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Abstract

We study the real and complex Additive Gaussian Channels
(AGCs) with input amplitude constraints. For the real AGC
model, it is well known that the capacity-achieving input dis-
tribution is discrete with finitely many mass points. Similarly,
for the complex AGC model, it is well known that the amplitude
of the capacity-achieving input has a distribution that is discrete
with finitely many mass points. However, due to the previous
proof technique, neither the exact numbers of mass points of the
optimal input distributions in these settings nor bounds on them
were available. We provide an alternative proof of the discrete-
ness of the capacity-achieving input distributions and produce the
first firm upper bounds on the number of mass points, paving an
alternative way for approaching many such problems. The key
ingredients of this new proof technique are Karlin’s oscillation
theorem and Tijdeman’s number of zeros lemma.

Introduction

Problem 1. AGC with Input Amplitude Constraint

C(A) = max
X∈R : |X|≤A

I(X ;Y )

X ∈ R
|X| ≤ A

Y

Z ∼ N (0, 1)

Problem 2. AGC with Input Amplitude and Power Constraints

C(A,P) = max
X∈R : |X|≤A

E[X2]≤P

I(X ;Y )

X ∈ R
|X| ≤ A

E[X2] ≤ P

Y

Z ∼ N (0, 1)

Problem 3. Complex AGC with Input Amplitude Constraint

Cc(A) = max
X∈C : |X|≤A

I(X ;Y )

X ∈ C
|X| ≤ A

Y

Z ∼ CN (0, 1)

Theorem [1, Corollaries 1 and 2]. In Problems 1 and 2, the
capacity-achieving distribution PX? is unique, symmetric, and
discrete with finitely many mass points.

Theorem [2, Theorem 1]. In Problem 3, the capacity-
achieving distribution PX? is unique, radially symmetric, and
the amplitude |X?| of the capacity-achieving input X? is dis-
crete with finitely many mass points.

Some Notes on Smith’s and Shamai’s Results:

• Both theorems have proofs that are based on a contradiction
argument. Their proofs are not constructive, not even an ex-
plicit bound on the number of mass points is known.

• In the real AGC case, a bound on the number of mass points
of the optimal input X? as a function of amplitude constraint
A is unknown except for certain particular cases of A. This is
an open problem for almost 50 years!

• Similarly, in the complex AGC case, a bound on the number
of mass points of the amplitude of the optimal input, namely
|X?| as a function of the amplitude case A is unknown except
for certain particular cases of A.

•Relevant to the current technology, the problem of finding
proper upper bounds on the number of mass points carries
practical importance as much as its theoretical importance.

Main Results

A Bound on Number of Mass Points of PX? for
Problem 1

Theorem 1: AGC with Amplitude Constraint

For Problem 1, the optimal input X? has a discrete distribu-
tion PX? where the number of mass points satisfy√
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A Bound on Number of Mass Points of PX? for
Problem 2

Theorem 2: AGC with Amplitude and Power Constraints

For Problem 2, the optimal input X? has a discrete distribu-
tion PX? where the number of mass points satisfy√
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A Bound on Number of Mass Points of P|X?| for
Problem 3

Theorem 3: Complex AGC with Amplitude Constraint

For Problem 3, the amplitude of the optimal capacity-
achieving random variable, namely |X?|, has a discrete dis-
tribution P|X?| where the number of mass points satisfy
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Remarks on the Main Results

• The lower bounds in Theorems 1, 2 and 3 follow from the
entropy-power inequality.

• For the upper bounds, we rely on Tijdeman’s Lemma on the
number of zeros of an analytic function [3, Lemma 1] and Kar-
lin’s Oscillation Theorem [4, Theorem 3]. Together, these two
results find upper bounds for many similar problems.

• If P ≥ A2 in Theorem 2, we recover the result of Theorem 1.

• The lower and upper bounds in Theorem 3 are order-tight.
That is, for the capacity-achieving input X? in the complex
AGC, ∣∣∣supp

(
P|X?|

)∣∣∣ = Θ(A2).

• The order of the lower bounds in Theorems 1 and 2 are O(A)
while the order of the upper bounds are O(A2). This is due to
a limitation of the technique we use.

• The constants we found might be improved because those con-
stants result from a suboptimal choice in a hard optimization
problem.

Main Components of Our Method

Tijdeman’s Number of Zeros Lemma

Lemma [3, Lemma 1]. Let R, s, t be positive numbers such
that s > 1. For the complex valued function f 6= 0 which is
analytic on |z| < (st + s + t)R, its number of zeros N(DR, f )
within the disk DR = {z : |z| ≤ R} satisfies

N(DR, f ) ≤ 1

log s

(
log max
|z|≤(st+s+t)R

|f (z)| − log max
|z|≤tR

|f (z)|

)
.

Karlin’s Oscillation Theorem

Definition The number of sign changes of a real-valued
function ξ : R→ R is defined as

S (ξ) = sup
m∈N

sup
y1,...,ym

N (ξ|y1, . . . , ym),

where N (ξ|y1, . . . , ym) is the number of sign changes of the
sequence {ξ(yi)}mi=1, for yi < yi+1.

Theorem [4, Theorem 3]. Let p(x, y) be a positive definite
function and a pdf in x for every fixed y. Assume that p is
n-times differentiable with respect to x for arbitrary y. Let
ν be a measure on the real line, and let ξ be a function with
S (ξ) = n. If

Ξ(x) =

∫
ξ(y)p(x, y)dν(y),

is n-times differentiable with respect to x, then either S (Ξ) ≤
n and N(R,Ξ) ≤ n, or Ξ is identically zero.

Other Related Problems

Problem 4. Gaussian Multiple Access Channel

C(A1,A2,A3) = max
X3∈R3 : Xi≤Ai ∀i

I(X1, X2, X3;Y )

X1 ∈ R : |X1| ≤ A1

X2 ∈ R : |X2| ≤ A2

X3 ∈ R : |X3| ≤ A3

Y =

3∑
i=1

Xi + Z

Z ∼ N (0, 1)

Problem 5. Estimation Theory–Least Favorable Prior

M(A) = max
X∈R : |X|≤A

MMSE(X|Y )

X ∈ R
|X| ≤ A

Y

Z ∼ N (0, 1)
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