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Introduction

Introduction

Future wireless networks will be characterized by:

Dramatically higher throughputs

Emerging overloaded scenarios involving massive machine-type
communications

This immediately implies that the prevailing paradigms of orthogonal
transmissions cease to apply:

More users than physical resources

Non-orthogonal multiple-access (NOMA) is hence the key to future needs,
see, e.g.:

[Saito, Kishiyama, Benjebbour, Nakamura, Li & Higuchi (2013)]
[Ding, Lei, Karagiannidis, Schober, Yuan & Bhargava (2017)]
[Wei, Yuan, Ng, Elkashlan & Ding (2016)]

Shamai, Zaidel & Shental Sparse NOMA: A Closed-Form Characterization July 25, 2018 3 / 63



Introduction

NOMA Techniques

NOMA techniques can be roughly categorized into two main classes:

Power-domain multiplexing (typically for the downlink):

Superposition coding combined with successive interference cancellation (SIC)
at the receivers

Power allocation according to the respective channel conditions

Code-domain multiplexing:

Relies on distinguishing spreading codes (similar to CDMA or MC-CDMA), or
interleaver sequences

Signals are multiplexed over the same time-frequency resources (e.g., in an
OFDM framework)

This work focuses on code-domain multiplexing
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Introduction

LDCD NOMA (Sparse NOMA)

Low-density code-domain (LDCD) NOMA relies on low-density (sparse)
signatures comprising a small number of non-zero elements

Significant receiver complexity reduction can be achieved by utilizing
message-passing algorithms (MPAs) [Bayesteh et al. (2015)]

The scheme can be generally applied to any set of orthogonal resources, e.g.,
in the time, frequency, or space domain

The sparse mapping between users and resources in LDCD-NOMA is dubbed:

Regular mapping:

Each user occupies a fixed number of resources

Each resource is used by a fixed number of users
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LDCD NOMA (Sparse NOMA)

Low-density code-domain (LDCD) NOMA relies on low-density (sparse)
signatures comprising a small number of non-zero elements

Significant receiver complexity reduction can be achieved by utilizing
message-passing algorithms (MPAs) [Bayesteh et al. (2015)]

The scheme can be generally applied to any set of orthogonal resources, e.g.,
in the time, frequency, or space domain

The sparse mapping between users and resources in LDCD-NOMA is dubbed:

Irregular mapping:
The respective numbers are random, and only fixed on average
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Introduction

LDCD NOMA (Sparse NOMA)

Low-density code-domain (LDCD) NOMA relies on low-density (sparse)
signatures comprising a small number of non-zero elements

Significant receiver complexity reduction can be achieved by utilizing
message-passing algorithms (MPAs) [Bayesteh et al. (2015)]

The scheme can be generally applied to any set of orthogonal resources, e.g.,
in the time, frequency, or space domain

The sparse mapping between users and resources in LDCD-NOMA is dubbed:

Partly-regular mapping:
Each user occupies a fixed number of resources

Each resource is used by a random, yet fixed on average, number of users

The fixed and random aspects of the mapping can be switched
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Introduction

Motivation

The optimal spectral efficiency of irregular LDCD-NOMA was investigated in
[Yoshida & Tanaka (2006)] using the replica method of statistical physics

It was shown to reside below the spectral efficiency of randomly spread
code-division multiple-access (RS-CDMA) [Verdú & Shamai (1999)]

The latter can be considered as a representative of dense NOMA

Similar observations were also made for partly-regular time-hopping (TH)
CDMA [Ferrante & Di Benedetto (2015)]
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Introduction

Motivation Cont’d

The result stems from the random nature of the user-resource mapping:

Some users may end up without any designated resources

Some resources may be left unused

Our objective was to investigate analytically the potential capacity gains of
regular user-resource mappings

For the sake of analytical tractability, we focus on the large system limit

We extend here initial observations in [Shental, Zaidel & Shamai (2017)],
mostly based on the heuristic “cavity method”1 and numerical integration

1Applied in a statistical physics framework
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The System Model
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System Model

System Model

Consider a system where the signals of K users (“layers”) are multiplexed
over N shared orthogonal resources (dimensions)

The N -dimensional received signal at some arbitrary time instance is given by

y =
√

snr
d

Ax + n (1)

where:

x is a K-dimensional vector comprising the coded symbols of the users:

We assume full symmetry, equal powers and no user cooperation

Independent Gaussian codebooks: x ∼ CN (0, IK)

n ∼ CN (0, IN ) is the N -dimensional AWGN vector

snr thus designates the per-user SNR at the receiver
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System Model

System Model

Consider a system where the signals of K users (“layers”) are multiplexed
over N shared orthogonal resources (dimensions)

The N -dimensional received signal at some arbitrary time instance is given by

y =
√

snr
d

Ax + n (1)

where:

A is the N ×K random sparse signature matrix:

The kth column represents the spreading signature of user k

User k occupies resource n if Ank 6= 0

The system load is denoted by β , K/N
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System Model

System Model

Consider a system where the signals of K users (“layers”) are multiplexed
over N shared orthogonal resources (dimensions)

The N -dimensional received signal at some arbitrary time instance is given by

y =
√

snr
d

Ax + n (1)

where:

The regularity assumption on A dictates that:

Each column has exactly d ∈ N+ non-zero entries (d ≥ 2)

Each row has exactly βd ∈ N+ non-zero entries (βd ≥ 2)

Note that in the corresponding irregular setting (P{Ank 6= 0} = d
N
) the

respective numbers are asymptotically Poissonian with averages d and βd
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System Model

System Model

Consider a system where the signals of K users (“layers”) are multiplexed
over N shared orthogonal resources (dimensions)

The N -dimensional received signal at some arbitrary time instance is given by

y =
√

snr
d

Ax + n (1)

where:
The nonzero entries A are assumed to be i.i.d. but otherwise arbitrarily
distributed on the unit-circle in C:

Repetition-based spreading and binary random spreading are special cases

The model may also account for phase-fading scenarios

The columns of 1√
d

A are thus of unit norm

A is assumed to be known at the receiving end
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System Model

Construction of the Signature Matrix A

A key observation is that A can be associated with the adjacency matrix of a
random (βd, d)-semiregular bipartite (factor) graph A

In this graph, a user node k and a resource node n are connected if and only
if Ank 6= 0

The graph is assumed to be locally tree-like, and converge in the large system
limit (N →∞) to a weighted bipartite Galton-Watson tree (BGWT) with:

Degree distribution (δβd, δd)

Parameter 1
1+β

This essentially implies that for large dimensions short cycles are rare (similar
to LDPC codes [Richardson & Urbanke (2008)])
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System Model

Construction of the Signature Matrix A Cont’d

Reduced complexity iterative near-optimal multiuser detection is thus feasible,
while applying MPAs over the underlying graph [Bayesteh et al. (2015)]

This comes in sheer contrast to RS-CDMA [Verdú & Shamai (1999)], where
the optimum receiver is prohibitively complex

The matrix A is assumed to be uniformly chosen randomly and independently
per each channel use from the respective set of (βd, d)-semiregular matrices
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Asymptotic Spectral Density

Asymptotic Spectral Density
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Asymptotic Spectral Density

The Stieltjes Transform

The Stieltjes transform of a probability measure µ on R is defined as

m(z) =
∫
R

1
x− z

dµ(x) , z ∈ C+ (2)

The measure µ can be recovered from m(z) via the Stieltjes inversion
formula

dµ(λ) = 1
π

lim
ε→0+

Im(m(z))|z=λ+jε dλ (3)

The limit here is in the sense of weak convergence of measures, namely, for
continuity points a < b of µ we have (see, e.g., [Tulino & Verdú (2004)])

µ[a, b] = lim
ε→0+

1
π

∫ b

a

Im(m(z))|z=λ+jε dλ (4)
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Asymptotic Spectral Density

A Useful Result on Locally Tree-Like Graphs

Consider a sequence of random bipartite graphs {GN}, converging in law to a
BGWT with:

Degree distribution (δβd, δd)

Parameter 1
1+β

Let W be an N ×K complex random weight matrix independent of GN ,
with i.i.d. entries having finite absolute second moments

Let the (N +K)× (N +K) weighted adjacency matrix of GN read

ÃN =
(

0 A
A† 0

)
,

(
0 W

W† 0

)
◦

(
0 Ā

Ā† 0

)
(5)

where ◦ denotes the Hadamard product, and Ā is a corresponding
(0, 1)-matrix
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Asymptotic Spectral Density

A Useful Result on Locally Tree-Like Graphs
Cont’d

Let H denote the set of holomorphic functions f : C+ → C+ such that
|f(z)| ≤ 1

Im(z)

Let P(H) denote the space of probability measures on H

Theorem 1 (Bordenave & Lelarge (2010), Theorems 4 & 5)

1 There exists a unique pair of probability measures (µa, µb) ∈ P(H)× P(H) such
that for all z ∈ C+

Y a(z) d= −(z +
∑βd−1

i=1

∣∣W b
i

∣∣2 Y bi (z))−1 (6)

Y b(z) d= −(z +
∑d−1

i=1 |W
a
i |2 Y ai (z))−1 (7)

where Y a, Y ai (respectively, Y b, Y bi ) are i.i.d. copies with law µa (respectively, µb),
and W a

i ,W
b
i are i.i.d. random variables distributed as W11
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Asymptotic Spectral Density

A Useful Result on Locally Tree-Like Graphs
Cont’d

Let H denote the set of holomorphic functions f : C+ → C+ such that
|f(z)| ≤ 1

Im(z)

Let P(H) denote the space of probability measures on H

Theorem 1 (Bordenave & Lelarge (2010), Theorems 4 & 5)

2 For all z ∈ C+, the Stieltjes transform mÃN (z) of the empirical eigenvalue
distribution of ÃN converges as N →∞ in L1 to mÃ(z) = 1

1+βE{X
a(z)}

+ β
1+βE{X

b(z)}, where for all z ∈ C+

Xa(z) d= −(z +
∑βd

i=1

∣∣W b
i

∣∣2 Y bi (z))−1 (5)

Xb(z) d= −(z +
∑d

i=1 |W
a
i |2 Y ai (z))−1 (6)

where Y ai , Y bi ,W a
i , and W b

i are i.i.d. copies with laws as in Part (1)
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Asymptotic Spectral Density

Spectral Density of 1
dAA†

The bipartite graph A associated with the regular sparse spreading matrix A
falls exactly within the framework considered in Theorem 1

Furthermore, by the underlying assumption on the signatures, each i.i.d. entry
of the corresponding weight matrix W has (surely) a unit absolute value

This in turn implies that the recursive distributional equations (RDEs) in
Theorem 1 admit a unique deterministic solution

This deterministic solution yields a closed form expression for the limiting
Stieltjes transform of the empirical eigenvalue distribution of ÃN
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Asymptotic Spectral Density

Spectral Density of 1
dAA† Cont’d

Theorem 2

Let the underlying assumptions of the regular sparse NOMA model hold

Let 2 ≤ d ∈ N+ <∞, 2 ≤ βd ∈ N+ <∞, α , d−1
d and γ , βd−1

d

Assume that the weak limit of the associated bipartite graph A is a BGWT
having degree distribution (δβd, δd) and parameter 1

1+β . Then:

1 For all z ∈ C+, the Stieltjes transform of the empirical eigenvalue distribution
of 1

d
AA† converges as N →∞ in L1 to

m 1
d

AA†(z) = −
(
z − β

1+αm(z)

)−1
, (7)

where m(z) solves the following deterministic equation:

m(z) = −
(
z − γ

1+αm(z)

)−1 (8)
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Asymptotic Spectral Density

Spectral Density of 1
dAA† Cont’d

Theorem 2

Let the underlying assumptions of the regular sparse NOMA model hold

Let 2 ≤ d ∈ N+ <∞, 2 ≤ βd ∈ N+ <∞, α , d−1
d and γ , βd−1

d

Assume that the weak limit of the associated bipartite graph A is a BGWT
having degree distribution (δβd, δd) and parameter 1

1+β . Then:

2 Subject to the Stieltjes transform’s convergence, the weak limit of the
empirical eigenvalue distribution of 1

d
AA† is a distribution with density

ρ(λ, β, d) = [1− β]+δ(λ) + βd
2π

√
[λ−λ−]+[λ+−λ]+

λ(βd−λ) , (9)

where λ± = (
√
α±√γ)2, δ(λ) is a unit point mass at λ = 0, and

[z]+ , max{0, z}
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Asymptotic Spectral Density

Spectral Density of 1
dAA† Cont’d

Proof Outline:

The proof relies on the observation that the eigenvalues of

Ã2
N =

(
AA† 0

0 A†A

)
(10)

are simply the eigenvalues of AA† together with those of A†A
(which are in fact the same up to |K −N | additional zero eigenvalues)

Furthermore, the limiting Stieltjes transform of the empirical eigenvalue
distribution of Ã2

N admits the following relation zmÃ2 (z2) = mÃ(z)

This lets us conclude that m 1
d

AA†(z) =
√

d
z
Xa(
√
dz), where Xa(z) is

obtained via Theorem 1

The limiting density is finally obtained following some tedious algebra and
using the Stieltjes inversion formula
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Asymptotic Spectral Density

Special Case 1: The Kesten-McKay Law

Let the matrix A be defined as in Theorem 2 with β = 1

Consequently: α = γ = d−1
d

Then, the limiting spectral density reads

ρ(λ, 1, d) =


d
√

4(d−1)−dλ
2π(d−λ)

√
dλ

, 0 ≤ λ ≤ 4(d−1)
d ,

0 , otherwise
(11)

This conforms with the well-known Kesten-McKay law for regular graphs
[McKay (1981)]
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Asymptotic Spectral Density

Special Case 2: The Marčenko-Pastur Law

Let the matrix A be defined as in Theorem 2

Then, as d→∞, the limiting spectral density converges to

ρ(λ, β, d→∞) =

[1− β]+δ(λ) +
√

(λ−λ−)(λ+−λ)
2πλ , λ− ≤ λ ≤ λ+ ,

0, otherwise ,
(12)

where λ± = (1±
√
β)2

This density is nothing but the Marčenko-Pastur law
(see, e.g., [Tulino & Verdú (2004)])

Similar observations were made in [Dumitriu & Johnson (2014)] for
(0, 1)-matrices, where d→∞, and d/N → 0 at an appropriate rate
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Asymptotic Spectral Density

Numerical Results: Spectral Density of 1
dAAT
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d = 2, simulation results based on matrices obtained via Gallager’s (1963)
construction of LDPC codes, with N = 2600 and K = 3900

Inset: Limiting spectral density for β = 1.5
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Asymptotic Spectral Density

Empirical Distribution vs. Limiting
Distribution
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Averaging 1 (2,3)-regular 1000x1500 matrices
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Theory

d = 2, β = 1.5, simulation results based on matrices obtained via Gallager’s
construction of LDPC codes (Aij ∈ {0,±1})

Shamai, Zaidel & Shental Sparse NOMA: A Closed-Form Characterization July 25, 2018 22 / 63



Asymptotic Spectral Density

Empirical Distribution vs. Limiting
Distribution Cont’d
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d = 2, β = 1.5, simulation results based on matrices obtained via Gallager’s
construction of LDPC codes (Aij ∈ {0,±1})
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Asymptotic Spectral Density

Empirical Distribution vs. Limiting
Distribution Cont’d
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Averaging 100 (2,3)-regular 120x180 matrices
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Theory

d = 2, β = 1.5, simulation results based on matrices obtained via Gallager’s
construction of LDPC codes (Aij ∈ {0,±1})
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Optimum Receiver: Closed Form Characterization

Optimum Receiver
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Optimum Receiver: Closed Form Characterization

Optimum Spectral Efficiency

The fundamental figure of merit for system performance is taken here as the
normalized spectral efficiency in bits/sec/Hz per dimension

For optimum processing this quantity corresponds to the ergodic
sum-capacity, given by [Verdú & Shamai (1999)]:

Copt
N (snr, β, d) , 1

N
I(x; y|A) = 1

N
E
{

log2 det
(

IN + snr
d

AA†
)}

(13)

Our aim is to characterize Copt
N (snr, β, d) in the large system limit:

N,K →∞ ,
K

N
= β (s.t. βd ∈ N+)

We henceforth denote the asymptotic spectral efficiency as

Copt(snr, β, d) , lim
N→∞

Copt
N (snr, β, d) (14)
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Optimum Receiver: Closed Form Characterization

Spectral Efficiency in Closed Form

Remarkably, Theorem 2 paves the way for a closed form characterization of
the asymptotic optimum spectral efficiency

Let F(x, z) be defined as [Verdú & Shamai (1999)]

F(x, z) ,
(√

x
(
1 +
√
z
)2 + 1−

√
x
(
1−
√
z
)2 + 1

)2
(15)

Let G(x, y, z) be defined for x, y, z ∈ R+, y ≥ (1 +
√
z)2 as

G(x, y, z) ,
(√

(y−(1−
√
z)2)(x(1+

√
z)2+1)−

√
(y−(1+

√
z)2)(x(1−

√
z)2+1)√

y−(1−
√
z)2−
√
y−(1+

√
z)2

)2

(16)
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Optimum Receiver: Closed Form Characterization

Spectral Efficiency in Closed Form Cont’d

Theorem 3

Let d, β, α and γ be as in Theorem 2. Further let β̃ , α
γ and ζ , βd

γ

Then, the optimum spectral efficiency converges as N →∞ to

Copt(snr, β, d) = β(d−1)+1
2 log2

(
1 + (γ + α)snr − 1

4F(γsnr, β̃)
)

+ (β − 1) log2
(
1 + αsnr − 1

4F(γsnr, β̃)
)

− β(d−1)−1
2 log2

(
(1+βd snr)2

G(γsnr,ζ,β̃)

) (17)

Although the theorem applies to 2 ≤ d, βd ∈ N+ <∞, the convex closure of
the respective rates is achievable via time-sharing
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Optimum Receiver: Closed Form Characterization

Spectral Efficiency in Closed Form Cont’d

Proof Outline:

The proof relies on the Skorokhod representation theorem by which we can
assume almost sure convergence of the Stieltjes transforms in Theorem 2

Note that by Hadamard’s inequality

1
N

log2 det
(
IN + snr

d
AA†

)
≤ log2(1 + βsnr) <∞ (18)

This implies, by uniform integrability and the weak convergence stated in
Theorem 2, that the sequence 1

N
log2 det

(
IN + snr

d
AA†

)
converges to∫∞

0 log2(1 + snrλ)ρ(λ, β, d) dλ

Finally, by the bounded convergence theorem we conclude that Copt(snr, β, d)
converges to the same limit as well

This rigorously establishes the “cavity” method based result of [Shental, Zaidel
& Shamai (2017)]. Explicit calculation of the integral finally yields (17)
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Optimum Receiver: Closed Form Characterization

RS-CDMA: A Reference Result

Consider the case where d = N , and the entries of A are i.i.d. zero-mean
random variables with unit variance (and fourth moment of order O(1))

Then, it was shown in [Verdú & Shamai (1999)] that as N,K →∞, KN = β,
the optimum spectral efficiency converges to

Copt
RS (snr, β) = β log2

(
1 + snr − 1

4F(snr, β)
)

+ log2

(
1 + βsnr − 1

4F(snr, β)
)
− log2 e

4 snr F(snr, β)
(19)

This result relies on the well known Marčenko-Pastur distribution (e.g.,
[Tulino & Verdú (2004)]), and does not apply to the sparse setting
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Optimum Receiver: Closed Form Characterization

Extreme-SNR Characterization

To complete the asymptotic analysis of the optimum receiver, we also
characterize the spectral efficiency in extreme-SNR regimes

Recall that a spectral efficiency R is approximated in the low-SNR regime as

R

(
Eb
N0

)
≈ S0

3 dB

(
Eb
N0

∣∣∣
dB
− Eb
N0 min

∣∣∣
dB

)
(20)

Here S0 denotes the low-SNR slope, EbN0 min
is the minimum Eb

N0
that enables

reliable communications, and 3dB , 10 log10 2 [Shamai & Verdú (2001)]
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Optimum Receiver: Closed Form Characterization

Extreme-SNR Characterization Cont’d

In the high-SNR regime the spectral efficiency (taken as a function of snr) is
approximated as

R(snr) ≈ S∞ (log2 snr − L∞) (21)

Here S∞ denotes the high-SNR slope (multiplexing gain), and L∞ denotes
the high-SNR power offset [Shamai & Verdú (2001)]

Recall that snr and Eb
N0

are related via

βsnr = R
Eb
N0

(22)
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Optimum Receiver: Closed Form Characterization

Extreme-SNR Characterization Cont’d

Proposition 1

Let d and β be as in Theorem 2. Then, the low-SNR parameters of the
optimum receiver read:(

Eb
N0

)opt
min = ln 2 , Sopt

0 = 2βd
d(β+1)−1 (23)

The high-SNR slope of the optimum receiver is given by Sopt
∞ = min {1, β},

while the high-SNR power offset satisfies

Lopt
∞ =


(

1
β − 1

)
log2(1− β)− (d− 1) log2

(
1− 1

d

)
, β < 1

−(d− 1) log2
(
1− 1

d

)
, β = 1

(β − 1) log2(β − 1)− β log2 β − (βd− 1) log2

(
1− 1

βd

)
, β > 1.

(24)

Shamai, Zaidel & Shental Sparse NOMA: A Closed-Form Characterization July 25, 2018 33 / 63



Optimum Receiver: Closed Form Characterization

RS-CDMA: Extreme-SNR Characterization

Low-SNR Parameters [Shamai & Verdú (2001)]:(
Eb
N0

)opt
min,RS = ln 2 , Sopt

0,RS = 2β
β+1 (25)

High-SNR Parameters [Shamai & Verdú (2001)]:

Sopt
∞,RS = min {1, β} (26)

Lopt
∞,RS =


(

1
β − 1

)
log2 (1− β) + log2 e , β < 1

log2 e , β = 1

(β − 1) log2(β − 1)− β log2 β + log2 e , β > 1

(27)
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Linear MMSE Receiver
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Linear MMSE Receiver: Closed Form Characterization

Spectral Efficiency of the LMMSE Receiver

We now turn to consider the linear minimum mean-square error (LMMSE)
receiver

Namely, an LMMSE front-end is applied to estimate the transmitted signal x,
which is then followed by single-user decoders

The estimation error reflects the equivalent noise

Useful insights can be obtained by comparing the respective spectral
efficiency to that of the optimum receiver

The comparison can shed light on the potential performance enhancement of
near-optimum MPAs, particularly in the overloaded regime
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Linear MMSE Receiver: Closed Form Characterization

Spectral Efficiency of the LMMSE Receiver
Cont’d

The error covariance matrix of the LMMSE receiver is given by
[Verdú & Shamai (1999)]:

M = (IK + snr R)−1 (28)

where R , 1
dA†A is the signature crosscorrelation matrix

Let Mkk denote the (k, k)’th element of R, then the signal-to-interference-
plus-noise ratio (SINR) at the output of the receiver for user k is

1
Mkk

− 1

The spectral efficiency of the LMMSE receiver thus reads

Cmmse
K (snr, β, d) = β E

{ 1
K

∑K
k=1 log2

( 1
Mkk

)}
(29)
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Linear MMSE Receiver: Closed Form Characterization

Spectral Efficiency of the LMMSE Receiver
Cont’d

Theorem 4

Let the definitions and assumptions of Theorem 3 hold

Then, the spectral efficiency of the LMMSE receiver converges as N →∞ to

Cmmse(snr, β, d) = βlog2

(
1+βd snr

1+dγ snr− dF(γsnr,β̃)
4

)
(30)

The time-sharing argument stated for the optimum receiver applies for the
LMMSE receiver as well
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Linear MMSE Receiver: Closed Form Characterization

Spectral Efficiency of the LMMSE Receiver
Cont’d

Proof Outline:

The proof relies on the relation between the resolvent of R, namely
RR(z) , (R − zIK)−1, z ∈ C+, and the error covariance matrix M

Following the steps of the proof of Theorem 1 in [Bordenave & Lelarge
(2010)], while applying analytic continuation, it can be shown that

Mkk
d−→ 1

snrmR(− 1
snr ) ,M1 (31)

Since the random variables {Mkk} have a bounded strictly positive support,
we may eventually conclude that

Cmmse(snr, β, d) = β log2
(

1
M1

)
(32)

The final result follows by direct calculation of M1
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Linear MMSE Receiver: Closed Form Characterization

LMMSE Receiver: Extreme-SNR
Chacterization

Proposition 2

Let d and β be as in Theorem 2

The low-SNR parameters of the LMMSE receiver read:(
Eb
N0

)mmse
min = ln 2 , Smmse

0 = 2βd
(2β+1)d−2 . (33)
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Linear MMSE Receiver: Closed Form Characterization

LMMSE Receiver: Extreme-SNR
Chacterization Cont’d

Proposition 2 (Cont’d )
The high-SNR slope of the LMMSE receiver is given by

Smmse
∞ =


β, β < 1
1
2 , β = 1

0, β > 1

(34)

while the high-SNR power offset satisfies

Lmmse
∞ =

log2

(
1

1−β

)
+ log2

(
d−1
d

)
, β < 1

log2
(
d−1
d

)
, β = 1.

(35)
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Linear MMSE Receiver: Closed Form Characterization

RS-CDMA: The LMMSE Receiver

The spectral efficiency of the LMMSE receiver in the RS-CDMA setting is
given by [Verdú & Shamai (1999)]:

Cmmse
RS (snr, β) = β log2

(
1 + snr − 1

4F(snr, β)
)

(36)

Low-SNR Parameters:(
Eb
N0

)mmse
min,RS = ln 2 , Smmse

0,RS = 2β
2β+1 (37)

High-SNR Parameters:

Smmse
∞,RS =


β , β < 1
1
2 , β = 1

0 , β > 1

, Lmmse
∞,RS =

log 1
1−β , β < 1

0 , β = 1
(38)
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Numerical Results

Limiting Throughput vs. System Load:
The Underloaded Regime (EbN0

= 10dB)
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Numerical Results

Limiting Throughput vs. System Load:
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Numerical Results

Limiting Throughput vs. Eb
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Concluding Remarks

Concluding Remarks

Understanding the fundamental limitations of the various technologies
suggested for future 5G systems is crucial for efficient state-of-the-art designs

An insightful attempt in this framework was presented by examining the
advantages of regular LDCD-NOMA

Considering the large system limit, the achievable total throughput of regular
LDCD-NOMA was analytically characterized in closed form while:

Assuming random signature matrices with i.i.d. nonzero entries residing on the
unit-circle in C

Harnessing tools from the spectral theory of large random graphs
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Concluding Remarks

Concluding Remarks Cont’d

The underlying model is markedly different from previously analyzed settings:

The random matrices are sparse, as opposed to standard dense RS-CDMA
(governed by the Marčenko-Pastur distribution [Verdú & Shamai (1999)])

The matrix entries are not i.i.d. as opposed to Poissonian irregular sparse
spreading (see, e.g., [Yoshida & Tanaka (2006)])

The number of nonzero entries in each column (row) is identical and remains
fixed (deterministic) in the large system limit

This comes in contrast to the sparse settings considered, e.g., in:

[Guo, Baron & Shamai (2009)]: Limiting average sparsity amounts to a fixed
(small) fraction of the dimensions (linear scaling)

[Guo & Wang (2008)]: Number of nonzero column entries amounts to a
vanishing fraction of the dimension, but is still infinite in the large system limit
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Concluding Remarks

Concluding Remarks Cont’d

Regular sparse NOMA potentially leads to significant performance
enhancement over both irregular spreading and RS-CDMA (dense NOMA)

This is of particular importance in view of the fact that optimum performance
can be approached using practical MPAs even in overloaded regimes

Our observations thus advocate employing regular schemes (e.g., SCMA2) as
a key practical tool for enhancing performance of future overloaded systems

Regular schemes require, however, some kind of coordination or central
scheduling and may therefore pose some additional practical challenges

2Sparse Code Multiple Access
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Concluding Remarks

Outlook

Several extensions of the results are currently investigated, accounting for:

Fading channel models

Impact of multiple transmit-receive antennas (MIMO-NOMA), and in
particular massive-MIMO (e.g., [Liu et al. (2018)])

Multi-cell NOMA, where implications of inter-cell interference and joint
multi-cell processing should be accounted for (see, e.g., [Shin et al. (2017)])

Additional challenging aspects of NOMA include, e.g.:

Coordination and scheduling for maintaining regularity

Practical impairments such as imperfect CSI

I-MMSE relations [Guo, Shamai & Verdú (2013)]

Physical layer security (e.g., see [Gomez et al. (2017)], [Zhang et al. (2018)])

Combining power-domain and code-domain NOMA (e.g., [Qin et al. (2018-1)])
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Concluding Remarks

Outlook Cont’d

Sparse channel models are obviously not restricted to NOMA and have a
variety of applications

Considering, e.g., the compressed sensing framework (see [Qin et al.
(2018-2)] for a recent survey), such models can be applied to:

Spectrum sensing in cognitive radio networks

Data collection in wireless sensor networks

Channel estimation and feedback in massive MIMO
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Concluding Remarks

Outlook Cont’d

In particular, sparse-graph codes were recently investigated in the context of
speeding up learning and recovery of sparse signals [Ramchadran, ISIT’2018]:

Low-complexity Discrete Fourier Transform (DFT) computation for sparse
spectrum signals (e.g., [Pawar & Ramchadran (2013, 2014, 2018)])

Neighbor discovery for Internet-of-Things (IoT)
[Lee, Pedarsani & Ramchadran (2016)], [Chandrasekher et al. (2017)]

Minimum-rate spectrum-blind sampling [Öçal, Li and Ramchadran (2016)]

Sparse representations in the time-frequency (delay-Doppler) domain are also
of great interest, e.g.:

Representing underspread WSS uncorrelated scattering channels
[Durisi et al. (2011)]

Orthogonal time frequency space (OTFS) modulation [Monk et al. (2016)]
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Concluding Remarks

Thank You!
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