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Abstract—This work considers a Cloud Radio Access Network
(C-RAN) architecture in which the Radio Units (RUs) are
shared among multiple operators or are managed by a separate
infrastructure provider, while mobile users and cloud processor
belong to the given service provider. In order to account for the
resulting privacy concerns, the strict constraint is imposed that
the RUs should only be able to infer a fraction of the information
about the mobiles’ messages that vanishes with the transmission
blocklength. The largest achievable rate under this constraint, or
secrecy capacity, is characterized for a two-cell Gaussian model
and for a multi-cell circular Wyner model.

I. INTRODUCTION

MODERN cellular communication systems can leverage
the sharing of spectral and infrastructure resources in

order to reduce deployment costs and capital expenditures (see
[1] and references therein). An architecture that is particularly
well suited for infrastructure sharing is Cloud Radio Access
Network (C-RAN), in which a dense deployment of Radio
Units (RUs) by an infrastructure provider may be leveraged by
multiple service providers in order to serve their subscribers.
The RUs are connected to a proprietary or shared cloud
platform in which baseband processing takes place. While
there is a vast literature on the analysis of C-RAN, systems
with shared infrastructure have received far less attention.

The information-theoretic performance of C-RAN has been
carried out in a larger number of works, which are reviewed
in [2]. These works implicitly assume that all RUs and the
cloud processor belong to the same service provider in that
no constraints are imposed on the confidentiality of the users’
information that traverses the radio interface and the fronthaul
links connecting RUs to cloud.

In contrast, this work considers a C-RAN architecture in
which the RUs are shared among multiple operators or are
managed by a separate infrastructure provider, while mobile
users and cloud processor belong to the given service provider.
In order to account for the resulting privacy concerns, the strict
constraint is imposed that the RUs should only be able to
infer a fraction of the information about the mobiles’ messages
that vanishes with the transmission blocklength. The largest
achievable rate under this constraint, or secrecy capacity [4],
is characterized for a two-cell Gaussian model and for a multi-
cell circular Wyner model.

This work follows a long line of research on the derivation
of performance bounds on the achievable rates in the presence
of secrecy constraints. Basic models, such as the multiple
access channel, the broadcast channel, and the interference
channel were considered in [6]-[10]. This paper is mostly
related to the activity on relay channels with untrusted relays

Fig. 1: Multi-cell C-RAN model with untrusted radio-units
(RUs).

[3] and it distinguishes itself by considering relays, the RUs
that operate out-of-band. Full proofs can be found on [15].

II. SYSTEM MODEL

In order to investigate the secrecy capacity in the presence
of untrusted RUs in C-RAN systems, we consider two system
models of increasing complexity. First, we study a simple
Cloud-RAN system, where each cell contains a single user a
RU. Each RU receives the transmission of the same-cell user
with interference from the adjacent cell’s user and additive
white Gaussian noise. The received signal at the jth RU for
an arbitrary time index reads

Y1 = X1 +X2 + Z1

Y2 = X1 +X2 + Z2,
(1)

where the additive noise is Zj ∼ N (0, 1), and the transmission
power of each user is bounded by P .

Then, we consider a multi-cell Cloud-RAN system modeled
as a circular variant of the Wyner model [4]. As seen in Fig.
1, this model includes an array of K cell-sites, indexed by
j = 1, ...,K. Each cell contains a single user and a RU.
Each RU receives the transmission of the same-cell user with
interference from the users of the adjacent cells and additive
white Gaussian noise. The received signal at the jth RU for
an arbitrary time index reads

Yj = X[j−1]K +Xj +X[j+1]K + Zj , (2)
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where [j]K =
(
j − 1 mod K

)
+1, the additive noise is Zj ∼

N (0, 1), and the transmission power of each user is bounded
by P . Model (2) assumes a circular geometry in which cell 1
interferes with cell K.

We consider a conservative set-up in which each user wishes
to guarantee secrecy with respect to all RUs. An

(
2nR, n

)
code

for this model consists of the following: (a) A message set
W = {1, 2, ..., 2nR}, from which independent and uniformly
distributed messages W1,...,WK are generated for the K users;
(b) K stochastic encoders, fk: W → Rn, which map each
message wk ∈ W to a codeword xnk ∈ Rn, for k = 1, ...,K;
(c) A ”cloud” decoder g: Rn × ...×Rn →WK , which maps
received sequences yn1 , ..., y

n
K to an estimated message pair

(ŵ1, ..., ŵK) ∈ WK . For a given code, we define the average
probability of block error as

Pn
e =

1

2KnR

∑
(w1,...,wK)∈WK

P{(Ŵ1, ..., ŴK) 6= (w1, ..., wK)}.

(3)
A rate is said to be achievable if there exists a sequence
of (2nR, n) codes with average error probability satisfying
Pn
e → 0 as n goes to infinity, and ensuring the equivocation

conditions
KR ≤ 1

n
H(W1, ...,WK |Y n

k ) (4)

for k = 1, ...,K, and for sufficiently large n. Condition (4)
guarantees secrecy with respect to each RUk. The secrecy per-
user capacity C is the supremum of the set of achievable rates.

III. MAIN RESULTS

In this section, we derive our main results.

A. Two-Cell Model

For the two-cell model, we first derive an achievable rate
and then characterize the secrecy capacity. The first rate
is obtained by using orthogonal transmission, whereby each
transmitter transmits for half of the time with double power,
while the other is silent. The capacity achieving scheme uses
non-orthogonal transmission, whereby the two transmitters
transmit simultaneously. The proofs follow by using the same
technique in [11].

Proposition 1: The secrecy capacity under the two-cell
model is given by

C = 1
4 log

(
1 + 4P

)
− 1

4 log
(
1 + 2P

)
, (5)

and is achieved by non-orthogonal transmission.

Remark 1: The number of achievable degrees of freedom
(DoF) is defined as

DoF = lim
P→∞

C
1
2 logP

. (6)

In the case of no secrecy constraints, it is well known that
we have DoF = 1 (see, e.g [13]). In contrast, as shown in
Proposition 1, as a result of the secrecy constraints against
untrusted RUs, we have DoF = 0.

B. Multi-Cell Wyner Model
As in the two-cell case, in this section, we first derive an

achievable rate and then characterize the secrecy capacity.
Lemma 3: Orthogonal transmission yields the following

lower bound on the secrecy capacity for the case of multi-
cell Wyner model

C ≥ 1

6
log
(
1 + 9P

)
− 1

6
log
(
1 + 3P

)
. (7)

Proposition 2: For K ≥ 5, the secrecy capacity for the
multi-cell Wyner model is given by

C

= 1
2K

K−1∑
k=0

log

(
1 + 3P + 4P cos

(
2π

k

K

)
+ 2P cos

(
2π

2k

K

))
− 1

2K log
(
1 + 3P

)
,

(8)
and is achieved by non-orthogonal transmission.

Proof : The achievability follows in a manner similar to [11]
and a sketch of the converse proof is given in Appendix A.

Fig. 2: Secrecy capacity for the multi-cell Wyner model versus
the SNR for K = 30.

Remark 2: Under no secrecy constraints, the DoF tends to
1 for large K [14, Section 3.1.2]. From Proposition 2, when
adding secrecy constraints, the DoF still tends to 1 for large
K. By comparison with the two-cell case in Remark 1, this
result shows the important role played by the limited inter-cell
interference span in ensuring confidential communication. Fig.
2 shows the capacity sum-rate versus the signal-to-noise ratio
P, confirming the scaling revealed by the discussed DoF result.

IV. CONCLUSIONS AND OUTLOOK

Ensuring secrecy in shared cellular infrastructures is an
important problem and this work has addressed a simple set-
up that reveals the roles of centralized decoding in C-RAN.
Further work is needed in order to address more realistic
system models.

APPENDIX A

From Fano’s inequality, we have

H(W1, ...,WK |Y n
1 , ..., Y

n
K) ≤ nεn, (9)
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where lim
n→∞

εn = 0. Then for each k

KnR
(a)

≤ H(W1, ...,WK |Y n
k )

(b)

≤ H(W1, ...,WK |Y n
k )

−H(W1, ...,WK |Y n
1 , ..., Y

n
K) + nεn

= I(W1, ...,WK ;Y n
1 , ..., Y

n
k−1, Y

n
k+1, ..., Y

n
K |Y n

k ) + nεn
(c)

≤ I(Xn
1 , ..., X

n
K ;Y n

1 , ..., Y
n
k−1, Y

n
k+1, ..., Y

n
K |Y n

k ) + nεn
(d)

≤
n∑

i=1

I(X1,i, ..., XK,i;

Y1,i, ..., Yk−1,i, Yk+1,i, ..., YK,i|Yk,i) + nεn,
(10)

where (a) follows from the secrecy constraint (4); (b) follows
from Fano’s inequality; (c) follows from the following Markov
chain W1, ...,WK → Xn

1 , ..., X
n
K → Y n

1 , ..., Y
n
K ; and (d)

follows from Appendix B. Then for all i we obtain

I(X1,i, ..., XK,i;Y1,i, ..., Y[k−1]K ,i, Y[k+1]K ,i, ..., YK,i|Yk,i)
= h(Y1,i, ..., Y[k−1]K ,i, Y[k+1]K ,i, ..., YK,i|Yk,i)
−h(Y1,i, ..., YK,i|X1,i, ..., XK,i)
+h(Yk,i|X1,i, ..., XK,i).

(11)
For K ≥ 5, we obtain the following upper bound for the first
term above

h(Y1,i, ..., Y[k−1]K ,i, Y[k+1]K ,i, ..., YK,i|Yk,i)
= h(Y1,i, ..., Y[k−2]K ,i − sYk,i, Y[k−1]K ,i − tYk,i,
Y[k+1]K ,i − tYk,i, Y[k+2]K ,i − sYk,i, ..., YK,i|Yk,i)
≤ h(Y1,i, ..., Y[k−2]K ,i − sYk,i, Y[k−1]K ,i − tYk,i,
Y[k+1]K ,i − tYk,i, Y[k+2]K ,i − sYk,i, ..., YK,i) , h(Ỹk,i),

(12)
where

Ỹk,i = HkXi + GkZi, (13)

where the K × 1 vectors Xi and Zi are defined as Xi =[
X1,i, ..., XK,i

]T
and Zi =

[
Z1,i, ..., ZK,i

]T
.

Define the K − 1 ×K matrix Uk from an identity matrix
IK×K by removing the kth row. The product UkA, where A
is an arbitrary K×K size matrix, hence removes the kth row
of A, while the product of AU†k removes the kth column of
A. The K − 1×K size matrices Hk and Gk in (13) are then
defined as

Hk = UkQkH,
Gk = UkQk,

(14)

where

(
Qk

)
i,j

=


1 if i = j

−t if i = [k ± 1]K , j = k

−s if i = [k ± 2]K , j = k

0 otherwise.

. (15)

The entropy of Ỹk,i can be bounded as

h(Ỹk,i)

≤ 1
2 log

(
(2πe)K−1|PHkH†k + GkG†k|

)
= 1

2 log
(
(2πe)K−1

·|PUkQkHH†Q†kU†k + UkQkQ†kU†k|
)

= 1
2 log

(
(2πe)K−1 · |UkQk

(
I + PHH†

)
Q†kU†k|

)
,

(16)

where in the inequality we have used the independence of
signals transmitted by different users. We define the matrix Jk
as

Jk , Qk

(
I + PHH†

)
Q†k (17)

By the definition of matrix Uk the product UkJkU†k is the
(k, k)’s minor of matrix Jk, i.e. Mk,k(Jk) = UkJkU†k. Fur-
thermore, the elements in the kth row of matrix Jk where
Mk,k(Jk) is the (k, k)’s minor of Jk. From the other hand,
from Qk and H definitions, the elements in matrix Jk kth row
are equal to

(
Jk

)
k,j

=


1 + 3P if j = k

2P − (1 + 3P )t if j = [k ± 1]K

P − (1 + 3P )s if j = [k ± 2]K

0 otherwise.

. (18)

Substituting t = 2P
1+3P and s = P

1+3P yields that there is only
one element in the kth row of Jk that is different from zero,
and its position is (k, k). Hence, the determinant of Jk equals
to

|Jk| = (1 + 3P )|Mk,k(Jk))|. (19)

Finally, since |Qk| = 1, the determinant of matrix Jk is given
by

|Jk| = |Qk(I + PHH†)Q†k| = |I + PHH†|. (20)

Hence by combining eq. (19) and (20) we obtain

|UkQk

(
I + PHH†

)
Q†kU†k|

= |Mk,k(Jk)|

=
|I + PHH†|
1 + 3P

,

(21)

and we have

h(Ỹi)

≤ 1
2 log

(
(2πe)K−1 · |UkQk

(
I + PHH†

)
Q†kU†k|

)
= 1

2 log
[
(2πe)K−1

|I + PHH†|
1 + 3P

]
.

(22)

The other terms in (11) can be expressed as

−h(Y1,i, ..., YK,i|X1,i, ..., XK,i)
+h(Yk,i|X1,i, ..., XK,i)

= − 1
2 log

(
2πe
)K−1

.

(23)

Since matrix I + PHH† is circulant, its eigenvalues can be
computed as in [14], obtaining

λk = 1 + 3P + 4P cos
(
2π k

K

)
+ 2P cos

(
2π 2k

K

)
. (24)

for k = 1, ...,K. Since the determinant of a matrix is equal
to the product of its eigenvalues, we can write

log|I + PHH†|

=

K−1∑
k=0

log

(
1 + 3P + 4P cos

(
2π

k

K

)
+ 2P cos

(
2π

2k

K

))
.

(25)
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Substituting (22) and (23) into (11), and then into (10) and
using (25), we obtain

R

≤ 1
2K

K−1∑
k=0

log

(
1 + 3P + 4P cos

(
2π

k

K

)
+ 2P cos

(
2π

2k

K

))
− 1

2K log
(
1 + 3P

)
.

(26)
This concludes the proof. �

APPENDIX B

Proof : For any k = 1, ...,K we obtain

I(Xn
1 , ..., X

n
K ;Y n

1 , ..., Y
n
k−1, Y

n
k+1, ..., Y

n
K |Y n

k )
= h(Y n

1 , ..., Y
n
k−1, Y

n
k+1, ..., Y

n
K |Y n

k )
−h(Y n

1 , ..., Y
n
k−1, Y

n
k+1, ..., Y

n
K |Xn

1 , ..., X
n
K , Y

n
k )

= h(Y n
1 , ..., Y

n
k−1, Y

n
k+1, ..., Y

n
K |Y n

k )
+h(Y n

k |Xn
1 , ..., X

n
K)− h(Y n

1 , ..., Y
n
K |Xn

1 , ..., X
n
K).

(27)

For the first term we obtain

h(Y n
1 , ..., Y

n
k−1, Y

n
k+1, ..., Y

n
K |Y n

k )

=

K∑
j=1
j 6=k

h(Y n
j |Y n

1 , ..., Y
n
j−1, Y

n
k )

=

K∑
j=1
j 6=k

n∑
i=1

h(Yj,i|Y i−1
j , Y n

1 , ..., Y
n
j−1, Y

n
k )

(a)

≤
n∑

i=1

K∑
j=1,j 6=k

h(Yj,i|Y1,i, ..., Yj−1,i, Yk,i)

=

n∑
i=1

h(Y1,i, ..., Yk−1,i, Yk+1,i, ..., YK,i|Yk,i)

(28)

where (a) follows from entropy increasing due to conditioning
removal. Now for the second term we obtain

h(Y n
k |Xn

1 , ..., X
n
K)

=

n∑
i=1

h(Yk,i|Y i−1
k , Xn

1 , ..., X
n
K)

(a)

≤
n∑

i=1

h(Yk,i|X1,i, ..., XK,i)

(29)

where (a) follows from entropy increasing due to conditioning
removal. Now for the third term we obtain

h(Y n
1 , ..., Y

n
K |Xn

1 , ..., X
n
K)

= h(Zn
1 , ..., Z

n
K |Xn

1 , ..., X
n
K)

(a)
= h(Zn

1 , ..., Z
n
K)

(b)
=

n∑
i=1

h(Z1,i, ..., ZK,i)

=

n∑
i=1

h(Z1,i, ..., ZK,i|X1,i, ..., XK,i)

=

n∑
i=1

h(Y1,i, ..., YK,i|X1,i, ..., XK,i),

(30)

where (a) follows from the noise components independence
of the transmitted signals’ components; (b) follows from the
fact that the noise components are iid. Hence combining (28),
(29) and (30) yields

I(Xn
1 , ..., X

n
K ;Y n

1 , ..., Y
n
k−1, Y

n
k+1, ..., Y

n
K |Y n

k )

≤
n∑

i=1

I(X1,i, ..., XK,i;Y1,i, ..., Yk−1,i, Yk+1,i, ..., YK,i|Yk,i)

(31)
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