the G-P channel) was derived in the
seminal work of Gel’fand and Pinsker [1]. One of the most
interesting special cases of the G-P channel is the Gaussian
additive noise and interference setting in which the additive
interference plays the role of the state sequence, which is
known non-causally to the transmitter. Costa showed in [2]
that the capacity of this channel is equal to the capacity of
the same channel without additive interference. The capacity
achieving scheme of [2] (which is that of [1] applied to the
Gaussian case) is termed “writing on dirty paper" (WDP).
Cohen and Lapidoth [3] showed that any interference sequence
can be totally removed when the channel noise is ergodic and
Gaussian.

The DMBC was first introduced by Cover [4]. The capacity
region of the DMBC is still an open problem. The largest
known inner bound on the capacity region of the DMBC
with private messages was derived by Marton [5]. Liang [6]
derived an inner bound on the capacity region of the DMBC
with an additional common message. The best outer bound for
DMBC with a common message is due to Nair and El Gamal
[7]. There are however some special cases where the capacity
region is fully characterized. For example the capacity region
of the degraded DMBC was established by Gallager [8]. The
capacity region of the Gaussian BC was derived by Bergmans
[9]. An interesting result is the capacity region of the Gaussian
MIMO BC which was established by Weingarten et al. [10].
The authors introduced a new notion of an enhanced channel
and used it jointly with the Entropy Power Inequality (EPI)
to show their result. The capacity achieving scheme relies
on the dirty paper coding technique. Liu and Viswanath
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Fig. 1. System model for general BC subject to state masking constraints.

[11] developed an extremal inequality proof technique and
showed that it can be used to establish a converse result in
various Gaussian MIMO multiterminal networks, including the
Gaussian MIMO BC with private messages. Recently, Geng
and Nair [12] developed a different technique to characterize
the capacity region of Gaussian MIMO BC with common and
private messages.

Degraded DMBC with causal and noncausal side informa-
tion was introduced by Steinberg [13]. Inner and outer bounds
were derived on the capacity region. For the special case in
which the nondegraded user is informed about the channel pa-
rameters, it was shown that the bounds are tight, thus deriving
the capacity region for that case. The general DMBC with
noncausal CSI at the encoder was studied by Steinberg and
Shamai [14]. An inner bound was derived and it was shown
to be tight for the Gaussian BC with independent additive
interference at both channels. Outer bounds for DMBC with
CSI at the encoder were derived in [15].

The problem of state-masking and information rate trade-off
was introduced in [16]. In that work, the state sequence was
treated as an undesired information that leaks to the receiver
and is known to the transmitter. The measure of ability of the
receiver to learn about the state from the received sequence
was defined as the normalized block-wise mutual information
between the state sequence Sn and the received sequence Yn,
that is, I(Sn;Yn)/n.

The concept of state amplification is a dual problem to
state masking. Kim et al. [17] considered the problem of
transmitting data at rate R over a DMC with random param-
eters and CSI at the encoder and simultaneously conveying
the information about the channel state itself to the receiver.
They defined the channel state uncertainty reduction rate to be
∆ , 1

n (H(Sn)− log |Ln|), where |Ln| is the receiver list size
in list decoding of the state, and found the (R,∆) achievable
region.

Courtade [18] considered a joint scenario, with two-encoder
source coding setting where one source is to be amplified,
while the other source is to be masked. Koyluoglu et al.
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[19] considered a state-dependent BC with state sequence
known in noncausal manner to Alice (the transmitter) and
its goal is to effectively convey the state to Bob (receiver
1) while "masking" it from Eve (receiver 2). Liu and Chen
[20] considered the problem of message transmission and state
estimation over Gaussian BC, where both received signals
interfered by same additive Gaussian state. Grover and Sahai
[21] related the problem of state masking to Witsenhausen’s
Counter-example [22]. Tutuncuoglu et al. [23] studied the
problem of state amplification and state masking in an energy
harvesting binary channel. They considered a situation where
the binary encoder is connected to a battery source Bi which
tries to harvest energy Ei at every time slot i and were
interested in how much the decoder, that has no knowledge of
the battery state Bi nor the energy process Ei, can learn about
the energy arrival process En. A privacy-constrained informa-
tion extraction problem was recently considered by Asoodeh
et al. [24]. In their setting, they divided the information to
be conveyed into private information and public information
and also used the mutual information measures to determine
the trade-off between public information transmission and
private data leakage. A good tutorial on channel coding in
the presence of CSI that also covers the state masking setting
can be found in [25].

In this work, we extend the state masking scenario to a
broadcast channel corrupted by state which is known non-
causally to the encoder. In our setting the encoder wishes
to reliably transmit common and private information over
state-dependent channel to two receivers, while simultaneously
minimizing the amount of information each receiver can learn
about the state sequence sn. We develop inner and outer
bounds and show that they are tight for a special case of state-
dependent Gaussian BC with private messages.

II. NOTATIONS AND PROBLEM FORMULATION

Throughout the paper, random variables are denoted using
a sans-serif font, e.g., X, their realizations are denoted by the
respective lower case letters, e.g., x, and their alphabets are
denoted by the respective calligraphic letter, e.g., X . Let Xn
stand for the set of all n-tuples of elements from X . An
element from Xn is denoted by xn = (x1, x2, . . . , xn) and
substrings by xji = (xi, xi+1, . . . , xj). The cardinality of a
finite set, say X , is denoted by |X |. The probability distribution
function of X, the joint distribution function of X and Y, and
the conditional distribution of X given Y are denoted by PX,
PX,Y and PX|Y respectively. The expectation of X is denoted
by E [X]. The probability of an event E is denoted as P {E}.
The set of jointly ε-typical n-tuples (xn, yn) is defined as
T (n)
ε (PXY) [26].
A set of consecutive integers starting at 1 and ending in

2nR are denoted as IR , {1, 2, . . . , 2nR}.
Let X ,S,Y1,Y2 be finite sets, and let PS be a proba-

bility mass function (pmf) on S. We consider a 2-receiver
discrete memoryless broadcast channel with random parame-
ters (S, PS,X , PY1,Y2|X,S,Y1 × Y2) that consists of an input
alphabet X , a state alphabet S and two output alphabets

Y1 and Y2 and a probability transition function PY1,Y2|X,S,
where the states Si, i = 1, 2, . . . , are random taking values
in S and drawn from a discrete memoryless source (DMS)
PSn(sn) =

∏n
i=1 PS(si). The channel is assumed to be

memoryless and without feedback. Thus, probabilities on n-
tuples are given by:

PYn
1 Yn

2 |XnSn(yn1 , y
n
2 |xn, sn) =

n∏
i=1

PY1Y2|XS(y1i, y2i|xi, si).

The channel input signal is subject to an average input cost
constraint 1

n

∑n
i=1 φ(Xi) ≤ Γ, where φ : X → R+ is the input

cost function and Γ > 0 is a given constant.
A (2nR0 , 2nR1 , 2nR2 , n) code for the broadcast channel with

state sequence Sn known non-causally at the encoder consists
of
• Three message sets IR0

, IR1
and IR2

.
• An encoder that assigns a codeword xn(m0,m1,m2, s

n)
to each message-state quadruple (m0,m1,m2, s

n) ∈
IR0 × IR1 × IR2 × Sn.

• Two decoders, where decoder 1 assigns an estimate
m̂01 ∈ IR0

and m̂1 ∈ IR1
to each received sequence

yn1 , and decoder 2 assigns an estimate m̂02 ∈ IR0
and

m̂2 ∈ IR2
to each received sequence yn2 .

Let (M̂01, M̂1) and (M̂02, M̂2) denote the outputs of decoder 1
and decoder 2, respectively. We assume that the message triple
(M0,M1,M2) is uniformly distributed over IR0

×IR1
×IR2

.
The average probability of error is defined as

P (n)
e = P

{
2⋃
k=1

{(M̂0k, M̂k) 6= (M0,Mk)}

}
. (1)

The average probability of error at each receiver is defined as

P
(n)
e,k = P

{
(M̂0k, M̂k) 6= (M0,Mk)

}
, k = 1, 2. (2)

Obviously the average probability P (n)
e tends to zero as n→

∞ , iff both P (n)
e,1 and P (n)

e,2 tend to zero as n→∞.
We are interested in the interplay between reliable coding

at rate triples (R0, R1, R2) which we would like to keep as
high as possible and the (normalized) mutual informations
I(Sn;Yn1 )/n and I(Sn;Yn2 )/n, which we would like to make
as small as possible.

Definition 1. For a given Γ > 0, a quintuple
(R0, R1, R2, E1, E2) is said to be achievable if for every
ε > 0 and sufficiently large n, there exists a sequence of
(2nR0 , 2nR1 , 2nR2 , n) codes such that the following conditions
are simultaneously satisfied:

1

n

n∑
i=1

φ(Xi) ≤ Γ, (3a)

P (n)
e ≤ ε, (3b)

1

n
I(Sn;Ynk ) ≤ Ek + ε, k = 1, 2. (3c)

Definition 2. The achievable region R is the closure of the
set of all achievable quintuples {(R0, R1, R2, E1, E2)} .
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Definition 3. The achievable region R0 is the set of
all zero-rates achievable pairs {(R0, R1, R2, E1, E2)} =
{(0, 0, 0, E1, E2)} .

III. MAIN RESULTS

As mentioned before, the capacity region of the general
DMBC is unknown even for channels without state. In this
section we present inner and outer bounds on the achievable
region. We begin with the inner bound. The inner bound on the
rate-triple (R0, R1, R2) is essentially the same as was given in
[14], but our proof is simpler, and we also contribute a bound
on the equivocation rate-pair (E1, E2). The main idea behind
the proof is integration of Marton and GP coding, where for
each message, a subcodebook is generated, whose size is large
enough such that for every state sequence sn a jointly typical
auxiliary codeword can be found in the subcodebook.

Proposition 1. An achievable region R consists of a quintuple
(R0, R1, R2, E1, E2) that satisfies the following conditions

R0 ≤ min{I(W;Y1), I(W;Y2)} − I(W;S), (4a)
R0 +R1 ≤ I(W,U;Y1)− I(W,U;S), (4b)
R0 +R2 ≤ I(W,V;Y2)− I(W,V;S), (4c)

R0 +R1 +R2 ≤ I(W,U;Y1)− I(W,U;S) + I(W,V;Y2)

− I(W,V;S)−min{I(W;Y1), I(W;Y2)}
− I(W;S)− I(U;V|W,S), (4d)

E1 ≤ I(S;W,U,Y1), (4e)
E2 ≤ I(S;W,V,Y2), (4f)

for some pmf PSWUXY1Y2 = PSPWUVX|SPY!Y2|XS.

We give an outline of the proof in Section IV-A while the
full proof can be found in the extended version of this paper
[27].

Next, we provide the outer bound on R.

Proposition 2. If a rate quintuple (R0, R1, R2, E1, E2) is
achievable for the DM-BC with random parameters and CSI
known non-causally at the transmitter, then there exists a
distribution PWUVX|S such that the following inequalities are
satisfied:

R0 ≤ min{I(W;Y1|S), I(W;Y2|S)} (5a)
R0 +R1 ≤ min{I(W;Y1|S), I(W;Y2|S)}

+ I(U;Y1|W,S) (5b)
R0 +R2 ≤ min{I(W;Y1|S), I(W;Y2|S)}

+ I(V;Y2|W,S) (5c)
R0 +R1 +R2 ≤ min{I(W;Y1|S), I(W;Y2|S)}

+ I(U;Y1|W,S) + I(X;Y2|W,U,S) (5d)
R0 +R1 +R2 ≤ min{I(W;Y1|S), I(W;Y2|S)}

+ I(X;Y1|W,V,S) + I(V;Y2|W,S) (5e)
Ek ≥ I(S;Yk) k = 1, 2, (5f)

where PSWUVXY1Y2
= PSPWUVX|SPY1Y2|XS.

We give an outline of the proof in Section IV-B while the
full proof can be found in the extended version of this paper
[27].

In some practical applications the transmitter is solely
intended to minimize the leakage without transmitting any in-
formation. This scenario is also simpler to analyze in the zero
rate triple case (R0, R1, R2) = (0, 0, 0). In such a scenario
our goal is to minimize I(Sn;Y n1 )/n and I(Sn;Y n2 )/n.

Let E0(X) be the set of equivocation rate pairs (E1, E2) such
that Ek ≥ I(S;Yk), k = 1, 2. Following is a characterization
of the achievability region for (R0, R1, R2) = (0, 0, 0).

Theorem 1. The achievable zero-rates region R0 of the DM-
BC with random parameters p(y1, y2|x, s) is the convex hull
of the union of the regions E0(X) over all p(x|s).

Proof: The theorem follows from the inner bound in
Proposition 1 and the outer bound in Proposition 2, and
respectively (4) and (5) by the following choice of auxiliary
random variables: W = ∅, U = ∅ and V = ∅. In this
case, the encoder simply generates Xn given Sn according to∏n
i=1 PX|S(xi|si). Since this creates a memoryless "channel"

from S to (Y1,Y2) we get that I(Sn;Ynk )/n = I(S;Y).

IV. PROOFS OUTLINE

In this section we provide an outline to the proofs of
Proposition 1 and Proposition 2.

A. Inner Bound

Fix the conditional pmf PWUVX|S and let n → ∞.
Randomly and independently generate 2n(R0+R̃0) sequences
wn(m0, l0), m0 ∈ IR0

, l0 ∈ IR̃0
, according to

∏n
i=1 PW(wi).

For each (m0, l0), generate 2n(R2+R̃2) independent
sequences vn(m0, l0,m2, l2), m2 ∈ IR2 , l2 ∈ IR̃2

,
according to

∏n
i=1 PV|W(vi|wi(m0, l0)). Similarly, for

each (m0, l0), generate 2n(R1+R̃1s+R̃12) independent
sequences un(m0, l0,m1, l1s, l12), m1 ∈ IR1

, l1s ∈ IR̃1s
,

l12 ∈ IR̃12
, according to

∏n
i=1 PU|W(ui|wi(m0, l0)).

Let (m′0,m
′
1,m

′
2) be the message triple to be sent

with the state sequence sn observed. First the encoder
finds l̃0, such that (sn, wn(m′0, l̃0)) ∈ T (n)

ε′ . It can be
shown that at least one such l̃0 exists if R̃0 > I(W;S).
Then, given wn(m′0, l̃0), the encoder finds l̃2, such that
(sn, wn(m′0, l̃0), vn(m′0, l̃0,m

′
2, l̃2)) ∈ T (n)

ε′′ . It can be
shown that at least one such l̃2 exists if R̃2 > I(V;S|W).
Similarly, given wn(m′0, l̃0), the encoder finds l̃1s, such
that (sn, wn(m′0, l̃0), un(m′0, l̃0,m

′
1, l̃1s, l12)) ∈ T (n)

ε′′ for
every l12. It can be shown that at least one such l̃1s
exists if R̃1s > I(U;S|W). Then, given wn(m′0, l̃0),
vn(m′0, l̃0,m

′
2, l̃2) and l̃1s, the encoder finds l̃12, such that

(sn, wn(m′0, l̃0), vn(m′0, l̃0,m
′
2, l̃2), un(m′0, l̃0,m

′
1, l̃1s, l̃12)) ∈

T (n)
ε′′′ . It can be shown that at least one such l̃12 exists

if R̃1s > I(U;V|W,S). Finally, for each quadruple
(m0,m1,m2, s

n) generate a sequence xn(m0,m1,m2, s
n)

according to
∏n
i=1 PX|WUVS(xi|wi, ui, vi). In order to transmit

(m0,m1,m2) given sn send xn(m0,m1,m2, s
n).
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Decoders 1 and 2 use joint typicality decoding of
(wn, un, yn1 ) and (wn, vn, yn2 ) respectively. It can be shown
with probability approaching 1 as n→∞ the following rates
are achievable

R0 ≤ min{I(W;Y1), I(W;Y2)} − I(W;S),

R0 +R2 ≤ I(W,V;Y2)− I(W,V;S),

R0 +R1 ≤ I(W,U;Y1)− I(W;S)− I(U;V,S|W)

= I(W,U;Y1)− I(W,U;S)− I(U;V|W,S).

(6)

As for the upper bound on the mutual information between
Sn and Yn1 ,

I(Sn;Yn1 ) ≤ I(Sn;Wn,Un,Yn1 )

≤ I(Sn;Wn,Un|M0,M1) + I(Sn;Yn1 |Wn,Un)

(a)
≤ H(Wn|M0) +H(Un|Wn,M0,M1)

−H(Un|Wn,M0,M1,S
n) + nI(S;Y1|W,U)

(b)
≤ n(R̃0 + R̃1s + R̃12 − R̃12 + I(S;Y1|W,U))

= nI(S;Y1,W,U)
(7)

where (a) follows from the memorylessness of the channel
PY2|W,U,S. In (b) we used the fact that the sizes of each
bin of C0 and C1 are 2nR̃0 and 2n(R̃1s+R̃12), respectively.
Furthermore, given (wn(m0, l0),m0,m1, s

n), un is uniform
over IR̃12

. The upper bound for I(Sn;Yn2 ) follows from
similar considerations.

B. Outer bound

The outer bound on the achievable rates region can be
shown by providing the state sequence sn as side information
to the receivers, defining the following auxiliary random
variables for each i ∈ [1 : n]

Wi , (M0,Y
i−1
1 ,Si−1,Yn2,i+1,S

n
i+1), Ui = M1, Vi , M2,

(8)
and a proper use of Csiszár and Körner sum identity [28].

As for the lower bound on the equivocation rates Ek, k =
1, 2, we use the memorylessness property of the source PS to
show

I(Sn;Ynk ) ≥
n∑
i=1

I(Si;Yk,i) ≥ nI(S;Yk). (9)

V. STATE-DEPENDENT GAUSSIAN BC

In this section we consider a scalar additive white Gaussian
noise BC with additive state. The channel outputs correspond-
ing to the inputs (X,S1,S2) are:

Yk = X + Sk + Zk, k = 1, 2 (10)

where Zk ∼ N (0, Nk) , k ∈ {1, 2} are additive Gaussian
noises, Sk ∼ N (0, Qk), k ∈ {1, 2} are additive Gaussian
random variables, both known noncausally at the transmitter.
The Gaussian random variables Z1,Z2,S1 and S2 are mutually
independent and the equivocation rates are measured between
the outputs and the state S = (S1,S2). The input X is power

constrained to P , such that, 1
n

∑n
i=1 X

2
i ≤ P . We further

assume that N2 > N1 without loss of generality. Denote
P ′ , (1− ρ21 − ρ22)P .

Theorem 2. The rate-leakage region of the Gaussian State-
Dependent Broadcast Channel with private messages is the
quadruple (R1, R2, E1, E2) such that

R1 ≤
1

2
log

(
1 +

γP ′

N1

)
, (11)

R2 ≤
1

2
log

(
1 +

γP ′

γP ′ +N2

)
, (12)

Ek =
1

2
log

P + 2ρk
√
PQk +Qk +Nk
P ′ +Nk

, k = 1, 2. (13)

for some γ ∈ [0, 1] and ρ1, ρ2 satisfying ρ21 + ρ22 ≤ 1.

Proof: We start with the converse part, using Proposition
2 with W = ∅. Define the correlation coefficients between the
state and the input sequences as ρ1 , E[XS1]√

PQ1
and ρ2 , E[XS2]√

PQ2
.

Define the state variable S , (S1,S2). And now proceed to
lower bound the equivocation measures,

I(S;Y1) = h(S)− h(S|Y1). (14)

The conditional differential entropy can be upper bounded as

h(S|Y1) ≤ 1

2
log(2πe)2

Q1Q2(P ′ + 1)

P + 2ρ1
√
PQ1 +Q1 +N1

, (15)

and
h(S) =

1

2
log(2πe)2Q1Q2. (16)

The upper bound on E2 follows by similar considerations.
The rates R1 and R2 can be upper bounded as

nR1 ≤ I(X;Y1|V,S) = h(X + Z1|V,S)− h(Z1) (17)
nR2 ≤ I(V;Y2|S) = h(X + Z2|S)− h(X + Z2|V,S). (18)

The first entropy term in (18) can be upper bounded as

h(X + Z2|S) ≤ 1

2
log(2πe)(P ′ +N2). (19)

Similarly as in Bergmans’s proof [9] to the converse of
Gaussian BC, we first find lower and upper bounds for the
second entropy term

h(X+Z2|V,S) ≤ h(X+Z2|S) ≤ 1

2
log(2πe)(P ′+N2), (20)

and

h(X + Z2|V,S) ≥ h(X + Z2|V,X,S) =
1

2
log(2πeN2). (21)

Hence, there must exist a γ ∈ [0, 1] such that

h(X + Z2|V,S) =
1

2
log(2πe)(γP ′ +N2). (22)

Now using the conditional EPI, we obtain

h(X + Z2|V,S) = h(X + Z1 + Z̃2|V,S)

≥ 1

2
log
(

22h(X+Z1|V,S) + 2h(Z̃2)
)

=
1

2
log
(

22h(X+Z1|V,S) + 2πe(N2 −N1)
)
.

(23)
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This implies that

h(X + Z1|V,S) ≤ n

2
log 2πe(γP ′ +N1). (24)

By combining (17), (18), (22) and (24) we have shown that
the outer bound on the capacity region consists of rate-pairs
satisfying (11) and (12).

In order to prove the direct part, we use the achievability
scheme that was proposed in [14], which integrates Marton
coding and Gelfand-Pinsker coding. This scheme was shown
to be optimal for Gaussian sources, in the sense that it cancels
the state interference completely. In our model S = (S1,S2).
We evaluate the mutual information terms in Proposition 1 by
using the following choice of the auxiliary random variables:

W = ∅ X ′1 ∼ N (0, γP ′) X ′2 ∼ N (0, γP ′) (25)
X = X ′1 +X ′2 + β1S1 + β2S2 (26)
U = X ′1 + α10X

′
2 + α11S1 + α12S2 (27)

V = X ′2 + α21S1 + α22S2 (28)

with β1 = ρ1

√
P
Q1

, β1 = ρ2

√
P
Q2

, α10 = γP ′

γP ′+N1
,

α11 = (1+β1)γP
′

γP ′+N1
, α12 = β2γP

′

γP ′+N1
, α21 = β1γP

′

P ′+N2
and

α22 = (1+β2)γP
′

P ′+N2
. Hence,

I(U;Y1)− I(U;V,S) =
1

2
log

(
1 +

γP ′

N1

)
, (29)

I(V;Y2)− I(V;S) =
1

2
log

(
1 +

γP ′

γP ′ +N2

)
. (30)

The achievability of the equivocation rates follows by showing
that

I(S;U|Y1) = I(S;V|Y2) = 0. (31)

Subsituting (29) and (30) in the equations for (R1, R2, E1, E2)
we obtain that (11), (12) and (13) are achievable and that meets
the outer bound and thus we characterized the achievable
region R for this channel.

VI. CONCLUSIONS

In this paper we addressed the problem of simultaneous
communication and state masking over general DMBC with
random parameters and parameters given as side information
to the encoder. We developed inner and outer bounds on the
achievable region containing rates and masking measures and
showed that these bounds are tight for the state-dependent
Gaussian BC with private messages. Moreover, the standard
results as point-to-point masking [16] and state-dependent BC
[14] (no masking demands), emerge as special cases of the
bounds here. An extension to the MIMO Gaussian BC with
private and common messages is under current study.
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