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Introduction

Cloud radio access network (C-RAN) architecture:

Heterogeneous dense networks;

Base stations (BSs), macro, pico, femto, operate as radio units (RUs);

Baseband processing takes place in the “cloud” or a central unit (CU).
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Uplink Cloud RAN

Multiple access relay channel in which L users communicate with a common
destination through K relay nodes.

Decoder interested in m̂1, . . . , m̂L such that, for n large enough,

Pr{(m1, . . . ,mL) 6= (m̂1, . . . , m̂L)} → 0

The capacity region of this model is still to be found

problem open even in seemingly simpler cases, e.g., one user and two relays
(the diamond channel), parallel Gaussian relay channel [Schein-Gallager ’00].
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Relay Operations

Main difficulty is in characterizing the optimal relay operation:

Decode-and-Forward (DF): [Cover-ElGamal’97], [Kramer-Gastpar’05] ...

Compute-and-Forward (CompF): [Nazer-Gastpar’11], [Nazer et al’12], [Hong-Caire’13]...

Compress-and-Forward (CoF): [Sanderovich et al’09], [Park et al’13], [Zhou et at’13]...

Noisy Network Coding (NNC): [Lim et al’11]...

Others: Amplify and Forward, Partial-Decode-Compress-and-Forward [Cover-ElGamal’97],

Compute-Quantize-and-Forward [Estella-Zaidi’16].

Relaying operations can be divided into:

Non-oblivious: relays aware of the users’ codebooks (modulation, coding...) at all
time, e.g., DF, CompF.

Oblivious (or Nomadic): [Sanderovich et al’08] relays operate without knowledge of
the users’ codebooks, e.g., CoF, NNC.

Oblivious processing motivated mainly by practical constraints.

Formally, obliviousness of the relays to actual codebooks is modeled through
randomized encoding [Sanderovich et al’08], [Lapidoth-Narayan’98].
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Randomized Encoding as a Model for Obliviousness

Encoding function at transmitter

φn : [1, |X|n2
nR

]× [1, 2nR]→ X
n

which maps:

a codebook index F ∈ [1, |X|n2
nR

] and

a message M ∈ [1, 2nR]

into a codeword

Xn(F,M) = φn(F,M).

The pair (pF , φ
n) must satisfy

Prob[Xn(F,M) = xn] =

n∏
i=1

pX(xi)

for some pX(x), x ∈ X, where Prob[·] is calculated with respect to

pF,M (f,m) = pF (f) · 2−nR.
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Oblivious Relay Processing with Enabled Resource-sharing

Resource-sharing random variable Qn available at all terminals [Simeone et al’11].

Qn way easier to share, (e.g., on/off activity ).

Memoryless Channel: PY1,...,YK |X1,...,X1

User l ∈ {1, . . . , L}: φnl : [1, |Xl|n2
nRl ]× [1, 2nRl ]× Qn → Xnl

Relay k ∈ {1, . . . ,K}: gnk : Yk
n × Qn → [1, 2nCk ]

Decoder:

ψn : [1, |X1|n2
nR1

]× · · · × [1, 2nCK ]× Qn → [1, 2nR1 ]× . . .× [1, 2nRL ]
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Main Capacity Results

Single-letter characterizations of:

1) Capacity Region of the Class of DM CRAN channels satisfying

Y nk −
−Xn
L −
− Y nK\k,

2) Capacity Region of Gaussian MIMO Channels with Gaussian Inputs

In particular, we show that Gaussian auxiliaries are optimal.

And, time (frequency) sharing is in general needed.

3) Inner and Outer Bounds for General DM Model (i.e., Without the Markov Chain).
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Capacity Region of a Class of CRAN Channels

Theorem

For the class of discrete memoryless channels satisfying

Yk −
−XL −
− YK\k

with oblivious relay processing and enabled resource-sharing, a rate tuple
(R1, . . . , RL) is achievable if and only if for all T ⊆ L and for all S ⊆ K,∑

t∈T

Rt ≤
∑
s∈S

[Cs − I(Ys;Us|XL, Q)] + I(XT;USc |XTc , Q),

for some joint measure of the form

PQ

L∏
l=1

PXl|Q

K∏
k=1

PYk|XL

K∏
k=1

PUk|Yk,Q,

with the cardinality of Q bounded as |Q| ≤ K + 2.
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Direct Part

Capacity region achievable with

Compress-and-Forward with Joint-Decompression-Decoding

Generalization of scheme from [Sanderovich et al’09] to L users.

Based on compress-and-forward à la Cover-El Gamal with joint decoding and
decompression (JDD) at the CP.

Gaussian inputs are not optimal for finite capacity fronthauls.

Separate Decompression-Decoding not optimal in general.

Noisy Network Coding

Particular case of [Theorem 1, Lim et al’11].

Sum-rate achievable also with

Compress-and-Forward with Separate Decompression-Decoding (SDD)

The CP decodes explicitly the compression indices first and then decodes the
users’ transmitted messages.
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Outline of Converse Part

Define Ui,k := (Jk, Y
i−1
k ) and Q̄i := (Xi−1

L , Xn
L,i+1, Q̃).

Fano’s Inequality: H(mT |JK, FL, Q̃) ≤ εn for T ⊆ L,

Upper bound on entropy term: For T ⊆ L := {1, . . . , L},

H(Xn
T |Xn

Tc , JK, Q
n) ≤

n∑
i=1

H(XT,i|XTc,i, Q̄i)− n
∑
t∈T

Rt := nΓT

- Follows from

n
∑
t∈T

Rt = H(mT) = I(mT ; JK, FL, Q̃) +H(mT |JK, FL, Q̃)

≤ I(mT , FT ; JK|FTc , Q̃) + nεn

≤ H(Xn
T |Xn

Tc , Q̃)−H(Xn
T |Xn

Tc , JK, Q̃) + nεn

Reminiscent of log-loss penalty criterion in multi-terminal source coding
[Courtade-Weissman’14]:

H(Xn|JK) ≤ E[dlog(Xn; X̂n)] ' n(H(X)− I(X; X̂))
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Outline of Converse Part (Cont.)

Bound on users’ rates: For T ⊆ L

n
∑
t∈T

Rt ≤ I(mT , FT ; JK|FTc , Q̃) + nεn ≤
n∑
i=1

I(XT,i;UK,i|XTc,i, Q̄i) + nεn

Bound on relays’ rates: For S ⊆ K := {1, . . . ,K}

n
∑
k∈S

Ck ≥
∑
k∈S

H(Jk) ≥ I(Xn
T , Y

n
S ; JS|Xn

Tc , JSc , Q̃)

≥
n∑
i=1

H(XT,i|XTc,i, USc,i, Q̄i)−nΓT + I(Y nS ; JS|Xn
L, JSc , Q̃)

=nRT −
n∑
i=1

I(XT,i;USc,i|XTc,i, Q̄i) +
∑
k∈S

n∑
i=1

I(Yk,i;Uk,i|XL,i, Q̄i)

where we used the upper bound on the entropy and the Markov chain

Yk −
−XL −
− YK\k
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Remarks

Sum-rate achievable with CF with JDD given by

Rsum
JDD = max min

S⊆K

{∑
s∈S

Cs − I(YS ;US |XL, USc , Q) + I(XL;USc |Q)
}
.

Using properties of sub-modular functions, we show that CF with SDD (and
even the low-complexity version of it, consisting in sequential decompression
followed by sequential decoding, denoted as SWZ) achieve the same
sum-rate as CF with JDD.

Note, however, that time-sharing is generally needed for the three to achieve
optimal sum-rate!

Theorem

For any PY1,...,YK |X1,...,XL
, not necessarily satisfying Yk −
−XL −
− YK\k, we have

Rsum
JDD = Rsum

SDD = Rsum
SWZ

In particular, for MIMO Gaussian channels recovers [Zhou et al.’16].

In terms of rate-region, CF with JDD generally outperforms CF with SDD.
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Numerical example: 3 Cell Uplink Wyner Model

For SWZ, optimizing over relay ordering improves performance, in general

Without time (or resource)-sharing, as is in the figure, SDD may achieve
smaller sum-rate than JDD.
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Memoryless MIMO Gaussian Model

The channel output at relay node k with Mk antennas:

Yk = Hk,L [XT
1 , . . . ,X

T
L ]T + Nk,

where

User l with Nl antennas transmits Xl with E[‖Xl‖2] � Kl.

Relay k with Mk antennas.

Hk,L = [Hk,1, . . . ,Hk,L], Hk,l channel between user l and relay k.

Nk ∼ CN(0,Σk) is AWGN noise at relay k, assumed independent.

Outputs satisfy Yk −
−XL −
− YK\k.

Theorem 1 characterizes its capacity region. Finding the optimal U1, . . . , UK is
generally not easy.
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Capacity under Gaussian Signaling and Enabled Resource-Sharing

Theorem (Capacity Region under Gaussian Input with Enabled Resource-Sharing)

Let the input vectors use Gaussian Signaling with Enabled Resource-Sharing, i.e.,

Xl,q ∼ CN(0,Kl,q) q ∈ {1, . . . , |Q|}
∑
q∈Q

pQ(q)Kl,q ≤ Kl

The capacity region is given by the set of all rate tuples (R1, . . . , RL) satisfying that for
all T ⊆ L and all S ⊆ K

∑
t∈T

Rt ≤
∑
k∈S

[
Ck − EQ log

|Σ−1
k |

|Σ−1
k −Bk,q|

]
+ EQ log

|
∑

k∈Sc HH
k,TBk,qHk,T + K−1

T, |

|K−1
T,q|,

for some 0 � Bk,q � Σ−1
k , where Hk,T is the channel between XT and Yk.

Extends [Theorem 5, Sanderovich et al’09] to L users and MIMO.

Achievable with Uk,q = Yk,q + Zk,q, Zk,q ∼ CN(0,B−1
k,q −Σk,q), q ∈ Q.

Gaussian signaling can be strictly suboptimal [Sanderovich et al’09].
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Converse Part

For (X,U) arbitrarily correlated,

log |(πe) J−1(X|U)| ≤ h(X|U) ≤ log |(πe) mmse(X|U)|

For each Q = q,

I(Yk; Uk|XL, Q = q) = log |(πe)Σk| − h(Ys|XL,q ,Us,q , Q = q)

≥ log
|Σ−1
k |

|Σ−1
k −Bk,q |

,

where 0 � Bk,q � Σ−1
k is chosen such that

mmse(Yk|XL,q ,Uk,q) = Σk −ΣkBk,qΣk

Also,

I(XT ; USc |XTc , Q = q) = h(XT,q |XTc , q)− h(XT |XTc ,USc,q , Q = q)

≤ log |KT,q |+ log

∣∣∣∣∣∣
∑
k∈Sc

HH
k,TBk,qHk,T + K−1

T,q

∣∣∣∣∣∣
by deBrujin Identity [Palomar-Verdu’06],[Ekrem-Ulukuss’14], [Zhou et al’17]

J(XT,q |XTc,q ,USc,q) =
∑
k∈Sc

HH
k,TBk,qHk,T + K−1

T,q .
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Resource-sharing Enlarges Capacity Region

-10 -5 0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

JDD without resource (time)-sharing, i.e., Q = ∅

JDD with resource (time)-sharing (|Q| = 2. Recall that |Q| ≤ K + 2 = 4 here)

Phase I: UE transmits at P/α for αn samples. Relays compress at Ck/α.

Phase II: UE and Relays remain inactive for (1− α)n remaining samples.

Intuition: For small P , the observations at the relays are too noisy; and, so, it is more
advantageous to increase power and compression rate during shorter time.
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Capacity under Constant Gaussian Signaling

Theorem (Capacity Region under Constant Gaussian Input)

If the input vectors use constant Gaussian Signaling, i.e.,

K1,l = · · · = K|Q|,l = Kl, Xl ∼ CN(0,Kl),

the capacity region is given by the set of all rate tuples (R1, . . . , RL) satisfying that for
all T ⊆ L and all S ⊆ K

∑
t∈T

Rt ≤
∑
k∈S

[
Ck − log

|Σ−1
k |

|Σ−1
k −Bk|

]
+ log

|
∑
k∈Sc HH

k,TBkHk,T + K−1
T |

|K−1
T |,

for some 0 � Bk � Σ−1
k , where Hk,T is the channel between XT and Yk.

Resource-sharing at the relays does not enlarge the capacity region under
constant Gaussian Signaling.

Proof follows from Jensen’s Inequality and concavity of log-det.
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Capacity under Gaussian Signaling in the High SNR Regime

High SNR regime model:

Σk = εΣ̃k; for some Σ̃k � 0, and ε→ 0.

We have RGNS(CK) ⊂ RGTS(CK), where:

RGTS: Capacity under Gaussian Input with enabled resource-sharing.

RGNS: Capacity under Gaussian Input without resource-sharing (Q = ∅).

Theorem (Capacity Region under Gaussian Input in High SNR)

If (R1, . . . , RL) ∈ RGTS(CK), then for any ε > 0, for some ∆ε ≥ 0,

(R1 −∆ε, . . . , RL −∆ε) ∈ RGNS(CK)

In addition, RGNS(CK) = RGTS(CK) as ε→ 0, since

lim
ε→0

∆ε = 0.

For large SNR, the gains due to resource-sharing become limited.
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Numerical example: Circular Wyner Model

Each cell contains a single-antenna and a single-antenna RU.

Inter-cell interference takes place only between adjacent cells (circular).

Yk = αXk−1 +Xk + αXk+1 +Nk

where Nk ∼ CN(0, 1)

All RRUs have a fronthaul capacity of C.
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Numerical example: Circular Wyner Model (cont’d)

UE transmit power (dB)
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Average per cell sum-rate for K=3 users, C=3

JDD is capacity achieving under oblivious processing.

For this simple network, JDD does not provide much gain compared to SDD
and SWZ.

- Here, the schemes SDD and SWZ do not employ resource-sharing.
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Cost of Obliviousness

UE transmit power (dB)
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Average per cell sum-rate for K=3 users, C  = 5 Log10 P

Optimal degrees-of-freedom: when fronthaul capacity grows with SNR, e.g.,
C = 5 log10(snr). [Sanderhovich et al’09].

Capacity under Gaussian signaling to within a constant gap of cut-set bound.

If (R1, . . . , RL) is within the cut-set bound, then

((R1 −∆)+, . . . , (RL −∆)+), ∆ ≤
{

N
2

(2.45 + log(KM
N

)) for KM > 2N,
KM+N

2
for KM ≤ 2N
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Inner and Outer Bounds for General CRAN Models

Theorem (Bounds)

For general DM CRAN channels with oblivious relay processing and enabled
resource-sharing, a rate tuple (R1, . . . , RL) is achievable if (only if) for all T ⊆ L

and for all S ⊆ K,∑
t∈T

Rt ≤
∑
s∈S

Cs − I(YS ;US |XL, USc , Q) + I(XT;USc |XTc , Q),

Inner bound: for some pmf PQ

∏L
l=1 PXl|QPYK|XL

∏K
k=1 PUk|Yk,Q.

Outer bound: for some (Q,XL, YK, UK,W )

distributed according to PQ

∏L
l=1 PXl|Q PYK|XL

PW |Q

uk = fk(w, yk, q) for some random variable W and some deterministic
functions {fk}, k ∈ K.

Problem is challenging, as it includes Korner-Marton modulo-sum problem
[Korner-Marton’79] as a special case.
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Information Bottleneck

Efficiency of a given representation U = f(Y ) measured by the pair

Rate (or Complexity): I(U ;Y ) and Information (or Relevance): I(U ;X)

Information I(X;U) can be achieved by OBLIVIOUS coding Y while with
the logarithmic distortion with respect to X

Single letter-wise, U is not necessarily a deterministic function of Y

The non-oblivious bottleneck problem is immediate as the min(I(X;Y ), R)
is achievable by having the relay decoding the message transmitted by X

The bottleneck problem connects to many timely aspects, such as ’deep
learning’ [Tishby-Zaslavsky, ITW’15].
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Digression: Learning via the Information Bottleneck
Method

Px,Y 
X ---

Features Observation 

Limited Complexity 

Encoder Decoder Estimate 

Preserving all the information about X that is contained in Y , i.e., I(X;Y ),
requires high complexity (in terms of minimum description coding length).

Other measures of complexity may be (Vapnik-Chervonenkis) VC-dimension,
covering numbers, ..

Efficiency of a given representation U = f(Y ) measured by the pair

Complexity: I(U ;Y ) and Relevance: I(U ;X)

Example:

max
p(u|x)

I(U ;X) s.t. I(U ;Y ) ≤ R, for 0 ≤ R ≤ H(Y )

min
p(u|x)

I(U ;Y ) s.t. I(U ;X) ≥ ∆, for 0 ≤ ∆ ≤ I(X;Y )
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Basically, a Remote Source Coding Problem !

Reconstruction at decoder is under log-loss measure,

R(∆) = min
p(u|y)

I(U ;Y )

where the minimization is over all conditional pmfs p(u|y) such that

E[`log(X,U)] ≤ H(X)−H(X|U) = H(X)−∆

- R. L. Dobrushin and B. S. Tsybakov, “Information transmission with additional noise”, IRE Tran. Info.
Theory, Vol. IT-8, pp. 293-304, 1962.

- H. Witsenhausen, A. Wyner, “A conditional entropy bound for a pair of discrete random variables”,

IEEE Trans. on Info. Theory, Vol. 21, pp. 493-501, 1975.

Solution also coined as the Information Bottleneck Method [Tishby’99]

LIB(β, PX,Y ) = min
p(u|y)

I(Y ;U)− βI(X;U)
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Other Connections

Common Reconstruction. Because U −
− Y −
−X, we have

I(U ;X) = I(U ;Y )− I(U ;Y |X)

≤ R− I(U ;Y |X)

- Y. Steinberg, “Coding and common reconstruction”, IEEE Trans. on Info. Theory,

vol. 55, no. 11, pp. 4995–5010 (X – side information is not used for the ‘source’ Y

common reconstruction).

Information Combining

I(Y ;U,X) = I(U ;Y ) + I(X;Y )− I(U ;X) (since U −
− Y −
−X)

Since I(X;Y ) is given and I(Y ;U) = R, maximizing I(U ;X) is equivalent
to minimizing I(Y ;U,X).

- I. Sutskover, S. Shamai and J. Ziv, “Extremes of Information Combining”, IEEE Trans.
Inform. Theory, vol. 51, no. 4, pp. 1313–1325, April 2005.

- I. Land and J. Huber, ”Information combining,” Foundations and trends in Commun. and

Inform. Theory, vol. 3, pp. 227–330, Nov. 2006.
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Other Connections (Cont.)

Wyner-Ahlswede-Körner Problem

If X and Y are encoded at rates RX and RY , respectively. For given
RY = R, the minimum rate RX that is needed to recover X losslessly is

R?
X(R) = min

p(u|y) : I(U ;Y )≤ R
H(X|U)

So, we get
max

p(u|y) : I(U ;Y )≤R
I(U ;X) = H(X)−R?

X(R)

- R. F. Ahlswede and J. Korner, “Source coding with side information and a converse for
degraded broadcast channels”, IEEE Trans. on Info. Theory, Vol. 21, pp. 629-637, 1975.

- A. D. Wyner, “On source coding with side information at the decoder”, IEEE Trans. on

Info. Theory, Vol. 21, pp. 294-300, 1975.
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Vector Gaussian Information Bottleneck

(X,Y) jointly Gaussian, X ∈ RN and Y ∈ RM

Optimal encoding PU |Y is a noisy linear projection to a subspace whose
dimensionality is determined by the bottleneck Lagrangian multiplier β
[Chechik et al. ’05]

U = AY + Z, Z ∼ N(0, I)

where

A =


[0T ; . . . ; 0T ], if 0 ≤ β ≤ βc

1

[α1v
T
1 ; 0T ; . . . ; 0T ], if βc

1 ≤ β ≤ βc
2

[α1v
T
1 ;α2v

T
2 ; 0T ; . . . ; 0T ], if βc

2 ≤ β ≤ βc
3

...

and {vT
1 , . . . ,v

T
N} are the left eigenvectors of Σy|xΣ−1y , sorted by their

ascending eigenvalues {λ1, . . . , λN}; βc
i = 1/(1− λi) are critical β values;

ri = vT
i Σyvi and

αi =

√
β(1− λi)− 1

λiri
Rate-Information Trade-off Gaussian Vector Channel [Winkelbauer-Matz, ISIT’14]. 30 / 44



Rate-Information Curve
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CEO Source Coding Problem under Log-Loss

CEO source coding problem under log-loss distortion:

dlog(x, x̂) := log

(
1

x̂(x)

)
where x̂ ∈ P(X) is a probability distribution on X.

Characterization of rate-distortion region in [Courtade-Weissman’14]

Key step: log-loss admits a lower bound in the form of conditional entropy of
the source conditioned on the compression indices:

nD ≥ E[dlog(Xn; X̂n)] ≥ H(Xn|JK) = H(Xn)− I(Xn; JK)

Converse of Theorem 1 for Oblivious CRAN leverages on this relation applied to multiple
channel inputs, which can be designed.

Multiple description CEO problem-logloss distortion (Pichler-Piantanida-Matz, ISIT’17].
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Distributed Information Bottleneck

Information Bottleneck introduced by [Tishby’99] and [Witsenhausen’80]

“Indirect Rate Distortion Problems”, IT–26, no. 5, pp. 518–521, Sept. 1980.

It is a CEO source-coding problem under log-loss!

Theorem (Distributed Information Bottleneck [ Estella-Zaidi, IZS’18 ] )

The D-IB region is the set of all tuples (∆, R1, . . . , RK) which satisfy

∆ ≤
∑
k∈S

[Rk−I(Yk;Uk|X,Q)] + I(X;USc |Q), for all S ⊆ K

for some joint pmf p(q)p(x)
∏K

k=1 p(yk|x)
∏K

k=1 p(uk|yk, q).
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Vector Gaussian Distributed Information Bottleneck

(Y1, · · · ,YK ,X) jointly Gaussian, Yk ∈ RN and X ∈ RM ,

Yk = HkX + Nk, Nk ∼ N(0,Σnk
)

Optimal encoding P ∗Uk|Yk
is Gaussian and Q = ∅ [Estella-Zaidi’17]

Theorem (Estella-Zaidi, IZS’18)

If (X,Y1, . . . ,YK) are jointly Gaussian, the D-IB region is given by the set of all
tuples (∆, R1, . . . , RL) satisfying that for all S ⊆ K

∆ ≤
∑
k∈S

[Rk + log |I−Bk|] + log

∣∣∣∣∣∑
k∈Sc

H̄H
k BkH̄k + I

∣∣∣∣∣
for some 0 � Bk � I, where H̄k = Σ

−1/2
nk HkΣ

1/2
x , and achievable with

p∗(uk|yk, q) = CN(yk,Σ
1/2
nk

(Bk − I)Σ1/2
nk

)

Reminiscent of the sum-capacity in Gaussian Oblivious CRAN with Constant
Gaussian Input constraint.
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Example
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Optimal information (relevance):

∆∗(R, snr) = log2

(
1 + 2 snr 2−2R

(
22R + snr−

√
snr2 + (1 + 2 snr) 22R

))
Collaborative encoding upper bound: (Y1, Y2) encoded at rate 2R

∆ub(R, sr) = log2(1 + 2 snr)− log2(1 + 2 snr 2−2R)

Lower bound: Y1 and Y2 independently encoded

∆i(R, snr) = log2(1 + 2 snr− snr 2−R)− log2(1 + snr 2−R)
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The Distributed Information Bottleneck for Learning

For simplicity, we look at the D-IB under sum-rate [Estella-Zaidi’18]

P ∗Uk|Yk
= arg min

PUk|Yk

I(X;UK) + β

K∑
k=1

[I(Yk;Uk)− I(X;Uk)]

The optimal encoders-decoder of the D-IB under sum-rate constraint satisfy
the following self consistent equations,

p(uk|yk) =
p(uk)

Z(β, uk)
exp (−ψs(uk, yk)) ,

p(x|uk) =
∑
yk∈Yk

p(yk|uk)p(x|yk)

p(x|u1, . . . , uK) =
∑

yK∈YK

p(yK)p(uK|yK)p(x|yK)/p(uK)

where

ψs(uk, yk) :=DKL(PX|yk ||QX|uk
) +

1

s
EUK\k|yk [DKL(PX|UK\k,yk

||QX|UK\k,uk
))].

Alternating iterations of these equations converge to a a solution for any
initial p(uk|xk), similarly to a Blahut-Arimoto algorithm.
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D-IB for Vector Gaussian Sources: Iterative Optimization

(Y1, · · · ,YK ,X) jointly Gaussian, Yk ∈ RN and X ∈ RM ,

Yk = HkX + Nk, Nk ∼ N(0, I)

Optimal encoding P ∗Uk|Yk
is Gaussian [Estella-Zaidi’17] and given by

Uk = AkYk + Zk, Zk ∼ N(0,Σz,k)

For this class of distributions, the updates in the Blahut-Arimoto type
algorithm simplify to:

Σ
zt+1
k

=

((
1 +

1

β

)
Σ−1

ut
k
|x −

1

s
Σ−1

ut
k
|ut

K\k

)−1

,

At+1
k =Σ−1

zt+1
k

((
1 +

1

β

)
Σ−1

ut
k
|xAt

k(I−Σyk|xΣ−1
yk

)

− 1

β
Σ−1

ut
k
|ut

K\k
At
k(I−Σyk|ut

K\k
Σ−1

yk
)

)
.
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D-IB for Vector Gaussian Sources (cont’d)
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Performance of distributed-IB is close to that of centralized IB
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Wrap Up

We have studied transmission over a CRAN under oblivious processing
constraints at the relays and enabled resource-sharing.

i.e., relays are not allowed to know or acquire the users’ codebooks.

Our results shed light on the optimal relay operations:

NNC and CF with JDD optimal when the outputs at the relay nodes are
conditionally independent on the users inputs.

Computed the Capacity Region under Gaussian Inputs in MIMO CRAN.

Oblivious processing relevant from a practical viewpoint:

Bounded rate loss in comparison with the non-oblivious setting.

Discussed relevant connections with CEO under logarithmic loss and
Information Bottleneck Method.
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Short Outlook

Duality issues:

Downlink/uplink, e.g., Compute-forward v.s. reverse Compute-forward

Gaussian MAC/BC duality extends also for finite-capacity fronthauls {Ck}

- See, e.g., Liu-Patil-Yu, “An Uplink-Downlink Duality for Cloud Radio Access
Network”, ISIT’2016. More advanced downlink: Multi-Marton Coding:
[Patil-Yu, 1801.00394]. Also “Channel Diagonalization for Cloud Radio
Access”, [Liu-Patil-Yu, arXiv:1802.01807]

Duality aspects via information bottleneck interpretations.

Optimal input distributions under rate-constrained compression at relays.

Discrete signaling is already known to sometimes outperform Gaussian
signaling for single-user Gaussian CRAN [Sanderovich et al. ’08].

It is conjectured that the optimal input distribution is discrete.

Improved upper bounds (over cut-set) for non-oblivious relay based schemes,
to better evaluate the cost of oblivious processing (á la: Vu-Barnes-Ozgur,
arXiv:1701.02043 Gaussian primitive relay).
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Short Outlook cont.’

Bounds on general information bottleneck problems [Painsky-Tishby,
arXiv:1711.02421], [Eswaran-Gastpar, arXiv:1805.06515].

A variety of related C-RAN & Distributed bottleneck problems:

Impact of block length n [C may not scale linearly with n ⇒ Courtade
conjecture (C = 1)] [Courtade-Kumar, IT’14],
[Yang-Wesel, arXiv:1807.11289, July’18],
The C = n− 1 case [Huleihel-Ordentlich, arXiv:1701.03119v2, May’17].

Bandlimited time-continuous models (Homri-Peleg-Shamai, arXiv:1510.08202).

Multi-layer Information Bottleneck Problem (Yang-Piantanida-Gündüz,
arXiv:1711.05102).

Distributed Information-Theoretic Clustering (Pichler-Piantanida-Matz,
arXiv:1602.04605, Dictator Functions, arXiv:1604.02109).
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Short Outlook cont.’

Entropy constraint bottleneck:

X − Y − U
max I(X;U) under the constraint H(U) ≤ C
practical applications: LZ distortionless compression.

⇒ U = f(y) a deterministic function [Homri-Peleg-Shamai,
Oblivious Processing in a Fronthaul Constrained Gaussian Channel,
arXiv:1510.08202].

The deterministic bottleneck: advantages in complexity as compared to a
classical bottleneck: [Strouse-Schwab, arXiv:1604.00268].
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Thank you!
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