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Abstract—Coding schemes are proposed for Wyner’s soft-
handoff model and for the sectorized hexagonal model when
some of the messages are delay-sensitive and cannot profit from
transmitter or receiver cooperation. For the soft-handoff network
we also provide a converse. It matches the multiplexing-gain
achieved by our scheme when the multiplexing gain of the delay-
sensitive messages is low or moderate or when the cooperation
links have high capacities. In these cases, the sum-multiplexing
gain is the same as if only delay-tolerant messages (which can
profit from cooperation) were sent. A similar conclusion holds
for the sectorized hexagonal model, when the capacities of the
cooperation links are large.

I. INTRODUCTION

One of the major challenges of today’s wireless communi-
cation networks is to design coding schemes for transmission
of heterogeneous traffic types. Such a design, for example,
has to account for the fact that delay-tolerant applications
can profit from cooperation between transmitting or receiving
terminals, but delay-sensitive applications cannot. Such mixed
delay constraints in wireless networks have recently been
studied in [1]–[5]. In this paper, we study the capacity of
two cellular network models (Wyner’s soft-handoff model [6],
[7] and the hexagonal sectorized model) under mixed delay
constraints. In a previous work, we have studied the capacity
region of Wyner’s soft-handoff network under mixed delay
constraints when only the transmitters or only the receivers can
cooperate [5]. We determined the multiplexing gain region in
function of the capacities of the cooperation links. The results
show that when delay-sensitive applications are of low rates,
the total sum-rate is not decreased compared to a scenario
where communication is only for delay-tolerant applications.
In contrast, for high-rate delay-sensitive applications, this is
not the case, and 1 bit of delay-sensitive rate comes at the
expense of 2 bits delay-tolerant rate. Moreover, no positive
delay-tolerant multiplexing gain is possible when one insists
on sending at maximum delay-sensitive multiplexing gain.

As we show in this work, these (rather pessimistic) con-
clusions do not hold when both the transmitters and the
receivers can cooperate. In fact, when the cooperation rates are
sufficiently large, then by using sophisticated coding schemes
it is possible to accommodate the largest possible multiplexing
gain for delay-sensitive applications without decreasing the
maximum sum-multiplexing gain. The stringent delay con-
straints thus do not harm the overall performance. For smaller
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Fig. 1. System model

cooperation rates, this performance is achievable only when
the delay-sensitive multiplexing gain is small. In this case, the
behaviour is similar to when only transmitters or only receivers
can cooperate.

II. WYNER’S Soft Hand-off NETWORK

Consider the communication system as in Fig. 1 with K
interfering transmitter (Tx) and receiver (Rx) pairs 1, . . . ,K.
Transmitters and receivers are each equipped with a single
antenna, and channel inputs and outputs are real valued.
Interference is short-range so that the signal sent by Tx k
is observed only by Rx k and k + 1. As a result, the time-t
channel output at Rx k is

Yk,t = Xk,t + αXk−1,t + Zk,t, (1)

where Xk,t and Xk−1,t are the symbols sent by Tx k and k−1
at time t, respectively; {Zk,t} are independent and identically
distributed (i.i.d.) standard Gaussians for all k and t; α 6= 0 is
a fixed real number smaller than 1; and X0,t = 0 for all t.

Each Tx k wishes to send a pair of independent source mes-
sages (M

(F )
k ,M

(S)
k ) to Rx k. The “fast” source message M (F )

k

is uniformly distributed over M(F )
k := {1, . . . , b2nR

(F )
k c}

and the “slow” source message M
(S)
k over M(S)

k :=

{1, . . . , b2nR
(S)
k c}. Here, n, R(F )

k , and R(S)
k denote the block-

length and rates of transmission. Transmitters can cooperate
with their immediate neighbours to exchange information
about “slow” but not “fast” messages. In each cooperation
round j ∈ {1, . . . ,Dt}, Tx k produces the two cooperation
messages T (j)

k→k−1 and T (j)
k→k+1, where

T
(j)

k→k̃
= ξ

(n)

k→k̃

(
M

(S)
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T
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)
(2)

for some function ξ(n)
k→k̃

on appropriate domains. It sends these
messages over the conferencing links to its left and right
neighbours. The conferencing links are limited to rate π:
Dt∑
j=1

H(T
(j)

k→k̃
) ≤ π ·n, k ∈ {1, . . . ,K}, k̃ ∈ {k− 1, k+ 1}.

(3)
Each Tx (k) then computes its channel inputs as

Xn
k = f

(n)
k

(
M

(F )
k ,M

(S)
k , T

(1)
k−1→k, . . . , T

Dt

k−1→k,

T
(1)
k+1→k, . . . , T

Dt
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)
(4)

for some function f
(n)
k on appropriate domains that satisfies

the average block-power constraint

1

n

n∑
t=1

X2
k,t ≤ P, a.s., ∀ k ∈ {1, . . . ,K}. (5)

Receivers decode in two phases. During the first fast-
decoding phase, each Rx k decodes the “fast” source mes-
sage M

(F )
k based only on its own channel outputs Y n

k :=
(Yk,1, . . . , Yk,n). So, it produces:

M̂
(F )
k = g

(n)
k

(
Y n
k

)
(6)

for some decoding function g(n)k on appropriate domains.
In the subsequent slow-decoding phase, the receivers

first communicate with their immediate neighbours over
rate-limited cooperation links. In cooperation round j ∈
{1, 2, . . . ,Dr}, Rx k sends the cooperation messages Q(j)

k→k−1
and Q

(j)
k→k+1 to its neighbours Rx (k − 1) and Rx (k + 1),

respectively. So, for k̃ ∈ {k − 1, k + 1}:

Q
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= ψ
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)
, (7)

for some encoding function ψ(n)

k,k̃
. The Dr messages sent over

a conferencing link in each direction are rate-limited to π:
Dr∑
j=1

H(Q
(j)

k→k̃
) ≤ π · n, k ∈ {1, . . . ,K}, k̃ ∈ {k, k + 1}.

(8)
After this cooperation phase, each Rx k decodes its desired
“slow” message as

M̂
(S)
k := b

(n)
k

(
Y n
k , Q

(1)
k−1→k, Q

(1)
k+1→k,

. . . , Q
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(Dr)
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)
(9)

by means of a decoding function b(n)k .
Given cooperation prelog µ ≥ 0 and maximum delay D, a

pair (S(F ),S(S)) is called achievable, if for each K there exists
a sequence of rate pairs {R(F )

K (P ), R
(S)
K (P )}P>0 so that

S(F ) := lim
K→∞

lim
P→∞

∑K
k=1R

(F )
k

K
2 log(1 + P )

, (10)
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Fig. 2. Bounds on S?(µ,D) for D = 20 and different values of µ.

S(S) := lim
K→∞

lim
P→∞

∑K
k=1R

(S)
k

K
2 log(1 + P )

, (11)

and so that for each rate pair (R
(F )
K (P ), R

(S)
K (P )) it is possible

to find encoding, cooperation, and decoding functions with
average power not exceeding P , total delay Dt +Dr ≤ D, and
cooperation rate π ≤ µ · 12 logP , and so that the probability
of decoding error

P (n)
e := Pr

[ ⋃
k∈{1,...,K}

{
M̂

(F )
k 6= M

(F )
k or M̂ (S)

k 6= M
(S)
k

}]
tends to 0 as n→∞. The closure of the set of all achievable
(S(F ),S(S)) is called multiplexing gain region and denoted
S?(µ,D).

The following is our main result in this section.
Theorem 1: The set S?(µ,D) includes all nonnegative pairs

(S(F ),S(S)) satisfying

S(F ) ≤ 1

2
(12)

S(F ) + aS(S) ≤ 1

2
+

3a

4
µ (13)

S(F ) + S(S) ≤ min

{
1

2
+

3

4
µ,

2D + 1

2D + 2

}
, (14)

where a := 8D−8
13D−8 < 1.

Proof: See Section IV.
Proposition 1: Any pair (S(F ),S(S)) in S?(µ,D) satisfies

S(F ) ≤ 1

2
(15a)

S(F ) + S(S) ≤ min

{
1

2
+ 2µ,

2D + 1

2D + 2

}
. (15b)

Proof: Follows from [8] and by a rate-transfer argument
from “fast” to “slow” messages.

Fig. 2 depicts above bounds for two examples. The bounds
coincide when µ is sufficiently large or S(F ) sufficiently small.

Corollary 1: If

µ ≥ 4D
3(2D + 2)

, (16)

then S?(µ,D) is the set of pairs (S(F ),S(S)) satisfying (15).



Fig. 3. Illustration of the sectorized hexagonal network. Black hexagonal
regions depict the cells and the dashed blue lines determine their sectorization.
Interfering sectors are connected by green lines.

If
S(F ) ≤ 1

2
− 2µ

D− 1

D
, (17)

then (S(F ),S(S)) ∈ S?(µ,D) if, and only if, it satisfies (15b).

From Fig. 2 (and Corollary 1) we also see that when µ
exceeds a threshold, then for any S(F ) the same maximum
sum-multiplexing gain of min{ 12 + 2µ, 2D+1

2D+2} is achievable
as when only slow messages are transmitted. There is thus
no penalty in sum-multiplexing gain by sending also “fast”
messages. This is in contrast to the setup with only transmitter
or receiver cooperation where a moderate or large multiplexing
gain for “fast” messages causes a decrease in sum-multiplexing
gain [5].

III. SECTORIZED HEXAGONAL MODEL

In this model, the N cells are hexagons and consist of three
sectors. The BS of each cell is equipped with 3M directional
antennas, with M antennas pointing to each sector. This allows
avoiding interference between communications from different
sectors in the same cell. For simplicity, and because the focus
is on the multiplexing gain, we assume a single mobile user
in each sector. The models with the cells, sectors, and the
interference pattern, is depicted in Fig. 3. The small circles
indicate mobile users, and the solid green lines indicate that
the communication in two given sectors interfere.

For a given sector k ∈ {1, . . . , 3N}, let the set Ik contain
the indices of the neighbouring sectors whose signals interfere
with sector k. The time-t signal received at the M receive
antennas directing to sector k can then be written as:

Yk,t = Hk,kXk,t +
∑
k̂∈Ik

Hk,k̂Xk̂,t + Zk,t, (18)

where {Hk,k̂} denote the M -by-M channel matrices.
As before, “fast” and “slow” messages are sent simultane-

ously over the network. Mobile transmitters in neighbouring
sectors can cooperate “slow” messages during Dt rounds
of cooperation. Receiving BSs decode their “fast” messages
based solely on their own outputs and their “slow” messages
based on these outputs and the cooperation signals that they
exchanged with neighbouring BSs over Dr cooperation rounds.
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Fig. 4. Inner bound on multiplexing gain region for M = 3 and different
values of t.

So, BS i produces as its guesses of the “fast” and “slow”
messages:

M̂(F )
i = gi

(n)
(
Yi

)
(19)

and

M̂(S)
i = b

(n)
i

(
Yi,Vj

to i

)
, (20)

where Yi := {(Yk,1, . . . , Yk,n) : sector k is in cell i},
M(F )

i := {M (F )
k : sector k is in cell i}, M(S)

i := {M (S)
k :

sector k is in cell i} and Vj
to i denote all conferencing

messages received at BS i. The multiplexing gain region is
defined analogously to the previous section, but for simplicity
we assume that µ = 1.

Theorem 2: The multiplexing gain region includes all non-
negative pairs (S(F ),S(S)) that satisfy

S(F ) + S(S) ≤ M(3t− 1)

3t
(21)

S(F ) + c S(S) ≤ M

2
. (22)

where c := t
2(2t−1) < 1 and t ∈ {1, . . . ,Dr/2}.

Proof: See Section V.
This inner bound on the multiplexing gain region is illustrated
in Figure 4. We notice that for small or moderate values of
S(F ), the sum-multiplexing gain achieved by our scheme is
the same as when only “slow” messages are sent.

IV. SCHEMES ACHIEVING THEOREM 1

To achieve the performance in Theorem 1, four schemes
need to be time-shared depending on the operating point and
on the available cooperation prelog µ.

A. Scheme 1: Transmitting only “fast” messages

In this scheme, every second transmitter is switched off,
which decomposes the network into dK/2e non-interfering
point-to-point links. A “fast” message of multiplexing gain 1 is
transmitted over each of these point-to-point links. The scheme
thus achieves multiplexing gain pair (S(F ) = 1/2,S(S) = 0)
without any requirement on the cooperation rate.
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B. Scheme 2: Transmitting only “slow” messages

Use the scheme [8] to send only “slow” messages. It
achieves multiplexing gain pair (S(F ) = 0,S(S) = 2D+1

2D+2 ) with
cooperation rate µ = D

4(D+1) .

C. Scheme3: Opportunistically sending “fast” messages

Our third scheme is closely related to the second scheme.
We notice that [8] splits the network into subnetworks by
periodically silencing every 2D + 2-th transmitter. Also, the
message of the left-most and the D +3-rd transmitters in each
subnetwork do not participate in the transmitter cooperation
and their decoding can be performed directly based on the
corresponding channel output sequences. These messages can
thus be sent as “fast” messages, whereas all other transmitted
messages are “slow” messages. This scheme achieves multi-
plexing gain pair (S(F ) = 2

2D+2 ,S
(S) = 2D−1

2D+2 ) and requires
cooperation rate µ = D

4(D+1) , see [8].

D. Scheme 4: Alternating “fast” and “slow” messages

We again silence periodically every 2D + 2-th transmitter,
so as to split the network into smaller subnetworks. In a
given subnetwork, all odd transmitters 1, 3, 5, . . . , 2D+1 send
a “fast” message with multiplexing gain 1 using a simple
Gaussian codebook. They further precancel (up to noise level)
the interference from their left-neighbours. To facilitate this,
each even transmitter (which only sends a slow message as
we explain shortly) quantizes and describes its input signal to
its right neighbour over the cooperation link. All odd receivers
1, 3, 5, . . . , 2D + 1 decode their desired “fast” message based
on their own channel outputs using a simple point-to-point
channel decoder. They also describe their decoded messages
to their right-neighbours which then cancel the influence of
the transmitted Gaussian codewords.

In the following, we describe the communication of “slow”
messages, which is from even transmitters. Recall that all odd
transmitters have precanceled a quantized version of their left-
neighbours transmit signal. This implies that the signal sent by
a given even Tx k interferes at Rx k + 2. Moreover, even re-
ceivers immediately cancel the interference of “fast” messages
stemming from their left neighbours. The interference graph
for “slow” messages thus has the form in Figure 5, where
odd receivers are ignored. To describe communication of
“slow” messages in more detail, we partition Tx/Rx pairs of
each subnetwork into four groups.

Transmitters in G1 := {1, . . . ,Dr + 1} use Gaussian point-
to-point codes of power P to transmit their “slow” messages
over the channel. Rx k uses the cooperation messages received

from its left neighbours Rx k − 2 (over two hops) and from
Rx k − 1 to delete the interference

Ŷ n
k = Y n

k − αXn
k−1(M̂

(S)
k−2, M̂

(F )
k−1), (23)

and it decodes the source message M
(S)
k based on this

difference. Then it describes its decoded message to Rx k+2.
Transmitters in G2 := {Dr + 2, . . . ,Dr + Dt + 1} use dirty-

paper coding to mitigate interference from the left. To this end,
after receiving and reconstructing the quantization message
X̂n

k (M
(S)
k−2) sent by Tx k − 2 (over two conferencing hops),

Tx k encodes its source message M (S)
k using a power P dirty-

paper code that eliminates the interference αX̂n
k (M

(S)
k−2). Then

it sends the decoded message over the channel. Moreover,
Tx k quantizes its produced input Xn

k (M
(S)
k ) using a rate

(1/2) log(1+P ) quantizer and sends the resulting message to
Tx k + 1 and Tx k + 2 . Rx k receives the decoded message
M̂

(F )
k−1 through the conferencing link to its left. Then it uses

the received message to reconstruct αXn
k−1(M̂

(F )
k−1) and forms

Ŷ n
k = Y n

k − αXn
k−1(M̂

(F )
k−1). (24)

It finally decodes message M (S)
k based on this difference.

Transmitters in G3 := {Dr + Dt + 2, . . . ,Dr + 2Dt + 2} use
dirty-paper coding to mitigate interference from the right. The
desired communication path of a message M (S)

k is Tx k →
Tx k− 2→ Rx k. More specifically, Tx k encodes M (S)

k and
sends a quantized version X̂n

k (M
(S)
k ) to Tx k− 2 which then

transmits Xn
k−2 = X̂n

k (M
(S)
k ) over the channel. Encoding is

performed using dirty-paper coding where Tx k precancels the
interference of the signal Xn

k it is sending over the channel.
Receivers in G3 decode using standard dirty-paper decoding.

Transmitters in G4 := {Dr + 2Dt + 3, . . . , 2Dr + 2Dt + 1},
use a Gaussian point-to-point code of power P to transmit
their source messages M (S)

k over the channel through the path
Tx k → Rx k+2→ Rx k. Rx k uses the cooperation messages
received from its right neighbours Rx k + 2 (over two hops)
and from Rx k + 1 to decode M (S)

k .
In what we described, in some cases the last transmitter in
G3 and the first transmitter in G4 are supposed to send the
same message. In this case, we split this message into two
independent parts, M (S1)

k and M (S2)
k , and let each of the two

transmitters send a different part. In the example in Fig. 5,
Tx 8 sends M (S1)

10 and Tx 10 sends M (S2)
10 .

The described scheme achieves multiplexing gain pair(
S(F ) = 1

2 , S(S) = D
2D+2

)
, and requires cooperation rate

µmax = 3D
4(2D+2) .

V. SCHEMES ACHIEVING THEOREM 2

To achieve the performance in Theorem 2, three schemes
need to be time-shared depending on the operating point.

A. Scheme 1: Transmitting only “fast” messages

Transmission is based on interference alignment [10],
and cooperation links are completely ignored. This scheme
achieves multiplexing gain pair

(
S(F ) = M

2 , S(S) = 0
)
.



B. Scheme 2: Transmitting only “slow” messages

Use the scheme in [9] to send only “slow’ messages. It
achieves multiplexing gain pair

(
S(F ) = 0, S(S) = M 3t−1

3t

)
.

C. Scheme 3: Alternating “fast” and “slow” messages

The scheme is closely related to the second scheme. We
notice that [9] defines master cells so that they build a
regular grid of equilateral triangles where the three master cells
forming each of the triangles lay 3t cell-hops apart from each
other for t ∈ {1, . . . ,Dr/2}. Layer- 1, 2, . . . , t cells are cells
that are 1, 2, . . . , t hops away from master cells. The scheme
in [9] deactivates users in layer-“t” cells so as to split the
network into non-interfereing clusters of sectors, see Fig. 6.
In our scheme here, some users send “slow” messages and
others send “fast” messages. Users sending “slow” messages
use simple Guassian codebooks to send their messages. They
quantize their inputs and send the quantization information to
all their neighbours that send “fast” messages. The transmit-
ters sending “fast” messages precancel the interference from
“slow” messages. As we will see shortly, communication of
“fast” messages is interfered only by “slow” messages, and
since this interference is precanceled, receivers can decode
their “fast” messages based on almost interference free signals.
Decoded “fast” messages are sent to neighbouring receivers,
which cancel the corresponding interference. In our scheme,
all the three users of a master cell send “fast” messages. Users
of layer-“1” cells that interfere users in the master cell send
“slow” messages and the remaining users in this layer send
“fast” message. Similarly, users of layer-“2” cells that interfere
layer-“1” users send “slow” messages and the remaining layer-
”2” users send “fast” messages. A similar procedure is applied
for layer-“3”, layer-“4”, ..., layer-”t-1” cells. In layer-“t” cells,
all the active users send “slow” messages. Figure 6 shows the
deactivated sectors in white, the sectors with “fast” messages
in blue, and the sectors with “slow” messages in red.

This scheme achieves multiplexing gain pair
(
S(F ) =

M
3 ,S

(S) = M 2t−1
3t

)
.

VI. CONCLUSION

We considered two cellular models and characterized the
multiplexing gain region with transmitter and receiver coop-
eration when some source messages are subject to stringent
delay constraints. In our previous work [5], increasing the rate
of delay-sensitive messages by ∆ required to decrease the rate
of delay-tolerant messages approximately by 2∆. This penalty
does not arise for the setup with transmitter and receiver
cooperation that is considered for Wyner’s soft-handoff model
and the hexagonal sectorized model. In fact, when delay-
sensitive messages have moderate or small multiplexing gains,
then the sum-multiplexing gain is not decreased compared
to when only delay-tolerant messages are transmitted. For
Wyner’s soft-handoff model, this conclusion even holds for
large multiplexing gains of “fast” messages when the co-
operation rates are sufficiently large. The achieved results
on transmitter and receiver cooperation may have interesting

Fig. 6. Illustration of sector allocation for t = 4. Users in blue sectors send
“fast” messages and users in red send “slow” messages. White sectors indicate
deactivated users, and thick lines indicate non-interfering clusters.

practical application due to the increase in different latency
demands.
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