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Converse Results for the Downlink Multicell
Processing With Finite Backhaul Capacity

Tianyu Yang, Nan Liu , Wei Kang , and Shlomo Shamai (Shitz)

Abstract— In this paper, we study outer bounds on the capacity
region of the downlink multicell processing model with finite
backhaul capacity for the simple case of two base stations and two
mobile users. It is modeled as a two-user multiple access diamond
channel. It consists of a first hop from the central processor
to the base stations via orthogonal links of finite capacity and
the second hop from the base stations to the mobile users via
a Gaussian interference channel. The outer bound is derived
using the converse tools of the multiple access diamond channel
and that of the Gaussian MIMO broadcast channel. Through
numerical results, it is shown that our outer bound improves
upon the existing outer bounds greatly in the medium backhaul
capacity range, and as a result, the gap between the outer bounds
and the rate of the time-sharing of the known achievable schemes
is significantly reduced.

Index Terms— Multi-cell processing, diamond channel, con-
verse, MIMO broadcast channel.

I. INTRODUCTION

THE multi-cell processing system, as reviewed in [1], has
been used to increase the throughput and to cope with

the inter-cell interference. The downlink multi-cell process-
ing system, when first considered, consists of different base
stations linked to the central processor via backhaul links of
unlimited capacity, and therefore, the amount of cooperation
among the different base stations is unbounded. This network
can be modeled by a MIMO broadcast channel and the
sum-rate characterization was found in [2]. Later on, due
to the impracticality of unlimited capacity backhaul links,
Simeone et al. [3], Park et al. [4], Hong and Caire [5],
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Fig. 1. The multicell processing system with finite backhaul capacity.

Liu and Kang [6], and Yi and Liu [7] studied the problem
of finding the capacity region of the downlink multicell
processing system when the capacities of the backhaul links
are finite, see Fig. 1. The papers proposed various achievable
schemes to efficiently utilize the finite capacity backhaul links.
More specifically, in [3], a compressed dirty-paper coding
scheme is proposed, where the base stations are treated as the
antennas of the central processor and the dirty-paper coding
codewords for each antenna are compressed and transmitted on
the backhaul links. The scheme is improved in [4] by allowing
the quantization noise of the base stations be correlated.
The scheme of reverse compute-and-forward was proposed
in [5] where linear precoding is performed at the central
processor and the backhaul links are used to transmit linear
combinations of the messages over a finite field. Such linear
precoding transforms the channel seen at each mobile user into
a point-to-point channel where integer-valued interference is
eliminated by precoding and the remaining noninteger residual
interference is treated as noise. By regarding the network
model as a multi-user diamond channel, an achievability
scheme is proposed in [6] and [7] by combining Marton’s
achievability for the broadcast channel [8] and the achievabil-
ity of sending correlated codewords over a multiple access
diamond channel [9], [10].

The outer bound on the capacity region for this network is
unknown except for the simple cut-set bound [11] on the sum
rate, which is the minimum of the capacity between the first
hop from the central processor to the base stations and that of
the second hop from the base stations to the mobile users. Uti-
lizing the simple cut-set bound, some constant-gap results for
the multicell processing system with finite backhaul capacity
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Fig. 2. Existing upper and lower bounds on the sum capacity for the
symmetric case.

have recently been obtained [12]–[14]. When the capacity of
the backhaul links are relatively large, the achievable sum rate
of the scheme of compressed dirty-paper coding approaches
that of the simple cut-set bound. On the other hand, when the
capacity of the backhaul links are relatively small, the scheme
of reverse compute-and-forward reaches the simple cut-set
bound [6]. In the medium capacity region, there is still a
relatively large gap between the simple cut-set upper bound
and the sum rate of the time-sharing of the known achievable
schemes, see Fig. 2. So it is unknown how well the proposed
achievable schemes are and whether further efforts are needed
in proposing better achievable schemes than existing ones for
the downlink multicell processing system.

In this paper, we derive a novel outer bound on the capacity
region of the downlink multicell processing network consisting
of two base stations and two users. Similar to [6], we regard
the network as a 2-user multiple access diamond channel. As a
result, the converse is derived using the converse tools of the
multiple access diamond channel used in [15] and [16] and
that of the Gaussian MIMO broadcast channel used in [17].
The derived outer bound is expressed in terms of the capacity
region of the Gaussian MIMO broadcast channel given input
covariance constraint, which has been found in [17]–[19].

Comparing numerically the proposed outer bound, the cut-
set bound and the performance of various achievable schemes
for the multicell processing system in terms of the sum-rate,
we see that our outer bound improves upon the cut-set bound
greatly in the medium backhaul capacity range, and as a result,
the gap between the outer bounds and the time-sharing of the
known achievable schemes is significantly reduced.

The remainder of this paper is organized as follows.
In Section II, we provide the system model. In Section III,
we derive a new outer bound for the capacity region as well
as an upper bound on the sum capacity. The proof of the
main result is provided in Section IV. Numerical results are
provided in Section V, and this is followed by conclusions
in Section VI.

II. SYSTEM MODEL

In this paper, we consider the downlink multicell processing
system with two base stations and two users. This network

Fig. 3. The 2-user multiple access diamond channel.

model can be seen as the 2-user Gaussian multiple access
diamond channel [6], see Fig. 3. The source node (central
processor) can communicate with Relays (base stations) 1 and
2 via backhaul links of capacities C1 and C2, respectively. The
channel between the two relay nodes and the two destination
nodes (mobile users) is characterized by

Y1 = X1 + a X2 + U1, (1)

Y2 = bX1 + X2 + U2, (2)

where Y1 and Y2 are the received signal at Users 1 and 2,
respectively, X1 and X2 are the input signals from
Relays 1 and 2, respectively, U1, U2 are two independent
zero-mean unit-variance Gaussian random variables that are
independent to (X1, X2), and a, b ∈ R are the channel gains
from Relay 1 to Destination 2 and Relay 2 to Destination 1,
respectively. The transmitted signals at the two relays must
satisfy the average power constraints: for any xn

k that Relay k
sends into the channel, it must satisfy

1

n

n�

i=1

x2
ki ≤ Pk, k = 1, 2.

Let W1 and W2 be two independent messages that the source
node would like to transmit to Destination nodes (mobile
users) 1 and 2, respectively. Assume that Wk is uniformly
distributed on {1, 2, · · · , Mk}, k = 1, 2.

An (M1, M2, n, �n) code consists an encoding function at
source node:

f n : {1, 2, · · · , M1} × {1, 2, · · · , M2}
→ {1, 2, · · · , 2nC1} × {1, 2, · · · , 2nC2},

two encoding functions at the relay nodes:

f n
k : {1, 2, · · · , 2nCk } → Xk, k = 1, 2,

and two decoding functions at the destination nodes:

gn
k : Yk → {1, 2, · · · , Mk}, k = 1, 2.

The average probability of error is defined as

�n =
M1�

w1=1

M2�

w2=1

1

M1 M2
Pr
�
gn

1 (Y n
1 ) �= w1 or

gn
2 (Y n

2 ) �= w2|W1 = w1, W2 = w2

�
.

Rate pair (R1, R2) is said to be achievable if there exists
a sequence of (2nR1 , 2nR2 , n, �n) code such that �n → 0
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Fig. 4. Cuts for the 2-user Gaussian multiple access diamond channel.

as n → ∞. The capacity region of the 2-user Gaussian
multiple access diamond channel is the closure of the set of
all achievable rates pairs.

III. AN OUTER BOUND FOR THE CAPACITY REGION OF

THE 2-USER GAUSSIAN MULTIPLE ACCESS

DIAMOND CHANNEL

The existing simple cut-set upper bound on the sum capacity
is

R1 + R2 ≤ min{C1 + C2, max
ρ∈[−1,1] Csum

MIMO(ρ)}, (3)

where Csum
MIMO(ρ) � max

(R1,R2)∈CMIMO(ρ)
R1 + R2, and CMIMO(ρ)

denotes the capacity region of the broadcast channel described
in (1) and (2) under a given covariance constraint, where
X̄ �

�
X1, X2

�T is the transmitted signal of the 2 antennas
of the transmitter, and Y1 and Y2 are the received signals of
the single-antenna Receivers 1 and 2, respectively. The input
of the transmitter must satisfy a covariance constraint, i.e.,

E
�
X̄X̄T

�
�
�

P1 ρ
√

P1 P2

ρ
√

P1 P2 P2

�
� K. (4)

where A � B means that the matrix B − A is positive semi-
definite. The capacity region of the MIMO broadcast channel,
i.e., CMIMO(ρ), has been found in [17]–[19]. Note that the
existing simple cut-set bound, i.e., (3), is the minimum of the
capacity of Cuts C and D of Fig. 4.

To improve upon the existing simple cut-set bound, our
proposed outer bound on the capacity region of the 2-user
Gaussian multiple access diamond channel needs the following
definitions:

1) Since we are considering the entire capacity region and
not just the sum capacity, we generalize Csum

MIMO(ρ) to
the definitions of Cν

MIMO12(ρ) and Cν
MIMO21(ρ) as: for

ρ ∈ [−1, 1] and ν ∈ [1,∞), define

Cν
MIMO12(ρ) � max

(R1,R2)∈CMIMO(ρ)
R1 + νR2,

Cν
MIMO21(ρ) � max

(R1,R2)∈CMIMO(ρ)
R2 + νR1,

By varying over ν, Cν
MIMO12(ρ) and Cν

MIMO12(ρ) trace
the capacity region of the 2-user broadcast channel

described in (1) and (2) under the given covariance con-
straint in (4), where X̄ �

�
X1, X2

�T
is the transmitted

signal of the 2 antennas of the transmitter.
2) Since we are considering the cross-cuts A and B of

Fig. 4, as well as Cuts C and D in the existing simple
cut-set bound, we define for ρ ∈ [−1, 1]

fA(ρ) � C1 + 1

2
log

	
1 + max{a2, 1}(1 − ρ2)P2



,

fB(ρ) � C2 + 1

2
log

	
1 + max{b2, 1}(1 − ρ2)P1



,

where fA(ρ) and fB(ρ) can be intuitively seen as the
capacity of Cuts A and B of Fig. 4, respectively, when
the transmitted signal of the two base stations are jointly
Gaussian with correlation ρ.

3) Define fC (ρ) as

fC (ρ) � C1 + C2 − 1

2
log

1

1 − ρ2 ,

Note that the cut-set bound for Cut C is C1 + C2 =
fC (0). We would like to improve upon this bound by
proving that when the transmitted signals of the second
hop becomes correlated with correlation coefficient ρ,
the rate of the first cut decreases from C1 + C2 to
C1+C2− 1

2 log 1
1−ρ2 = fC (ρ). The intuition is that when

independent information is sent via the two orthogonal
links of the first hop, the rate sent over the first hop
is C1 + C2. To increase the rate sent over the second
hop, we would like the two relays to send correlated
codewords through the Gaussian channel. In order to
do this, correlated information has to be sent via the
two orthogonal links of the first hop. As a result,
the information rate sent through the first hop can not
be as high as C1 + C2, and we will show that instead,
the rate sent over the first hop decreases from fC (0)
to fC (ρ). We are able to prove the decrease from fC (0)
to fC (ρ) only for small enough ρ that satisfy ρ ∈ Ax ,
where

Ax =
�

[0, ρx ] if x ≥ 0

[ρx , 0] if x < 0,
x = a, b.

and ρx is defined as

ρx =
⎧
⎨

⎩
sgn(x)

��
1 + 1

4x2 P1 P2
−
�

1

4x2 P1 P2

�
, x �= 0

0, x = 0

(5)

where sgn(·) is the sign function of ·.
With the above definitions, we are ready to state the main

result of this paper.
Theorem 1: The rate pair (R1, R2) is achievable only if it

satisfies for μ ≥ 1,

R1 + μR2

≤ max

�
max
ρ∈Ab

min{T 12
A (ρ), T 12

B (ρ)}, max
ρ∈[−1,1]�Ac

b

T 12
A (ρ)

�

(6)
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and

R2 + μR1

≤ max

�
max
ρ∈Aa

min{T 21
A (ρ), T 21

B (ρ)}, max
ρ∈[−1,1]�Ac

a

T 21
A (ρ)

�
,

(7)

where

T m
A (ρ) � min

κ∈[0,1)

�
κ min { fA(ρ), fB (ρ), fC (0)}

+ (1 − κ)C
μ−κ
1−κ

MIMOm(ρ)

�
, m = 12, 21, (8)

T m
B (ρ) � min

λ∈�0,min{ μ
2 ,1}�

λ �=1

�
λ fC (ρ) + (1 − λ)C

μ−λ
1−λ

MIMOm(ρ)

�
,

m = 12, 21.

Proof: The proof of Theorem 1 is provided
in Section IV.

As can be seen, the outer bound on the capacity region
of the 2-user multiple access diamond channel in Theorem 1
is expressed in terms of the capacity region of the Gaussian
MIMO broadcast channel with input covariance constraint. For
completeness, we write the expressions for Cν

MIMO12(ρ) and
Cν

MIMO21(ρ) here [17]–[19]:

Cν
MIMO12(ρ) = max

0�K1�K

�
1

2
log(GT

1 K1G1 + 1)

+ν

2
log

GT
2 KG2 + 1

GT
2 K1G2 + 1

�

Cν
MIMO21(ρ) = max

0�K2�K

�
ν

2
log

GT
1 KG1 + 1

GT
1 K2G1 + 1

+1

2
log(GT

2 K2G2 + 1)

�

which is achieved by dirty-paper coding. Here, GT
1 = �

1 a
�
,

GT
2 = �

b 1
�

and K is defined in (4).
Remarks:
1) In Theorem 1, the upper bound of T m

A (ρ), m = 12, 21,
is proved using the cut-set bound from the four cuts,
i.e., Cuts A, B, C and D of Fig. 4. The more difficult
part is to prove that when ρ ∈ Ab (ρ ∈ Aa), we also
have the upper bound of T m

B (ρ), m = 12, 21. This upper
bound is mainly the improvement from fC (0) = C1+C2
to fC (ρ) = C1 + C2 − 1

2 log 1
1−ρ2 , which indicate

that when correlated signals of correlation ρ are sent
through the first hop, the rate sent across the first hop is
reduced from C1 + C2 to C1 + C2 − 1

2 log 1
1−ρ2 . The

converse techniques we use to prove this include 1)
the bounding of the correlation between the transmit-
ted signals of the two relays via an auxiliary random
variable [15], [16], which was inspired by Ozarow in
solving the Gaussian multiple description problem [20];
2) the single-letterization technique from [21, pp. 314,
eq. (3.34)]; 3) a generalization of the entropy power
inequality (EPI) [19, Corollary 4]; and 4) the deriva-
tion of the capacity region of the two-user Gaussian

MIMO broadcast channel with private messages in
[17, Sec. III.A].

2) When C1 and C2 goes to infinity, fA(ρ), fB(ρ), fC (ρ)
which include the terms C1 and/or C2 also go to infinity.
Therefore, the minimum over κ for T 12

A (ρ) is achieved
at κ = 0. Similarly, the minimum over λ for T 12

B (ρ)
is achieved at λ = 0. Hence, T 12

A (ρ) = T 12
B (ρ) =

Cμ
MIMO12(ρ). Thus, the upper bound in (6) becomes

R1 + μR2 ≤ max
ρ∈[−1,1] Cμ

MIMO12(ρ),

and similarly, we have

R2 + μR1 ≤ max
ρ∈[−1,1] Cμ

MIMO21(ρ).

Hence, Theorem 1 coincides with the result of the
capacity region of the MIMO broadcast channel where
Relays 1 and 2 are the antennas of the MIMO trans-
mitter, with individual antenna power constraints of
P1 and P2, respectively.

From Theorem 1, we may obtain the following corollary
which characterizes an upper bound for the sum capacity of
the 2-user Gaussian multiple access diamond channel.

Corollary 1: An upper bound for the sum capacity of the
2-user Gaussian multiple access diamond channel is

R1 + R2 ≤ max

�
max

ρ∈[−1,1]�Ac
x

T1(ρ), max
ρ∈Ax

T2(ρ)

�
,

for x = a and x = b, (9)

where T1(ρ) and T2(ρ) are defined as

T1(ρ) = min
�

fA(ρ), fB (ρ), fC (0), Csum
MIMO(ρ)

�
,

T2(ρ) = min

�
T1(ρ),

1

2

�
fC (ρ) + Csum

MIMO(ρ)
��

.

Proof: In Theorem 1, take μ = 1. We have

T m
A (ρ) ≤ C1

MIMOm(ρ), m = 12, 21

when we take κ = 0 in the minimum of κ in (8). When we
take κ → 1, we have

T m
A (ρ) ≤ lim

κ→1

�
κ min { fA(ρ), fB (ρ), fC (0)}

+ (1 − κ)C1
MIMOm(ρ)

�

= min { fA(ρ), fB(ρ), fC (0)} , m = 12, 21.

Taking λ = 1
2 , we have

T m
B (ρ) ≤ 1

2
fC (ρ) + 1

2
C1

MIMOm(ρ), m = 12, 21,

Noting that C1
MIMOm(ρ) = Csum

MIMO(ρ), m = 12, 21, we have
proved Corollary 1.
Comparing the result of Corollary 1 to the existing simple
cut-set bound in (3), we see that Corollary 1 implies that the
upper bound of

R1 + R2 ≤ max
ρ∈[−1,1] T1(ρ) (10)

is true since we have T1(ρ) ≥ T2(ρ) for ∀ρ ∈ [−1, 1].
The upper bound of (10) is tighter than the existing simple
cut-set bound of (3), as it further considers the capacities of
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Cuts A and B. Furthermore, the result of Corollary 1, i.e., (9),
is strictly tighter than the cut-set bound in (10) because when
ρ ∈ Ax , x = a, b, the upper bound of T2(ρ) exists, which is
smaller than T1(ρ). Thus, Corollary 1 provides a novel upper
bound that is tighter than the existing simple cut-set bound
of (3) on the sum-capacity of the channel.

To conclude this section, we make some discussions
about the generalization of our upper bound of Theorem 1.
By utilizing the same techniques as those used in the proof of
Theorem 1, one can generalize the result of Theorem 1 to the
case of 2 users and N relays, N ≥ 3. The improvement over
the simple cut-set bound is still two folds: 1) improve upon
the simple cut-set bound by considering all possible cuts, and
2) improve the cut-set bound of the first-hop from

�N
i=1 Ci

to
�N

i=1 Ci −
�

I (X1, X2) +�N
i=3 I (Xi ; X1, X2, · · · , Xi−1)

�
,

with the mutual informations evaluated for jointly Gaussian
random variables X1, X2, · · · , X N . Note the similarity of
the N-relay case, N ≥ 3 and the 2-relay case where the
cut-set bound of the first hop is improved from C1 + C2 to
C1+C2− 1

2 log 1
1−ρ2 = C1+C2− I (X1; X2), where the mutual

information is evaluated for jointly Gaussian random variables
X1 and X2. We expect the improvement from

�N
i=1 Ci to�N

i=1 Ci −
�

I (X1, X2) +�N
i=3 I (Xi ; X1, X2, · · · , Xi−1)

�

to scale linearly with the number of antennas,
as

�
I (X1, X2) +�N

i=3 I (Xi ; X1, X2, · · · , Xi−1)
�

evaluated

for the jointly Gaussian distribution scales linearly with N .
The idea and techniques of improving the rate upper

bound of the first-hop from
�N

i=1 Ci to
�N

i=1 Ci −�
I (X1, X2) +�N

i=3 I (Xi ; X1, X2, · · · , Xi−1)
�

can be used in
other related multi-cell processing scenarios. For example,
the recent proposition of F-RAN [22] over C-RAN is to save
the fronthaul usage by enabling caching and signal processing
capabilities at the base station. The technique presented in this
paper may provide a better characterization on the upper bound
of the capacity of the F-RAN system. Another example is the
wiretapped diamond channel problem [23], which considers a
multicell processing problem such as the one depicted in Fig. 3
except that Destination node 2 is an eavesdropper, eavesdrop-
ping on the message requested by Destination node 1, and
does not require any message of its own from the base stations.
We believe the technique in this work will be useful in deriving
an upper bound on the secret capacity in the wiretapped
diamond channel problem.

For the more general case of N relays and M users, where
M ≥ 3, to generalize the proof and results of Theorem 1,
we need the derivation of [17, Sec. III.A] to hold for the
M-user Gaussian MIMO broadcast channel, M ≥ 3. Since
[17, Sec. III.A] is valid for two users only, a converse that is
tighter than the cut-set bound is still open for the case of N
relays and M users, M ≥ 3.

IV. PROOF OF THEOREM 1

Without loss of generality, we may assume a > 0. Since
the case of a < 0 can easily be transformed into the case of
a > 0 by defining X �

2 = −X2 and Y �
2 = −Y2. This results in

the following equivalent channel

Y1 = X1 − a X �
2 + U1, (11)

Y �
2 = −bX1 + X �

2 + U2. (12)

where −a is positive. The channel in (11) and (12) is equiv-
alent to the channel in (1) and (2) because the transformation
is a one-to-one mapping.

For any sequence of (2nR1, 2nR2 , n, �n) code, let Xn
k

denote the input of Relay k into the n uses of the channel
p(y1, y2|x1, x2), and Y n

k denote the corresponding output
received at Receiver k, k = 1, 2. Due to the power constraint,
we have

1

n

n�

i=1

E[X2
ki ] ≤ Pk, k = 1, 2 (13)

Define a random variable Q that is independent of everything
else and uniformly distributed on {1, 2, · · · , n}, further define

X1 � X1Q, X2 � X2Q, Y1 � Y1Q, Y2 � Y2Q . (14)

Define the correlation coefficient between X1 and X2 as

ρ � E[X1 X2]�
E[X2

1]E[X2
2]

.

Note that ρ ∈ [−1, 1]. Further define

P̄k � E[X2
k ], k = 1, 2.

From (13) and (14), we have

P̄k = E[X2
k ] = E[X2

kQ ] = EQ

�
EX |Q

�
X2

kQ |Q = i
��

= 1

n

n�

i=1

E[X2
ki ] ≤ Pk, k = 1, 2. (15)

Define

ρ∗ �
�

P̄1 P̄2√
P1 P2

ρ. (16)

Based on (15), we have
��ρ∗�� ≤ |ρ|. (17)

Hence, ρ∗ ∈ [−1, 1]. Define X �
�
X1 X2

�T , and further
define K as

K �
�

P1 ρ∗√P1 P2

ρ∗√P1 P2 P2

�
.

We can see that

E[XXT ] =
�

P̄1 ρ
�

P̄1 P̄2

ρ
�

P̄1 P̄2 P̄2

�

�
�

P1 ρ
�

P̄1 P̄2

ρ
�

P̄1 P̄2 P2

�

=
�

P1 ρ∗√P1 P2

ρ∗√P1 P2 P2

�
= K. (18)

We first derive a modified cut-set bound that considers the
cross-cuts, i.e., Cuts A and B of Fig. 4, as well as the cut
of the first and second hop, i.e., Cuts C and D. We give this
result in the following Lemma.
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Lemma 1: When ρ∗ satisfies ρ∗ ∈ [−1, 1], we have

R1 + R2 ≤ min
�

fA(ρ∗), fB(ρ∗), fC (0)
�

(19)
The proof of Lemma 1 is provided in Appendix A, where
converse techniques from the physically degraded broadcast
channel [11] are used.

Next, we will use (19) to derive an upper bound on R1 +
μR2, for μ ≥ 1. The case of μ ≤ 1 can be derived similarly
by swapping the indices 1 and 2 and the numbers b and a.

For any κ ∈ [0, 1), we have

R1 + μR2 = κ(R1 + R2) + (1 − κ)

�
R1 + μ − κ

1 − κ
R2

�

≤ κ(R1 + R2) + (1 − κ)C
μ−κ
1−κ

MIMO12(ρ
∗),

where the last step follows because C
μ−κ
1−κ

MIMO12(ρ
∗) corresponds

to the upper bound on R1 + μ−κ
1−κ R2 when C1, C2 → ∞. Using

the upper bound for sum-rate R1 + R2 in (19), we have

R1 + μR2 ≤ min
κ∈[0,1)

�
κ min

�
fA(ρ∗), fB(ρ∗), fC (0)

�

+ (1 − κ)C
μ−κ
1−κ

MIMO12(ρ
∗)
�
=T 12

A (ρ∗). (20)

Note that (20) is valid when ρ∗ satisfies ρ∗ ∈ [−1, 1].
We remark here that we did not consider Cut D of Fig. 4
in our derivations because this cut would give us the upper
bound of Cμ

MIMO12(ρ
∗), which we would obtain by setting

κ = 0 in (20). Hence, it is redundant to consider this cut.
We now proceed to derive another upper bound on R1 +

μR2 which is valid when ρ∗ satisfies ρ∗ ∈ Ab. Using Fano’s
inequality, we have

n(R1 + R2) ≤ I (W1, W2; Y n
1 , Y n

2 ) + n�n

≤ I (Xn
1 , Xn

2 ; Y n
1 , Y n

2 ) + n�n (21)

≤ nC1 + nC2 − I (Xn
1 ; Xn

2 ) + n�n , (22)

where (21) follows from the Markov Chain (W1, W2) →
(Xn

1 , Xn
2 ) → (Y n

1 , Y n
2 ), and (22) follows from [15, eq. (33)].

Using Fano’s inequality, we further have

n(R1 + R2)

≤ H (W1, W2)

= H (W2) + H (W1|W2)

≤ I (W2; Y n
2 ) + I (W1; Y n

1 |W2) + H (W2|Y n
2 )

+ H (W1|Y n
1 , W2)

≤ I (W2; Y n
2 ) + I (W1; Y n

1 |W2) + 2n�n

≤ I (W2; Y n
2 ) + I (Xn

1 , Xn
2 ; Y n

1 |W2) + 2n�n, (23)

and

n R2 = H (W2)

= I (W2; Y n
2 ) + H (W2|Y n

2 )

≤ I (W2; Y n
2 ) + n�n . (24)

Thus, omitting the �n term which will go to zero and
n → ∞, from (22), (23) and (24), we have that for any

λ ∈ �0, min
�μ

2 , 1
��

and λ �= 1,

n((1 − λ)R1 + (μ − λ)R2)

= n((1 − λ)(R1 + R2) + (μ − 1)R2)

≤ (1 − λ)I (Xn
1 , Xn

2 ; Y n
1 |W2) + (μ − λ)I (W2; Y n

2 ) (25)

= (1 − λ)I (Xn
1 , Xn

2 ; Y n
1 |W2) + (μ − λ)I (Xn

1 , Xn
2 ; Y n

2 )

− (μ − λ)I (Xn
1 , Xn

2 ; Y n
2 |W2), (26)

where (25) follows from (23), (24) and the fact that λ ≤ 1 and
μ ≥ 1, and (26) is because of W2 → (Xn

1 , Xn
2 ) → (Y n

1 , Y n
2 )

forms a Markov chain. Furthermore, we have

n(R1 + μR2)

= nλ(R1 + R2) + n(1 − λ)R1 + n(μ − λ)R2

≤ λ(nC1 + nC2 − I (Xn
1 ; Xn

2))

+ n(1 − λ)R1 + n(μ − λ)R2 (27)

≤ nλ(C1 + C2) − λI (Xn
1 ; Xn

2 )

+ (μ − λ)I (Xn
1 , Xn

2 ; Y n
2 ) + (1 − λ)I (Xn

1 , Xn
2 ; Y n

1 |W2)

− (μ − λ)I (Xn
1 , Xn

2 ; Y n
2 |W2) (28)

≤ (μ − λ)I (Xn
1 , Xn

2 ; Y n
2 ) − λI (Xn

1 , Xn
2 ; Zn)

+ λI (Xn
1 ; Zn|Xn

2 ) + λI (Xn
2 ; Zn|Xn

1 )

+ nλ(C1 + C2) + (1 − λ)I (Xn
1 , Xn

2 ; Y n
1 |W2)

− (μ − λ)I (Xn
1 , Xn

2 ; Y n
2 |W2), (29)

where (27) follows from (22) and the fact that λ ≥ 0, (28)
follows from (26), and (29) follows by introducing a sequence
of auxiliary random variables Zn and utilizing the fact
that [15, eq. (34)]

I (Xn
1 ;Xn

2)= I (Xn
1 , Xn

2 ; Zn)− I (Xn
2 ; Zn|Xn

1)−I (Xn
1 ; Zn|Xn

2 ).

where Zn is the output of the following memoryless Gaussian
channel with Y n

2 being the input:

Z = Y2 + U3, (30)

and U3 is a Gaussian random variable with zero mean and
variance N3. Further define Z � Z Q .

We single-letterize (29) by single-letterizing three terms
using the following Lemma.

Lemma 2: We have the following single-letterization:

(μ − λ)I (Xn
1 , Xn

2 ; Y n
2 ) − λI (Xn

1 , Xn
2 ; Zn)

≤ n(μ − 2λ)I (X1, X2; Y2) + nλI (X1, X2; Y2|Z),

and

λ(I (Xn
1 ; Zn|Xn

2 ) + I (Xn
2 ; Zn|Xn

1 ))

≤ nλ(I (X1; Z |X2) + I (X2; Z |X1))

and

I (Xn
1 , Xn

2 ; Y n
1 |W2) − μ − λ

1 − λ
I (Xn

1 , Xn
2 ; Y n

2 |W2)

≤ n

�
I (X1, X2; Y1|U) − μ − λ

1 − λ
I (X1, X2; Y2|U)

�
.

where

U �
	

W2, Y Q−1
1 , Y n

2(Q+1), Q


. (31)
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The proof of Lemma 2 is provided in Appendix B, where
techniques from [21, pp. 314, eq. (3.34)] is used.

Then from (29), Lemma 2, and the fact that λ ≤ min(μ
2 , 1),

we obtain the following single-letteriztion:

R1 + μR2

≤ λ(C1 + C2) + λI (X1; Z |X2) + λI (X2; Z |X1)

+ (1 − λ)I (X1, X2; Y1|U) − (μ − λ)I (X1, X2; Y2|U)

+ (μ − 2λ)I (X1, X2; Y2) + λI (X1, X2; Y2|Z), (32)

where the mutual informations are evaluated using the
joint distribution of defined random variables (X1, X2,
Y1, Y2, Z , U) which satisfy

p(x1, x2, y1, y2, z, u)

= p(x1, x2)p(u|x1, x2)p(y1, y2|x1, x2)p(z|y2). (33)

Next, we derive an upper bound on (32) by using the fact
that the term p(y1, y2|x1, x2) in (33), which refers to the
channel in (1) and (2), and the term p(z|y2) in (33), which
refers to the channel in (30), are Gaussian channels. To derive
an upper bound on (32), we provide an upper bound for the
following three terms:

1) (μ − 2λ)I (X1, X2; Y2) + λI (X1, X2; Y2|Z);
2) I (X1; Z |X2) + I (X2; Z |X1);
3) I (X1, X2; Y1|U) − μ−λ

1−λ I (X1, X2; Y2|U).
The upper bounds for the first two terms make use of

standard Gaussian techniques, and are given by the following
Lemma.

Lemma 3: We have

(μ − 2λ)I (X1, X2; Y2) + λI (X1, X2; Y2|Z)

≤ μ − λ

2
log

	
b2 P1 + P2 + 2bρ∗�P1 P2 + 1




− λ

2
log

�
b2 P1 + P2 + 2bρ∗√P1 P2 + 1 + N3

1 + N3

�
,

and

I (X1; Z |X2) + I (X2; Z |X1)

≤ 1

2
log

(1 − ρ∗2)b2 P1 + 1 + N3

1 + N3

+ 1

2
log

(1 − ρ∗2)P2 + 1 + N3

1 + N3
.

The proof of Lemma 3 is provided in Appendix C, where the
extremal inequality of [19, Corollary 4] is used.

As for the third term I (X1, X2; Y1|U) −
μ−λ
1−λ I (X1, X2; Y2|U), since μ−λ

1−λ ≥ 1, we have:

I (X1, X2; Y1|U) − μ − λ

1 − λ
I (X1, X2; Y2|U)

≤ sup
p(u,x1,x2):
E[XXT ]≤K

�
I (X1, X2; Y1|U) − μ − λ

1 − λ
I (X1, X2; Y2|U)

�

(34)

= C
μ−λ
1−λ

MIMO12(ρ
∗) − μ − λ

1 − λ
max

p(x1,x2):E[XXT ]�K
I (X; Y2) (35)

= C
μ−λ
1−λ

MIMO12(ρ
∗)

− μ − λ

2(1 − λ)
log(b2 P1 + P2 + 1 + 2bρ∗�P1 P2), (36)

where (34) follows because U , X1 and X2 defined in (14)
and (31) satisfy the constraint of the optimization in (34) due
to (18), and according to [17, Sec. III.A], we have (35).

From (32), Lemma 3, and (36), we have:

R1 + μR2

≤ λ(C1 + C2) + λ

2
log

(1 − ρ∗2)b2 P1 + 1 + N3

1 + N3

+ λ

2
log

(1 − ρ∗2)P2 + 1 + N3

1 + N3
+ (1 − λ)C

μ−λ
1−λ

MIMO12(ρ
∗)

− λ

2
log

�
b2 P1 + P2 + 2bρ∗√P1 P2 + 1 + N3

1 + N3

�

+ μ − λ

2
log

	
b2 P1 + P2 + 2bρ∗�P1 P2 + 1




− μ − λ

2
log(b2 P1 + P2 + 1 + 2bρ∗�P1 P2)

= λ

2
log

((1 − ρ∗2)b2 P1 + 1 + N3)((1 − ρ∗2)P2 + 1 + N3)

(1 + N3)(b2 P1 + P2 + 2bρ∗√P1 P2 + 1 + N3)

+ λ(C1 + C2) + (1 − λ)C
μ−λ
1−λ

MIMO12(ρ
∗) (37)

The above is true for any N3 ≥ 0. Take N3 as

N3 = b
�

P1 P2

�
1

ρ∗ − ρ∗
�

− 1. (38)

It can be seen that the value of N3 in (38) is non-negative
because we consider the case where ρ∗ satisfies ρ∗ ∈ Ab.
Plugging (38) into (37), we obtain

R1 + μR2

≤ λ

�
C1 + C2 − 1

2
log

1

1 − ρ∗2

�
+ (1 − λ)C

μ−λ
1−λ

MIMO12(ρ
∗)

= λ fC (ρ∗) + (1 − λ)C
μ−λ
1−λ

MIMO12(ρ
∗).

The above is true for any λ ∈ �
0, min

�μ
2 , 1

��
and λ �= 1.

Thus, we have

R1+μR2 ≤ min
λ∈�0,min( μ

2 ,1)
�

λ �=1

�
λ fC (ρ∗) + (1 − λ)C

μ−λ
1−λ

MIMO12(ρ
∗)
�

= T 12
B (ρ∗) (39)

when ρ∗ satisfies ρ∗ ∈ Ab. From (20) and (39), we have
proved (6) of Theorem 1. The result of (7) of Theorem 1
can be derived similarly by swapping the indices 1 and 2 and
changing the number b to a.

V. NUMERICAL RESULTS

To illustrate the tightness of the derived upper bound in
Theorem 1, we plot and compare the upper and lower bounds
on the sum capacity. More specifically, we plot the existing
simple cut-set upper bound on the sum capcity in (3), the new
cut-set upper bound of (10) implied by our result in Corol-
lary 1, the new upper bound of Corollary 1, and the achievable
sum rates of existing schemes for the 2-user Gaussian multiple
access diamond channel.

The results are shown in Fig. 5 for the symmetric case
of a = b = 0.9, P1 = P2 = 10 and C1 = C2 = C .
We only plot the region of C ∈ [1, 3], since this is the
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Fig. 5. Upper and lower bounds on the sum capacity for the case of a =
b = 0.9, P1 = P2 = 10 and C1 = C2 = C .

interesting case where the existing simple cut-set upper bound
and the existing lower bounds on the sum capacity do not
meet. As can be seen, in the region of C ∈ [1.2, 2.55],
the new cut-set bound of (10) improves upon the existing
simple cut-set bound of (3), which means that in this region,
it is beneficial to consider the cross-cuts in the cut-set bound,
i.e., Cuts A and B of Fig. 4. In the region of C ∈ [1.05, 2],
the upper bound of Corollary 1 improves upon the new cut-set
bound of (10), which means that in this region, the derived
upper bound of 1

2

�
fC (ρ) + Csum

MIMO(ρ)
�

for ρ ∈ Ax , x = a, b
is useful. Overall, in the region of C ∈ [1.05, 2.55], our new
upper bound of Corollary 1 improves upon the existing simple
cut-set upper bound strictly. Furthermore, in the region of
C ∈ [1.05, 2], the improvement is rather significant.

The sum rate achieved by the achievable schemes of send-
ing correlated codewords by the relays [6], the compressed
dirty-paper coding allowing correlated quantization noise [4]
and the reverse compute-and-forward scheme [5] are denoted
by the solid, circled, and dashed lines, respectively. Further-
more, the sum rate of the time-sharing of all the existing
achievable schemes, which is the largest known lower bound
for the sum capacity, is denoted by the dot-dashed line.
In the gap between the derived upper bound in Corollary 1,
i.e., the diamond line, and the largest known lower bound for
the sum capacity, i.e., the dot-dashed line, lies the sum capacity
of the 2-user Gaussian multiple access diamond channel for
this symmetric case. The gap is greatly reduced due to the
outer bound derived in this paper, for example, at C = 1.4,
the new gap using Corollary 1 of this paper is only 1/3 of the
gap between existing inner and outer bounds. Since the gap
between the existing inner bound and the new outer bound
is not large, we may conclude that the existing achievable
schemes perform reasonably well in this scenario.

In the case of a = b = 0.3, P1 = P2 = 10 and C1 =
C2 = C , the results are shown in Fig. 6. Though the new
cut-set bound in (10) still improves upon the simple existing
cut-set bound, the improvement of the new upper bound in
Corollary 1 over the new cut-set bound is insignificant. This
is because the reduction from (10) to Corollary 1 depends
on the set Ax , x = a, b, and for smaller a, b values, Ax is

Fig. 6. Upper and lower bounds on the sum capacity for the case of
a = b = 0.3, P1 = P2 = 10 and C1 = C2 = C .

Fig. 7. Upper bounds on R1 + 2R2 for the case of a = b = 0.9,
P1 = P2 = 10 and C1 = C2 = C .

a smaller region around 0, where the improvement of fC (ρ)
over fC (0) is small. However, note that multicell processing is
more likely used for base stations that have strong links to all
the users. Hence, the values of larger a, b is of more practical
interest.

Finally, we plot the new cut-set upper bound and the result
of Theorem 1 for the rate R1 + 2 R2, for the case of a = b =
0.9, P1 = P2 = 10 and C1 = C2 = C in Fig. 7. The existing
cut-set bound and the achievable schemes characterizes the
sum rate only, and thus, are not plotted. Hence, we conclude
that Theorem 1 offers a first converse result for arbitrary
linear combinations of R1 and R2. The triangle line depicts
the upper bound on R1 + 2 R2 based on new cut-set bound,
i.e., considering T m

A (ρ), m = 12, 21 only, and the diamond
line depicts the upper bound in Theorem 1, i.e., considering
T m

B (ρ) as well as T m
A (ρ), m = 12, 21. The improvement of

the diamond line over the triangle line illustrates the need to
characterize the rate reduction of the first hop due to correlated
codewords sent by the relays.

VI. CONCLUSION

In this paper, we derive a novel outer bound for
the capacity of the 2-user Gaussian multiple access
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diamond channel. Through numerical results, we show that the
derived outer bound greatly reduces the gap between known
inner and outer bounds when the capacities of the backhaul
links are in the medium range. Future research directions
include deriving converse results for the multi-user Gaussian
multiple access diamond channel, the case where there are
receiver side information at one or more of the receivers, and
the uplink multicell processing system by possibly exploiting
uplink-downlink duality.

APPENDIX A
PROOF OF LEMMA 1

Based on the four cuts demonstrated in Fig. 4, we have
the following cut-set upper bound on the sum capacity,
i.e., R1 + R2:
1) Considering Cut C, we have

R1 + R2 ≤ C1 + C2 = fC (0). (40)

2) Considering Cut B, we have two cases:
a) For the case of |b| ≤ 1,

n(R1 + R2)

= H (W1, W2)

= H (W1, W2, Xn
2 ) (41)

= H (Xn
2) + H (W1, W2|Xn

2) (42)

= H (Xn
2) + H (W1|Xn

2 , W2) + H (W2|Xn
2 )

≤ nC2 + H (W1|Xn
2 , W2) + H (W2|Xn

2 )

= nC2 + I (W1; Y n
1 |Xn

2 , W2)

+ H (W1|Y n
1 , Xn

2 , W2) + I (W2; Y n
2 |Xn

2 ) + H (W2|Y n
2 , Xn

2 )

≤ nC2 + I (W1; Y n
1 |Xn

2 , W2) + I (W2; Y n
2 |Xn

2 ) + 2n�n

(43)

= nC2 + I (Xn
1 ; Y n

1 |Xn
2 , W2) + I (W2; Y n

2 |Xn
2) + 2n�n,

(44)

where (41) follows from the fact that without loss of gener-
ality, we consider deterministic encoding at the source node,
i.e., (Xn

1 , Xn
2 ) is a deterministic function of (W1, W2), (43)

follows from Fano’s inequality, and (44) follows from the
fact that we consider deterministic encoders and the Markov
Chain W1 → (Xn

1 , Xn
2 , W2) → Y n

1 . Define Ỹ n
2 as the following

channel

Ỹ n
2 = Y n

1 +
�

1

b
− a

�
Xn

2 + Ũn,

where Ũn is an i.i.d. sequence of Gaussian random variables
with zero mean and variance 1

b2 − 1, and it is independent
of everything else. Note that given Xn

2 , Ỹ n
2 is a physically

degraded version of Y n
1 . Furthermore, note the similarity

between

Ỹ n
2 = Xn

1 + 1

b
Xn

2 + Un
1 + Ũn

and

Y n
2 = bXn

1 + Xn
2 + Un

2 ,

which means that we have

I (W2; Y n
2 |Xn

2 ) = I (W2; Ỹ n
2 |Xn

2).

Thus, from (44), we continue to write as follows while for the
simplicity of presentation, we have dropped the 2 n�n term,

n(R1 + R2)

≤ nC2 + I (Xn
1 ; Y n

1 |Xn
2 , W2) + I (W2; Ỹ n

2 |Xn
2 )

= nC2 +
n�

i=1

�
I (X1i ; Y1i |Xn

2 , W2, Y i−1
1 )

+ I (W2; Ỹ2i |Xn
2 , Ỹ i−1

2 )
�

≤ nC2 +
n�

i=1

�
I (X1i ; Y1i |Xn

2 , W2, Ỹ i−1
2 )

+ I (W2; Ỹ2i |Xn
2 , Ỹ i−1

2 )
�

(45)

≤ nC2 +
n�

i=1

�
I (X1i ; Y1i |Xn

2 , W2, Ỹ i−1
2 )

+ I (W2, X2{i}c , Ỹ i−1
2 ; Ỹ2i |X2i ),

�
(46)

where (45) follows from the fact that given Xn
2 , Ỹ n

2 is a
physically degraded version of Y n

1 . Define auxiliary random
variables

Vi =
	

W2, X2{i}c , Ỹ i−1
2



.

Following from (46), we have

n(R1 + R2) − nC2

≤
n�

i=1

�
I (X1i ; Y1i |X2i , Vi ) + I (Vi ; Ỹ2i |X2i )

�

= n
�
I (X1Q; Y1Q |X2Q , VQ, Q) + I (VQ; Ỹ2Q |X2Q, Q)

�

≤ n
�
I (X1Q; Y1Q |X2Q , VQ, Q) + I (VQ , Q; Ỹ2Q |X2Q)

�

= n
�
I (X1; Y1|X2, V ) + I (V ; Ỹ2|X2)

�
(47)

≤ nEX2

�
I (X1; Y1|X2 = x2, V ) + I (V ; Ỹ2|X2 = x2)

�
,

(48)

where (47) follows from the definition in (14) and

V � (VQ, Q), Ỹ2 � Ỹ2Q . (49)

Note that the sum capacity of the degraded broadcast
channel where the input of the channel is X1 given X2 = x2
and the outputs of the channel is Y1 and Ỹ2, respectively,
is given by [11]

max
p(v,x1)

�
I (X1; Y1|X2 = x2, V ) + I (V ; Ỹ2|X2 = x2)

�

= 1

2
log

	
1 + E[(X1 − E[X1|X2 = x2])2|X2 = x2]



.

Hence, for the particular p(v, x1) as defined by the codebook
and (49), we have

I (X1; Y1|X2 = x2, V ) + I (V ; Ỹ2|X2 = x2)

≤ 1

2
log

	
1+E[(X1−E[X1|X2 = x2])2|X2 = x2]



. (50)
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Hence, following from (48) and (50), we have

R1 + R2 − C2

≤ EX2

�
1

2
log

	
1 + E[(X1 − E[X1|X2 = x2])2|X2 = x2]


�

≤ 1

2
log

	
1 + EX2

�
E[(X1 − E[X1|X2 = x2])2|X2 = x2]

�


(51)

≤ 1

2
log

 
1 + E[X2

1] − E2[X1 X2]
E[X2

2]

!
(52)

= 1

2
log

	
1 + (1 − ρ2)P̄1




≤ 1

2
log

	
1 + (1 − ρ∗2)P1



, (53)

where (51) follows from the convexity of the log(·) func-
tion, (52) follows from the fact that the mean-squared
error (MSE) of the optimal Bayes least square (BLS) estimator
is smaller than that of the linear least squared (LLS) estimator,
and (53) follows from (15) and (17).
b) Similarly, for the case of |b| > 1, following from (42),
we have

n(R1 + R2)

= H (Xn
2) + H (W1, W2|Xn

2)

= H (Xn
2) + H (W2|Xn

2 , W1) + H (W1|Xn
2)

≤ nC2 + I (Xn
1 ; Y n

2 |Xn
2 , W1) + I (W1; Y n

1 |Xn
2 ) + 2n�n .

By following similar steps as (44) to (53), we may conclude
that

R1 + R2 ≤ C2 + 1
2 log

	
1 + b2(1 − ρ∗2)P1



. (54)

Combining (53) and (54), we have

R1 + R2 ≤ C2 + 1

2
log

	
1 + max{b2, 1}(1 − ρ∗2)P1




= fB(ρ∗). (55)

3) Due to symmetry, when we consider Cut A, we obtain

R1 + R2 ≤ C1 + 1

2
log

	
1 + max{a2, 1}(1 − ρ∗2)P2




= fA(ρ∗). (56)

Thus, combining (40), (55) and (56), we have proved
Lemma 1.

APPENDIX B
PROOF OF LEMMA 2

1) (μ − λ)I (Xn
1 , Xn

2 ; Y n
2 ) − λI (Xn

1 , Xn
2 ; Zn)

First, we derive the following single-letterization.

I (Xn
1 , Xn

2 ; Y n
2 ) − I (Xn

1 , Xn
2 ; Zn)

≤ I (Xn
1 , Xn

2 ; Y n
2 , Zn) − I (Xn

1 , Xn
2 ; Zn)

= I (Xn
1 , Xn

2 ; Y n
2 |Zn)

=
n�

i=1

I (Xn
1 , Xn

2 ; Y2i |Y i−1
2 , Zn)

≤
n�

i=1

I (X1i , X2i ; Y2i |Zi ) (57)

= nI (X1, X2; Y2|Z , Q)

≤ nI (X1, X2; Y2|Z), (58)

where (57) follows from the Markov chain (Xn
1 , Xn

2 ,

Zn, Y i−1
2 ) → (X1i , X2i , Zi ) → Y2i , and (58) comes from

conditioning reduces entropy and the Markov Chain Q →
(Z , X1, X2) → Y2. Then, using the above results, we have

(μ − λ)I (Xn
1 , Xn

2 ; Y n
2 ) − λI (Xn

1 , Xn
2 ; Zn)

= (μ − 2λ)I (Xn
1 , Xn

2 ; Y n
2 ) + λI (Xn

1 , Xn
2 ; Y n

2 )

− λI (Xn
1 , Xn

2 ; Zn).

≤ n(μ − 2λ)I (X1, X2; Y2) + nλI (X1, X2; Y2|Z), (59)

where (59) follows from (58).
2) λI (Xn

1 ; Zn|Xn
2 ) + λI (Xn

2 ; Zn|Xn
1 )

Based on (30), we have

λ(I (Xn
1 ; Zn|Xn

2 ) + I (Xn
2 ; Zn|Xn

1 ))

≤ λ

 
n�

i=1

I (X1i ; Zi |X2i ) + I (X2i ; Zi |X1i )

!
(60)

= nλ(I (X1; Z |X2, Q) + I (X2; Z |X1, Q))

≤ nλ(I (X1; Z |X2) + I (X2; Z |X1)), (61)

where (60) follows from the Markov chain (Xn
1 , Xn

2 , Zi−1) →
(X1i , X2i ) → Zi .
3) I (Xn

1 , Xn
2 ; Y n

1 |W2) − μ−λ
1−λ I (Xn

1 , Xn
2 ; Y n

2 |W2)
First, we derive the following single-letterization to be used

later. From [21, pp. 314, eq. (3.34)], we have

H (Y n
1 |W2) − H (Y n

2 |W2) =
n�

i=1

�
H (Y1i |W2, Y i−1

1 , Y n
2(i+1))

−H (Y2i |W2, Y i−1
1 , Y n

2(i+1))

�
.

Let us define Ti �
	

W2, Y i−1
1 , Y n

2(i+1)



, and further define

T � TQ . (62)

Note that the auxiliary random variables thus defined satisfy

T → (X1, X2) → (Y1, Y2, Z). (63)
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Based on the definition of the random variables in (14)
and (62), we have

H (Y n
1 |W2) − H (Y n

2 |W2)

= n (H (Y1|T, Q) − H (Y2|T, Q)),

nH (Y1|T, Q) =
n�

i=1

H (Y1i |W2, Y i−1
1 , Y n

2(i+1))

≤
n�

i=1

H (Y1i |W2, Y i−1
1 ) = H (Y n

1 |W2).

Thus, there exist a γ ≥ 0 such that

H (Y n
1 |W2) = n (H (Y1|T, Q) + γ ),

H (Y n
2 |W2) = n (H (Y2|T, Q) + γ ). (64)

Then, using the above results, we have

I (Xn
1 , Xn

2 ; Y n
1 |W2) − μ − λ

1 − λ
I (Xn

1 , Xn
2 ; Y n

2 |W2)

= H (Y n
1 |W2) − H (Y n

1 |W2, Xn
1 , Xn

2 ) − μ − λ

1 − λ
H (Y n

2 |W2)

+ μ − λ

1 − λ
H (Y n

2 |Xn
1 , Xn

2 , W2)

= n

�
H (Y1|T, Q) + γ − H (Y1|X1, X2, Q) − μ − λ

1 − λ
γ

− μ − λ

1 − λ
H (Y2|T, Q) + μ − λ

1 − λ
H (Y2|X1, X2, Q)

�
(65)

= n

�
H (Y1|T, Q) − H (Y1|X1, X2, T, Q) +

�
1 − μ − λ

1 − λ

�
γ

− μ − λ

1 − λ
H (Y2|T, Q) + μ − λ

1 − λ
H (Y2|X1, X2, T, Q)

�

(66)

= n

�
I (X1, X2; Y1|T, Q) − μ − λ

1 − λ
I (X1, X2; Y2|T, Q)

+
�

1 − μ − λ

1 − λ

�
γ

�

≤ n

�
I (X1, X2; Y1|T, Q) − μ − λ

1 − λ
I (X1, X2; Y2|T, Q)

�

(67)

= n

�
I (X1, X2; Y1|U) − μ − λ

1 − λ
I (X1, X2; Y2|U)

�
, (68)

where (65) follows from (64), (66) follows from (63), (67)
follows because μ ≥ 1, λ < 1 and γ ≥ 0, and (68) follows
from the definition of the auxiliary random variable U in (31).

APPENDIX C
PROOF OF LEMMA 3

1) (μ − 2λ)I (X1, X2; Y2) + λI (X1, X2; Y2|Z)

First, we provide the upper bound on I (X1, X2; Y2|Z).
We have

I (X1, X2; Y2|Z)

= I (X1, X2; Y2) − I (X1, X2; Z) (69)

= (H (Y2) − H (Z)) − 1

2
log(2πe) + 1

2
log(2πe)(1 + N3)

≤ 1

2
log

	
b2 P1 + P2 + 2bρ∗�P1 P2 + 1




− 1

2
log

�
b2 P1 + P2 + 2bρ∗√P1 P2 + 1 + N3

1 + N3

�
, (70)

where (69) follows from the distribution of (33), and (70)
follows from [19, Corollary 4] and the fact that

E[(bX1 + X2)
2]

= b2 E[X2
1] + E[X2

2] + 2bρ
�

E[X2
1]E[X2

2]
≤ b2 P1 + P2 + 2bρ

�
P̄1 P̄2 (71)

= b2 P1 + P2 + 2bρ∗�P1 P2, (72)

where in (71), we have used (15), and (72) follows from the
definition of ρ∗ in (16).

Then, using the above result, we have

(μ − 2λ)I (X1, X2; Y2) + λI (X1, X2; Y2|Z)

≤ μ − λ

2
log

	
b2 P1 + P2 + 2bρ∗�P1 P2 + 1




− λ

2
log

�
b2 P1 + P2 + 2bρ∗√P1 P2 + 1 + N3

1 + N3

�
,

(73)

where (73) follows from (72), the fact that given variance,
the Gaussian distribution maximizes the differential entropy,
(70), and the fact that 0 ≤ λ ≤ μ

2 .
2) I (X1; Z |X2) + I (X2; Z |X1)

Let us first calculate

h(Z |X2 = x2)

≤ 1

2
log(2πe)E[(Z − E[Z |X2 = x2])2|X2 = x2] (74)

≤ 1

2
log(2πe)

 
E[Z2] − E2[Z X2]

E[X2
2]

!
(75)

= 1

2
log(2πe)(b2(1 − ρ2)E[X2

1] + 1 + N3)

≤ 1

2
log(2πe)(b2(1 − ρ2)P1 + 1 + N3) (76)

≤ 1

2
log(2πe)(b2(1 − ρ∗2)P1 + 1 + N3), (77)

where (74) follows from the fact that given the covariance,
the Gaussian distribution maximizes the differential entropy,
(75) follows from the fact that the mean-squared error (MSE)
of the optimal Bayes least square (BLS) estimator is smaller
than that of the linear least squared (LLS) estimator, (76)
follows from (15), and (77) follows from (17). Then, we have

h(Z |X2) =
"

R

h(Z |X2 = x2) f (x2)dx2

≤ 1

2
log(2πe)(b2(1 − ρ∗2)P1 + 1 + N3), (78)
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where (78) follows from (77), and finally, we have

I (X1; Z |X2) = h(Z |X2) − h(Z |X1, X2)

≤ 1

2
log

(1 − ρ∗2)b2 P1 + 1 + N3

1 + N3
. (79)

Similarly, we have

I (X2; Z |X1) ≤ 1

2
log

(1 − ρ∗2)P2 + 1 + N3

1 + N3
. (80)

Thus, from (79) and (80), we have

I (X1; Z |X2) + I (X2; Z |X1)

≤ 1

2
log

(1 − ρ∗2)b2 P1 + 1 + N3

1 + N3

+ 1

2
log

(1 − ρ∗2)P2 + 1 + N3

1 + N3
. (81)
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