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Abstract— In this paper, the finite-order autoregressive moving
average (ARMA) Gaussian wiretap channel with noiseless causal
feedback is considered, in which an eavesdropper receives noisy
observations of signals in both forward and feedback channels.
It is shown that the generalized Schalkwijk–Kailath scheme,
a capacity-achieving coding scheme for the Gaussian feedback
channel, achieves the same maximum rate for the same channel
even with the presence of an eavesdropper. Therefore, the secrecy
capacity is equal to the feedback capacity without the presence
of an eavesdropper for the Gaussian feedback channel. Further-
more, the results are extended to the additive white Gaussian
noise (AWGN) channel with quantized feedback. It is shown that
the proposed coding scheme achieves a positive secrecy rate. Our
result implies that as the amplitude of the quantization noise
decreases to zero, the secrecy rate converges to the capacity of
the AWGN channel.

Index Terms— Secrecy capacity, feedback, colored Gaussian,
Schalkwijk-Kailath scheme.

I. INTRODUCTION

IT HAS been more than a half century since information the-
orists began investigating the capacity of Gaussian feedback

channels. As the pioneering studies on this topic, Shannon’s
1956 paper [3] showed that feedback does not increase the
capacity of the memoryless additive white Gaussian noise
(AWGN) channel, and Elias [4], [5] proposed some simple
corresponding feedback coding schemes. Then, Schalkwijk
and Kailath [6], [7] developed a notable linear feedback
coding scheme to achieve the capacity of the AWGN channel
with feedback. Thereafter, the problem of finding the feedback
capacity and capacity-achieving codes for Gaussian channels
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with memory, e.g., finite-order autoregressive moving aver-
age (ARMA) channels, has been extensively studied. But-
man [8], [9], Wolfowitz [10], and Ozarow [11], [12] extended
Schalkwijk’s scheme [7] to finite-order Gaussian ARMA chan-
nels, leading to several valuable upper and lower bounds on
the capacity. Motivated by these elegant results/insights, Cover
and Pombra in their 1989 paper [13] made a breakthrough on
characterizing the n-block capacity of the Gaussian feedback
channel. In 2010, Kim [14] provided a characterization of
the capacity of the finite-order Gaussian ARMA feedback
channel (in the form of an infinite dimensional optimization
problem) based on Cover-Pombra’s n-block capacity char-
acterization. Unfortunately, except for the first-order ARMA
(i.e., ARMA(1)) noise channel, it is non-trivial to compute
the capacity by solving this infinite dimensional optimization.
Recently, Gattami [15] showed that the capacity of the station-
ary Gaussian noise channel with finite memory can be found
by solving a semi-definite programming problem. In addition,
Li and Elia [16] used control-theoretic tools to compute the
capacity of finite-order ARMA Gaussian feedback channel and
explicitly constructed capacity-achieving feedback codes.

As a natural extension of the above studies, understanding
the finite-order ARMA Gaussian feedback channel with the
presence of an eavesdropper (which has noisy access to the
channel transmissions between legitimate users) is of great
interest in the field of secure communication. Concretely, two
fundamental questions can be asked:

1) would the feedback capacity of such a channel decrease
subject to the secrecy constraint?

2) what would be the secrecy capacity-achieving codes?
Secure communication over feedback channels has attracted

considerable attention in the last decade. Substantial progress
has been made towards understanding this type of channels.
Although the feedback may not increase the capacity of open-
loop discrete memoryless channels (DMCs), in [17]–[28] it
is showed that feedback can increase the secrecy capacity by
sharing a secret key between legitimate users. In particular,
in [17] and [18] the achievement of a positive secrecy rate
is proved by using noiseless feedback even when the secrecy
capacity of the forward channel is zero. In [20] the capacity
of the DMC wiretap channel with a secure and rate-limited
feedback link is studied, and a capacity-achieving coding
scheme is provided for the class of physically degraded wiretap
channels. In [21] it is proved that the judicious use of noisy
feedback can increase the secrecy capacity to the capacity of
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the source-destination channel in the absence of the wiretapper.
In [22] a feedback scheme is proposed for the binary symmet-
ric channel, which yields larger rate-equivocation regions and
achievable secrecy rates. More importantly, the scheme can
achieve a positive secrecy rate even when the eavesdropper’s
channel is less noisy than the legitimate channel. In [24]
the model is considered in which the transmitter adds the
transmitted signal with an interference signal generated by
the legitimate receiver via the feedback link, and it is shown
that if the transmit power is large enough a positive secrecy
rate can be achieved even when the eavesdropper’s channel is
less noisy. In [25] the noiseless feedback wiretap channel is
studied in which the legitimate channel is also informed with
the channel state information in either a noncausal or causal
manner. Also, in [26] the usefulness of noisy feedback is
proved for a class of full-duplex two-way wiretap channels.
Furthermore, in [27] an achievable scheme is presented for
the wiretap channel with generalized feedback, which is a
generalization and unification of several relevant previous
results in the literature. Very recently, in [28] an improved
feedback coding scheme is proposed for the wiretap channel
with noiseless feedback, which is shown to outperform the
existing ones in the literature.

The multiple-access (MA) and broadcast (BC) wiretap chan-
nels with feedback have also been studied in recent years.
In [29] achievable secrecy rate regions are derived for the
discrete memoryless Gaussian channels in which two trusted
users send independent confidential messages to an intended
receiver in the presence of a passive eavesdropper. In [30]
inner and outer bounds on the secrecy rate region are devel-
oped for the MA wiretap channel with noiseless feedback.
In [31] the secrecy capacity region of the broadcast channel
with confidential messages (BC-CM) is characterized in which
the legitimate receiver feeds back its received channel output
to the transmitter via a noiseless feedback link. Furthermore,
in [32] the broadcast wiretap channel with noiseless feedback
is studied, and a new coding scheme is proposed which
helps to increase the secrecy level for such a channel. In a
more general setting where users have multiple-input multiple-
output (MIMO) capability, in [33] the pre-log factor of the
secrecy rate is characterized in the case with the number
of antennas at the source being no larger than that at the
eavesdropper. In [34] and [35], the benefits of state-feedback
are investigated to increase the secrecy degrees of freedom for
the two-user Gaussian MIMO wiretap channel.

However, it is noteworthy that most of the aforementioned
results considered only memoryless wiretap channels. In this
paper, we study the feedback wiretap channel with memory.
More specifically, we make two major contributions:

1) We show that the feedback secrecy capacity Csc of
the finite-order ARMA Gaussian channel equals the
feedback capacity C f b of such a channel without the
presence of an eavesdropper. Namely, Csc = C f b. Also,
we propose a Csc-achieving feedback coding scheme,
which is a variant of the generalized Schalkwijk-Kailath
(S-K) scheme. In other words, the secrecy is obtained
without loss of the communication rate between legiti-
mate users. This result can be viewed as an extension

of the result in [19] which showed that the standard S-K
scheme for the AWGN channel offers secrecy for free.

2) We further study the AWGN channel with quantized
feedback, which is a more realistic channel model for
the feedback link. We show that the proposed coding
scheme provides non-trivial positive secrecy rates and
achieves the feedback capacity of the AWGN channel
as the amplitude of the quantization noise vanishes to
zero.

The key idea to prove the main result Csc = C f b comes
from the following fact: after the first few transmissions,
the generalized S-K scheme with the selected initializations
can achieve C f b by transmitting signals that depend only
on the previous forward channel noise. As a consequence,
the access to the noisiness of these signals (except the first few
transmissions) provides zero information about the message to
the eavesdropper, implying that the secrecy condition can be
satisfied for legitimate users.

In addition, it is seen that the benefit of using feedback
in the generalized S-K scheme is twofold: improving the
decoding performance (i.e., doubly exponentially decaying
error probability in decoding) and implicitly constructing a
secret key (based on the forward channel noise extracted from
the noiseless feedback signals) for secure transmissions. This
fact, the twofold benefit of using feedback in secure commu-
nication, is aligned with the highlighted observations in [28].

The rest of the paper is organized as follows. Section II
introduces the system model. Section III presents the main
results of our paper. Section IV provides the technical proofs.
Finally, Section V concludes the paper and outlines possible
avenues for further research in this area.

Notation: Uppercase and the corresponding lowercase let-
ters (e.g., Y, Z , y, z) denote random variables and their real-
izations, respectively. We use log to denote the logarithm to
base 2, and 0 log 0 = 0. We use xT to denote the transpose
of a vector or a matrix x. The notation V b

a with integers a
and b represents a sequence {Va, Va+1, · · · , Vb}. SX denotes
the power spectral density of a time series X (k) with time
index k, and Q denotes the Fourier transform of filters in our
problem. RH2 denotes the set of stable and proper rational
filters in Hardy space H2.

II. SYSTEM MODEL

In this section, we present the system model. First of all,
we consider a discrete-time Gaussian channel with noiseless
feedback as shown in Fig. 1. The additive Gaussian channel
is modeled as

Y (k) = U(k) + W (k), k = 1, 2, · · · , (1)

where the Gaussian noise {W (k)}∞k=1 is assumed to be station-
ary with power spectral density SW (e jθ) for ∀θ ∈ [−π, π).
Unless the contrary is explicitly stated, “stationary” without
specification refers to stationary in the wide sense. Moreover,
we assume that the power spectral density satisfies the Paley-
Wiener condition

1

2π

∫ π

−π
| log SW (e jθ )|dθ < ∞.
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Fig. 1. Finite-order ARMA Gaussian wiretap channel with feedback.

Assumption 1. (Finite-order ARMA Gaussian Channel) In
this paper, the noise W is assumed to be the output of a finite-
dimensional linear time invariant (LTI) minimum-phase stable
system H ∈ RH2, driven by white Gaussian noise with zero
mean and unit variance. The power spectral density (PSD)
of W is colored (nonwhite), bounded away from zero and
has a canonical spectral factorization given by SW (e jθ ) =
|H(e jθ)|2.

As shown in Fig.1, the feedback wiretap channel of interest
includes a forward channel from Alice to Bob as described
by (1), a causal noiseless feedback Ŷ from Bob to Alice, and
three noisy observation channels to the eavesdropper Eve.

Assumption 2. In this paper, the eavesdropper can access all
three channel signals U, Y and Ŷ with additive noises V , Ṽ
and V̂ , respectively. These noise processes are assumed to be
stationary with finite memory and with strictly positive and
bounded variances.

The motivation of assuming such a powerful eavesdropper
to access all three channel signals is that we aim to develop
the strongest results by considering the worst case. Then,
in practical scenarios in which the eavesdropper may have
access to one of the three channel signals, or any combination
of these signals, our results still hold. Note that a classical
wiretap channel model can be recovered from our model if
the eavesdropper’s channel inputs from Y and Ŷ are removed,
and a degraded wiretap channel can be recovered if the
eavesdropper’s channel inputs from U and Ŷ are removed.
Mathematically, the noisy wiretap channels are modeled as

Z(k) =U(k) + V (k),

Z̃(k) =Y (k) + Ṽ (k),

Ẑ(k) =Ŷ (k) + V̂ (k), k = 1, 2, · · · .

The additive noise processes V , Ṽ and V̂ are assumed to be
arbitrarily finite-memory processes, i.e.,

p(v(k)|vk−1
1 ) = p(v(k)|vk−1

k−d̄
), k ≥ d̄,

p(ṽ(k)|ṽk−1
1 ) = p(ṽ(k)|ṽk−1

k−d̃
), k ≥ d̃,

p(v̂(k)|v̂k−1
1 ) = p(v̂(k)|v̂k−1

k−d̂
), k ≥ d̂, (2)

where d̄ , d̃ and d̂ respectively represent the sizes of the finite
memories. Without loss of generality, we assume d̄ , d̃ and d̂
are positive integers. All our results directly hold for the case

of memoryless noises. In Assumption 2, we assume that these
noise processes have strictly positive and bounded variances
for all k. But they are not necessarily uncorrelated.

We specify a sequence of (n, 2nRs ) channel codes with an
achievable secrecy rate Rs as follows. We denote the message
index by m ∈ M , which is uniformly distributed over the
set {1, 2, 3, · · · , 2nRs }. The encoding process Ui (M, Ŷ i−1) at
Alice satisfies the average transmit power constraint P , where
Ŷ i−1 = {Ŷ0, Ŷ1, · · · , Ŷi−1} (Ŷ0 = ∅) for i = 1, 2, · · · , n,
and U1(M, Ŷ 0) = U1(M). Bob decodes the message as M̂
following a decoding function g : Y n

1 → {1, 2, · · · , 2nRs } with
an error probability satisfying

P(n)
e = 1

2nRs

2nRs∑
m=1

Pr(M �= g(Y n
1 )|M = m) ≤ εn,

where limn→∞ εn = 0. Meanwhile, the information about the
message received by Eve should asymptotically vanish, i.e.,

lim
n→∞

1

n
I (M; Zn

1 , Z̃ n
1 , Ẑ n

1 ) = 0.

The objective of secure communication is to send M to Bob
at as high a rate Rs as possible within this secrecy constraint.
The secrecy capacity Csc is defined as the supremum of all
achievable rates Rs . Mathematically,

Csc = sup
feasible coding schemes

Rs

s.t. lim
n→∞

1

n
I (M; Zn

1 , Z̃ n
1 , Ẑ n

1 ) = 0, (3)

where the argument “feasible coding schemes” refers to as all
feedback codes that satisfy the secrecy requirements and the
power constraint. Note that the feedback capacity (without the
secrecy constraint) from Alice to Bob, denoted as C f b, can
be recovered by removing the secrecy constraint. This implies
Csc ≤ C f b.

III. MAIN RESULTS

A. Feedback Capacity and Capacity-Achieving Coding Scheme

In this section, we review a characterization of the feedback
capacity C f b and then propose a variant of the generalized
S-K scheme, which is a C f b-achieving feedback code without
the presence of an eavesdropper. The materials here are
useful for us to further investigate the channel model with
an eavesdropper.

First, under Assumption 1 Kim [14] showed that the feed-
back capacity from Alice to Bob with the average power
budget P > 0 can be characterized by

C f b =max
Q

1

2π

∫ π

−π
log |1 + Q(eiθ )|dθ,

s.t .
1

2π

∫ π

−π
|Q(e jθ)|2SW (e jθ )dθ ≤ P,

Q ∈ RH2 is strictly causal. (4)

Remark 1. Under Assumption 1, the optimal Q has no zeros
on the unit circle ([14, Proposition 5.1 (ii)]).



5774 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 9, SEPTEMBER 2019

Recent results in [16] provided a numerical approach to
compute C f b and explicitly constructed the optimal Q(e jθ),
which can be efficiently found by standard convex optimiza-
tion tools. We refer the interested reader to [16] for details.
In what follows, we describe, given an optimal Q in (4), how
to construct an implementable coding scheme that achieves
the feedback capacity from Alice to Bob.

First of all, once an optimal Q is found for the optimization
problem in (4), we construct a feedback filter K = −Q

(1 + Q)−1 stabilizing the channel within the prescribed input
average power budget (see [16] for the proofs). Next, based
on the transfer function K, we construct an explicit feed-
back coding scheme as follows, which is deterministic (time-
invariant) and has doubly exponentially decaying decoding
error probability.

We first present the controller K as an LTI single-input-
single-output (SISO) finite-dimensional discrete-time unstable
system with the following state-space model:

K :
[

Xs(k + 1)
Xu(k + 1)

]
=

[
As 0
0 Au

] [
Xs(k)
Xu(k)

]
+

[
Bs

Bu

]
Y (k)

U(k)= [
Cs Cu

] [
Xs(k)
Xu(k)

]
.

(5)

Based on Remark 1, we assume that the eigenvalues of Au

are strictly outside the unit disc while the eigenvalues of As

are strictly inside the unit disc. Without loss of generality,
we assume that As and Au are in Jordan form. Assume
Au has d eigenvalues, denoted by λi (Au), i = 1, 2, · · · , d .
Next, we propose a variant of the generalized S-K scheme
(as shown in Fig. 2) which is equivalent to the the capacity-
achieving coding scheme in [16] and [36] (as shown in Fig. 3).
The proposed coding scheme decomposes K into an encoder
(Alice) and a decoder (Bob) with the raw channel output fed
back to the encoder via the noiseless feedback channel.

Decoder: The decoder runs dynamics driven by the channel
output Y ,

X̂u(k + 1) = Au X̂u(k) + BuY (k), X̂u(0) = 0.

It only produces an estimate of the initial condition of the
encoder

M̂(k) = A−k−1
u X̂u(k + 1).

Encoder: The encoder runs the following dynamics driven
by the initial state, i.e., the message M:

X̃u(k + 1) = Au X̃u(k), X̃u(0) = M,

Ũu(k) = Cu X̃u(k).

It receives Y and runs dynamics driven by the received
feedback Y ,

Xs(k + 1) = As Xs(k) + BsY (k), Xs(0) = 0,

X̂u(k + 1) = Au X̂u(k) + BuY (k), X̂u(0) = 0,

and produces a signal

Û(k) = [
Cs Cu

] [
Xs(k)

X̂u(k)

]
.

Then, the encoder produces the channel input

U(k) = Ũu(k) − Û(k).

The equivalence between the proposed coding scheme and
the scheme in [16] (or [36]) can be directly verified by
comparing the channel inputs U (encoder) and the estimate of
the message M̂ (decoder) of the two schemes. Thus, we only
present this result as follows and omit the trivial proof.

Proposition 1. For a given message M and a sequence of
additive noise W k

1 (k ≥ 1), the coding schemes in Fig. 2
and Fig. 3 produce identical channel input U(k) and message
estimate M̂(k) for ∀k.

Remark 2. It is important to note that the “equivalence”
only holds for such a channel without an eavesdropper. This
is because in our model the eavesdropper can access the
feedback link. In the proposed coding scheme, since the
channel output is directly fed back to Alice, the eavesdropper’s
access to both the channel output and the feedback link is no
different from its access to the channel output only. However,
this is clearly not true for the coding scheme in Fig. 3, in which
the eavesdropper can extract more useful information from the
decoding process in Bob by having access to the feedback link.
In fact, this is the motivation for us to propose the coding
scheme in Fig. 2 for secure communication.

With a bit abuse of notation, in the above coding scheme
we use notation M ∈ R

d to represent the underlying message
which is allocated at the centroid of a unit hypercube in the
coordinate system depending on Au ∈ R

d×d . We refer the
interested readers to [36, Th. 4.3] for detailed explanation.
For a scalar Au ∈ R, the unit hypercube becomes an interval,
e.g., [− 1

2 , 1
2 ]. That is, 2nRs messages are represented by the

middle signal points of equally divided 2nRs subintervals
within [− 1

2 , 1
2 ]. In the rest of the paper, we use M to represent

the signal point of the messages rather than the message index.
In the next section, we show that the proposed coding

scheme with the selected initializations can lead to the
asymptotic zero leakage of the message to Eve. This implies
Csc = C f b.

B. Secrecy Capacity of the Finite-Order ARMA Feedback
Gaussian Channel with an Eavesdropper

We first present some necessary properties of the proposed
coding scheme without the presence of an eavesdropper.
We then use these properties to establish our main theorem
which characterizes the feedback secrecy capacity and an
achieving coding scheme.

The following result shows that, by choosing the particular
d-step initializations (in the state-space representation) for the
proposed coding scheme, the channel inputs (k ≥ d + 1) are
determined only by the past additive Gaussian noise W , a fact
that is vital to guarantee the asymptotic secrecy from Eve.

Proposition 2. For the feedback coding scheme in Fig. 2,
assume the first d-step channel inputs U d

1 = Ad+1
u M (where

Ad+1
u refers to matrix Au to the power d + 1), the dynamics
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Fig. 2. A variant of the generalized S-K scheme. The scheme is represented under z-transform in which z−1 represents the one-step delay in time domain.

Fig. 3. Capacity-achieving coding scheme in [16] and [36].

X̂u(d + 1) = Y d
1 (or equivalently, the estimated message

M̂(d) = A−d−1
u Y d

1 ) and Xs(d +1) = 0, where d is the number
of eigenvalues of the matrix Au. Then the induced channel
inputs U(k) for k ≥ d + 1 are determined only by the past
Gaussian noise W k−1

1 .

Proof. See Section IV-A.

Proposition 3. With the initializations defined in Proposi-
tion 2, the proposed coding scheme in Fig. 2 remains C f b-
achieving.

Proof. The proof follows directly from two facts. On the one
hand, all these initializations have no effect on the average
transmission power on channel inputs, which depend only on
the steady state of the underlying LTI systems. Further, these
initializations do not change the reliable transmission rate of
the coding scheme K, which is defined asymptotically and is
determined only by the unstable eigenvalues in Au [36].

It is noteworthy that the above propositions implicitly
reveal an interesting behavior of the proposed coding scheme
K with the selected initializations. Specifically, in the first
d-step, Alice transmits a (scaled) message while Bob receives
a noisy (unbiased) message. In the sequential steps, Alice
sends projected values of the past noise (shared key with Bob)
to refine Bob’s estimate. In the meanwhile, Eve receives only
the noisy refinements from Alice due to the additive noises

V , Ṽ and V̂ on the eavesdropper channels. The next theorem
establishes that the noisiness of these refinements for Eve leads
to the asymptotic ignorance of the message.

Theorem 1. Consider the finite-order ARMA Gaussian wire-
tap channel with feedback (Fig. 1) under the average channel
input power constraint P > 0. Then,

1) the feedback secrecy capacity equals the feedback
(Shannon) capacity, i.e., Csc = C f b; and

2) the feedback secrecy capacity is achieved by the pro-
posed C f b-achieving feedback coding scheme K with
Ud

1 = Ad+1
u M, X̂u(d + 1) = Y d

1 (i.e., the estimated
message M̂(d) = A−d−1

u Y d
1 ), and Xs(d + 1) = 0.

Proof. See Section IV-B.

Remark 3. For the finite-alphabet DMCs with the channel
input X, the channel output Y and the eavesdropper’s received
signal Z, Ahlswede and Cai [31] derived the secrecy capacity
of a wiretap channel with feedback as

Csc = max
p(x)

min{H (Y |Z), I (X; Y )}. (6)

Note that the above result holds even for the non-degraded
wiretap channel (i.e., Markov chain X → Z → Y ) with
noiseless link X → Z, which corresponds to our model with
Eve’s noise V = 0. However, the proof of Theorem 1 shows
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that our proposed linear coding scheme leads to zero rate
if V = 0. That is, although our capacity-achieving coding
scheme gains simplicity (i.e., linearity) and superior perfor-
mance (i.e., doubly exponentially decaying error probability
in decoding), it is not robust to the noise-free eavesdropper as
a result of such a simple coding structure.

In addition, for both finite and continuous-alphabet DMCs,
Ardestanizadeh et al. [20] showed that the secrecy capacity
of a degraded wiretap channel with a secure feedback link of
a rate R f is given by

Csc = max
p(x)

min{I (X; Y ), I (X; Y |Z) + R f }. (7)

It is noteworthy that the above two capacity results for
DMCs cannot be easily extended to wiretap channel with
memory. Specifically, it is known that the feedback capacity of
channels with memory (including colored Gaussian channels)
has been proved to be characterized by the directed informa-
tion [37], [38], which is a quantity no larger than mutual
information. However, the characterization for the feedback
capacity of wiretap channels with memory is unknown till
now. Surprisingly Theorem 1 implies that the secrecy capacity
for the colored Gaussian channels can also be characterized
by the directed information. But extensions to other feedback
wiretap channels with memory are technically nontrivial.

Remark 4. According to the term H (Y |Z) in Ahlswede’s
result (6), it is concluded that for finite-alphabet DMCs the
secrecy capacity depends on the variance of Eve’s noise.
Roughly speaking, the capacity converges to zero as Eve’s
noise becomes sufficiently small. But this conclusion may not
hold for continuous noises. On the one hand, Ahlswede’s
result (6) does not apply since the differential entropy h(Y |Z)
could be negative for continuous variables. On the other hand,
following the proof of Theorem 1, one can see that Csc = C f b

is always true provided that none of the variances of Eve’s
noises V , V̂ and Ṽ is zero. This is because according to
Proposition 2 our coding scheme essentially extracts fresh
randomness (i.e., the continuous forward channel noise W)
from the feedback output symbols and uses that randomness as
a key. However, because Eve’s noise (even arbitrarily small)
is added to the continuous noise W in every channel use,
this randomness (or secret key) is hidden from Eve. Further-
more, when specified to a degraded wiretap AWGN channel,
as presented in the following corollary, our result becomes
Csc = C f b = maxp(x) I (X; Y ). 1 Considering the degraded
wiretap channel with feedback, this result is consistent with
(7) with R f = ∞ (corresponding to the noiseless feedback),
which also implies that the secrecy capacity does not depend
on Eve’s noise (as long as the variance of Eve’s noise is non-
zero).

The next corollary shows that the well-known S-K
scheme [7] is a special case of our proposed coding scheme.

Corollary 1. Consider the AWGN wiretap channel with feed-
back (Fig. 1) under the average channel input power constraint

1For the AWGN channel, the feedback capacity equals the capacity without
feedback which is characterized by the mutual information.

P > 0. Assume that the additive noise W has mean zero
and variance σ 2

w > 0. Then the proposed coding scheme with

Au =
√

P+σ 2
w

σ 2
w

, Bu = −
√

A2
u−1

Au
, Cu = −√

A2
u − 1, and

As = Bs = Cs = 0 becomes the original S-K scheme, and
achieves the secrecy capacity Csc = C f b = 1

2 log(1 + P
σ 2

w
).

Proof. See Section IV-C.
This corollary recovers [19, Th. 5.1], showing that the well-

known S-K scheme not only achieves the feedback capacity
but also automatically provides the secrecy from the eaves-
dropper.

C. Feedback With Quantization Noise

In this section, we extend our result to Gaussian channels
with quantized feedback. It is noteworthy that the capacity
of colored Gaussian channels with noisy feedback remains an
open problem [39], [40], even when simplified to quantized
feedback. Therefore, in this paper, as an initial step towards
understanding the secrecy capacity of noisy Gaussian feedback
channels, we focus on AWGN channels with quantized feed-
back. Martins and Weissman [41] presented a linear coding
scheme featuring a positive information rate and a positive
error exponent for AWGN channels with feedback corrupted
by quantization or bounded noise. In what follows, we show
that our proposed linear coding scheme, when specified to
the AWGN channel with quantized feedback, converges to
the scheme in [41] and, more importantly, leads to a positive
secrecy rate. Furthermore, this achievable secrecy rate con-
verges to the capacity of the AWGN channel as the amplitude
of the quantization noise decreases to zero.

Firstly, we define a memoryless uniform quantizer with
sensitivity σq as follows.

Definition 1. [41] Given a real parameter σq > 0, a uniform
quantizer with sensitivity σq is a function �σq : R → R defined
as

�σq (Y ) = 2σq�Y + σq

2σq
�,

where �·� represents the floor function. The quantization error
at instant k, i.e., the feedback noise, is given by

Q(k) = �σq (Y (k)) − Y (k).

Note that, for a given channel output Y (k), the quantization
noise Q(k) can be recovered by the decoder as we assume
the decoder knows the quantization rule. In other words,
the decoder can get access to both the channel outputs and
the feedback noise while the encoder can only get access to
the corrupted channel output. On the other hand, note that with
the quantized feedback the proposed coding scheme and the
coding scheme in [16] and [36] (as shown in Fig. 3) are no
longer equivalent due to the different feedback signals. As a
consequence, the coding scheme in [16] and [36] may not be
applicable here. We next tailor our proposed coding scheme to
the AWGN channel with quantized feedback as follows (see
Fig. 4). We first let As = Bs = Cs = 0.
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Fig. 4. Coding structure for the AWGN channel with quantized feedback. The quantization noise q can be recovered by the decoder to help decoding.

Decoder: The decoder runs dynamics driven by the sum of
the channel output Y and the quantization noise Q as follows,

X̂u(k + 1) = Au X̂u(k) + Bu(Y (k) + Q(k)), X̂u(0) = 0.

It produces an estimate of the initial condition of the encoder,
as given by

M̂(k) = A−k−1
u X̂u(k + 1).

Encoder: The encoder runs the following dynamics:

X̃u(k + 1) = Au X̃u(k), X̃u(0) = M,

Ũu(k) = Cu X̃u(k).

It receives Y + Q and duplicates the decoding dynamics,

X̂u(k + 1) = Au X̂u(k) + Bu(Y (k) + Q(k)), X̂u(0) = 0,

and produces a signal,

Û(k) = Cu X̂u(k).

Then, it produces the channel input

U(k) = Ũu(k) − Û (k).

We next show that the above coding scheme can achieve a
positive secrecy rate, which converges to the AWGN capacity
as the feedback noise σq decreases. The following definition
is used to characterize this secrecy rate.

Definition 2. [41] For the given positive real parameters
σw, σq and P, define a parameter rq as follows.

1) If 4σq ≤ P, rq is the nonnegative real solution of the
following equation,

σw

√
22rq − 1 = √

P − σq(1 + 2rq ).

2) If 4σq > P, then rq = 0.

It is easy to check that rq satisfies the following three
properties [41]:

1) rq converges to the AWGN capacity as σq decreases,
i.e.,

lim
σq→0+ rq = 1

2
log(1 + P

σ 2
w

).

2) If σq =
√

P
2 , we have rq = 0.

3) If P 
 max{σ 2
w, σ 2

q }, rq � log(
√

P
σw+σq

). In other words,

the ratio of rq and log(
√

P
σw+σq

) converges to 1 as P →
∞.

Theorem 2. Consider the AWGN channel with memoryless
uniformly quantized feedback defined in Definition 1, where
the channel input power constraint is P > 0, and the noise
variance of the AWGN channel and the quantization sensitivity
in the feedback link are assumed to be σ 2

w and σq , respectively.
Assume U(1) = A2

u M, and X̂u(2) = Y (1) + Q(1) (or
equivalently, M̂(1) = A−2

u (Y (1) + Q(1))). Then, the above
proposed coding scheme with Au = 2r , Bu = −1, Cu =

1
Au − Au and As = Bs = Cs = 0 achieves a secrecy rate
r for all r < rq (rq is defined in Definition 2).

Proof. See Section IV-D.
Combined with the first property on rq in Definition 2, this

theorem implies that the achievable feedback secrecy rate of
the proposed coding scheme converges to the AWGN capacity
as σq decreases to zero.

IV. TECHNICAL PROOFS

In this section, we present the proofs of the results in
Section III.

A. Proof of Proposition 2

Based on the proposed coding scheme, we have

U(k) =Ũu(k) − Û(k)

=Cu(X̃u(k) − X̂u(k)) − Cs Xs(k)

=Cu(Au X̃u(k − 1) − Ak
u M̂(k − 1)) − Cs Xs(k)

=· · ·
=Cu(Ak

u M − Ak
u M̂(k − 1)) − Cs Xs(k)

=Cu Ak
u(M − M̂(k − 1)) − Cs Xs(k). (8)

Next, for k ≥ d + 1, i.e., the initial d transmissions are
complete, the signals start to evolve as described in the
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proposed coding scheme. Specifically,

M̂(k)

=A−k−1
u X̂u(k + 1)

=A−k−1
u (Au X̂u(k) + BuY (k))

=A−k
u X̂u(k) + A−k−1

u BuY (k)

=M̂(k − 1) + A−k−1
u BuY (k)

=M̂(k − 1) + A−k−1
u Bu(U(k) + W (k))

(a)= M̂(k − 1) + A−k−1
u Bu(Cu Ak

u M − Cu Ak
u M̂(k − 1)

−Cs Xs(k) + W (k))

=M̂(k − 1) − A−k−1
u BuCu Ak

u M̂(k − 1)

+A−k−1
u BuCu Ak

u M + A−k−1
u Bu(W (k)

−Cs Xs(k)) + M − M

=(I − A−k−1
u BuCu Ak

u)M̂(k − 1)

−(I − A−k−1
u BuCu Ak

u)M

+A−k−1
u Bu(W (k) − Cs Xs(k)) + M

=(I − A−k−1
u BuCu Ak

u)(M̂(k − 1) − M)

+A−k−1
u Bu(W (k) − Cs Xs(k)) + M, (9)

where step (a) follows from (8). Let αk = I − A−k−1
u BuCu Ak

u
and βk = A−k−1

u Bu . Moving M to the left side, we have

M̂(k) − M = αk(M̂(k − 1) − M) + βk(W (k) − Cs Xs(k)).

By iterating the above equation, for k ≥ d + 1, we obtain

M̂(k) − M =
k∏

i=d+1

αi (M̂(d) − M)

+
k∑

i=d+1

k∏
j=i+1

α j βi (W (i) − Cs Xs(i)),

where we assume αk+1 = 1. Given Ud
1 = Ad+1

u M and
M̂(d) = A−d−1

u Y d
1 , we have

M̂(d) = A−d−1
u (Ud

1 + W d
1 ) = M + A−d−1

u W d
1 .

Then, this yields

M̂(k) − M =
k∏

i=d+1

αi A−d−1
u W d

1

+
k∑

i=d+1

k∏
j=i+1

α jβi (W (i) − Cs Xs(i)).

Now, we derive the channel inputs U(k) for k ≥ d + 1.
Firstly, for k = d + 1, given Xs(d + 1) = 0, from (8) we have

U(d + 1) = −Cu Ad+1
u (M̂(d) − M) − Cs Xs(d + 1)

= −Cu Ad+1
u (M̂(d) − M)

= −Cu W d
1 . (10)

Then, for k ≥ d + 2, we present the channel inputs U(k)
and recall the evolution of Xs(k) as follows:

U(k) = −Cu Ak
u(M̂(k − 1) − M) − Cs Xs(k)

= −Cu Ak
u

( k−1∏
i=d+1

αi A−d−1
u W d

1

+
k−1∑

i=d+1

k−1∏
j=i+1

α j βi (W (i) − Cs Xs(i))

)
− Cs Xs(k),

and

Xs(k) =As Xs(k − 1) + Bs(U(k − 1) + W (k − 1)).

(11)

Starting with U(d + 1) = −Cu W d
1 and Xs(d + 1) = 0,

one can see that the above coupled iterations induce values of
U(k) and Xs(k) that depend only on the additive noise W k−1

1 .
Therefore, for k ≥ d + 2,

U(k) � φk(W k−1
1 ), (12)

where the mapping φk : R
k−1 → R is defined by the iterations

in (11). Combining with (10), we conclude that, for k ≥ d +1,
U(k) depends only on W k−1

1 . The proof is complete.

B. Proof of Theorem 1

First of all, since the proposed coding scheme derived from
the optimal filter Q is equivalent to the capacity-achieving
coding scheme in [16] and [36], it also achieves the feedback
capacity C f b. Then, in what follows, we need only to show
that under the selected initializations of the proposed coding
scheme, the following secrecy requirement is satisfied:

lim
n→∞

1

n
I (M; Zn

1 , Z̃ n
1 , Ẑ n

1 ) = 0.

Following from the model in Fig. 1, and (10) and (12) in the
proof of Proposition 2, and the selected initializations Ud

1 =
Ad+1

u M , the three inputs Z(k), Z̃(k) and Ẑ(k) to Eve for k ≥ 1
are given by

Zd
1 = Ud

1 + V d
1 = Ad+1

u M + V d
1 ,

Z(d + 1) = U(d + 1) + V (d + 1)

= −Cu W d
1 + V (d + 1),

Z(k) = φk(W k−1
1 ) + V (k), k ≥ d + 2, (15)

Z̃ d
1 = Ud

1 + Ṽ d
1 + W d

1 = Ad+1
u M + Ṽ d

1 + W d
1 ,

Z̃(d + 1) = U(d + 1) + Ṽ (d + 1) + W (d + 1)

= −Cu W d
1 + Ṽ (d + 1) + W (d + 1),

Z̃(k) = φk(W k−1
1 ) + Ṽ (k) + W (k), k ≥ d + 2, (16)

and

Ẑ d
1 = Ud

1 + V̂ d
1 + W d

1 = Ad+1
u M + V̂ d

1 + W d
1 ,

Ẑ(d + 1) = U(d + 1) + V̂ (d + 1) + W (d + 1)

= −Cu W d
1 + V̂ (d + 1) + W (d + 1),

Ẑ(k) = φk(W k−1
1 ) + V̂ (k) + W (k), k ≥ d + 2. (17)
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H (M|Zn
1 , Z̃ n

1 , Ẑ n
1 )

(a)≥ H (M|Zn
1 , Z̃ n

1 , Ẑ n
1 , W n

1 , V n
d+1, Ṽ n

d+1, V̂ n
d+1)

(b)= H (M|Zd
1 , Z̃ d

1 , Ẑ d
1 , W n

1 , V n
d+1, Ṽ n

d+1, V̂ n
d+1)

(c)= H (M|Ad+1
u M + V d

1 , Ad+1
u M + Ṽ d

1 + W d
1 , Ad+1

u M + V̂ d
1 + W d

1 , W n
1 , V n

d+1, Ṽ n
d+1, V̂ n

d+1)

=H (M|Ad+1
u M + V d

1 , Ad+1
u M + Ṽ d

1 , Ad+1
u M + V̂ d

1 , W n
1 , V n

d+1, Ṽ n
d+1, V̂ n

d+1)

(d)= H (M|Ad+1
u M + V d

1 , Ad+1
u M + Ṽ d

1 , Ad+1
u M + V̂ d

1 , W n
1 , V d+d̄

d+1 , Ṽ d+d̃
d+1 , V̂ d+d̃

d+1 )

=H (M|Ad+1
u M + V d

1 , Ad+1
u M + Ṽ d

1 , Ad+1
u M + V̂ d

1 , V d+d̄
d+1 , Ṽ d+d̃

d+1 , V̂ d+d̃
d+1 ), (13)

I (M; Zn
1 , Z̃ n

1 , Ẑ n
1 ) =H (M) − H (M|Zn

1 , Z̃ n
1 , Ẑ n

1 )

≤H (M) − H (M|Ad+1
u M + V d

1 , Ad+1
u M + Ṽ d

1 , Ad+1
u M + V̂ d

1 , V d+d̄
d+1 , Ṽ d+d̃

d+1 , V̂ d+d̃
d+1 )

=I (M; Ad+1
u M + V d

1 , Ad+1
u M + Ṽ d

1 , Ad+1
u M + V̂ d

1 , V d+d̄
d+1 , Ṽ d+d̃

d+1 , V̂ d+d̃
d+1 )

=I (M; AM + B), (14)

Recall that V (k), Ṽ (k) and V̂ (k) are additive noise processes
defined in (2).

Then, for n ≥ d +max{d̄, d̃, d̂}+1, we have (13), as shown
at the top of this page, where step (a) follows from the fact
that conditioning does not increase entropy; steps (b) and (c)
follow from (15), (16) and (17); step (d) follows from the finite
memory of the wiretap channel noise processes (V , Ṽ , V̂ ); and
the last step follows from the fact that the noise W is assumed
to be independent of the other variables.

Then, we obtain (14), as shown at the top of this page, where
A = [Ad+1

u , Ad+1
u , Ad+1

u ,000T ] (000 is an (d̄ + d̃ + d̂) × d zero

matrix) and B = [V d
1 , Ṽ d

1 , V̂ d
1 , V d+d̄

d+1 , Ṽ d+d̃
d+1 , V̂ d+d̂

d+1 ]. Recall
that the message M is uniformly selected from the index set
{1, 2, · · · , 2nRs } which correspond to points equally spaced in
a d-dimensional unit hypercube. The covariance matrix of M
is given by 1

12 Id as n → ∞. Following from the fact that
for a fixed covariance, a vector Gaussian input distribution
maximizes the mutual information, we obtain the following
upper bound:

lim
n→∞

1

n
I (M; Zn

1 , Z̃ n
1 , Ẑ n

1 )

(a)≤ lim
n→∞

1

n
I (M; AM + B)

= lim
n→∞

1

n

(
h(AM + B) − h(AM + B|M)

)

= lim
n→∞

1

n

(
h(AM + B) − h(B)

)

(b)≤ lim
n→∞

1

2n
log det

(
E[BB

T ] + 1

12
AA

T
)

− 1

n
h(B)

= lim
n→∞

1

n

[
1

2
log det

(
E[BB

T ] + 1

12
AA

T
)

− h(B)

]

(c)= 0, (18)

where step (a) follows from (14), and step (b) follows due to
the maximum entropy property of the Gaussian distribution.
For the last step (c), we note that, given that B is a vector
of noises with bounded variances, the entropy h(B) and the
covariance matrix E[BB

T ] are bounded and independent of the
index n. In addition, A is a deterministic matrix constructed in

the coding scheme. Therefore, the term 1
2 log det

(
E[BB

T ] +
1

12AA
T
)

− h(B) is bounded and independent of the index n

and hence dividing such a bounded term by n converges to
zero as n goes to infinity. The proof is complete.

C. Proof of Corollary 1

Based on Schalkwijk’s scheme in [7], the channel input
(encoder) and the message estimate (decoder) for k = 1 are
given below with the notations used in this paper.

U(1) =Au M,

M̂(1) =A−1
u Y (k) = M + A−1

u W (1). (19)

The dynamics of the Schalkwijk’s coding scheme for k ≥ 2
can be summarized as follows:

U(k) =
√

A2
u − 1Ak−1

u (M̂(k − 1) − M),

M̂(k) =M̂(k − 1) − A−k−1
u

√
A2

u − 1Y (k), (20)

where Au =
√

P+σ 2
w

σ 2
w

and σ 2
w is the variance of the additive

white Gaussian noise in the forward channel.
In our coding scheme, for k = 1,

U(1) =A2
u M,

M̂(1) =A−2
u Y (1) = M + A−2

u W (1). (21)

Substituting these selected parameters into (8) and the fourth
line of (9), we have channel inputs and the message estimate
of our proposed coding scheme as follows:

U(k) =
√

A2
u − 1Ak

u(M̂(k − 1) − M),

M̂(k) =M̂(k − 1) − A−k−2
u

√
A2

u − 1Y (k). (22)

By scaling the message M and the corresponding estimate
M̂ by a factor Au , we recover the dynamics of Schalkwijk’s
scheme. Note that this constant scaling of the message index
M has no effect on the reliable transmission rate and the power
cost at the channel input. The proof is complete.
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H (M|Zn
1 , Z̃ n

1 , Ẑ n
1 ) ≥H (M|Zn

1 , Z̃ n
1 , Ẑ n

1 , W n
1 , Qn

1, V n
2 , Ṽ n

2 , V̂ n
2 )

=H (M|Z1, Z̃1, Ẑ1, W n
1 , Qn

1, V n
2 , Ṽ n

2 , V̂ n
2 )

=H (M|A2
u M + V1, A2

u M + Ṽ1 + W1, A2
u M + V̂1 + W1, W n

1 , Qn
1, V n

2 , Ṽ n
2 , V̂ n

2 )

=H (M|A2
u M + V1, A2

u M + Ṽ1, A2
u M + V̂1, W n

1 , Qn
1 , V n

2 , Ṽ n
2 , V̂ n

2 )

=H (M|A2
u M + V1, A2

u M + Ṽ1, A2
u M + V̂1, W n

1 , Qn
1 , V 1+d̄

2 , Ṽ 1+d̃
2 , V̂ 1+d̂

2 )

=H (M|A2
u M + V1, A2

u M + Ṽ1, A2
u M + V̂1, W1, Q1, V 1+d̄

2 , Ṽ 1+d̃
2 , V̂ 1+d̂

2 ). (23)

I (M; Zn
1 , Z̃ n

1 , Ẑ n
1 ) ≤I (M; A2

u M + V1, A2
u M + Ṽ1, A2

u M + V̂1, W1, Q1, V 1+d̄
2 , Ṽ 1+d̃

2 , V̂ 1+d̂
2 ) = I (M; AM + B), (24)

D. Proof of Theorem 2

Starting from the decoder with Au = 2r and Bu = −1,
we have the decoding dynamics (k ≥ 2) given by

X̂u(k) =Au X̂u(k − 1) + Bu(Y (k − 1) + Q(k − 1))

=Au(Au X̂u(k − 2) + Bu(Y (k − 2) + Q(k − 2)))

+Bu(Y (k − 1) + Q(k − 1))

=A2
u X̂u(k − 2) + Au Bu(Y (k − 2) + Q(k − 2))

+Bu(Y (k − 1) + Q(k − 1))

=· · ·
=Ak

u X̂u(0) + Bu

k−1∑
i=0

Ak−1−i
u (Y (i) + Q(i))

=Bu

k−1∑
i=0

Ak−1−i
u (Y (i) + Q(i))

=−
k−1∑
i=0

2r(k−1−i)(Y (i) + Q(i)).

(25)

Then, the estimate of the initial state of the encoder (i.e.,
the message M) is given by

M̂(k − 1) = A−k
u X̂u(k) =−

k−1∑
i=0

2−r(i+1)(Y (i) + Q(i)).

(26)

Next, based on (8) with Cs = 0 and Cu = 1
Au

− Au , we have
the dynamics of channel inputs as

U(k) =Cu Ak
u(M − M̂(k − 1))

=Cu Ak
u(M − A−k

u X̂u(k))

=Cu Ak
u

[
M − A−k

u

(
Au X̂u(k − 1) + Bu(Y (k − 1)

+Q(k − 1))

)]

=Cu Ak
u

(
M − A−k+1

u X̂u(k − 1)

)
− Cu Bu

(
Y (k − 1)

+Q(k − 1)

)

=Cu Ak
u(M − M̂(k − 2)) − Cu Bu

(
Y (k − 1)

+Q(k − 1)

)

=AuU(k − 1) − Cu Bu

(
Y (k − 1) + Q(k − 1)

)

=2r U(k − 1) + (2−r − 2r )

(
Y (k − 1) + Q(k − 1)

)
.

(27)

Note that our decoder (26) and encoder (27) are identical to the
coding schemes (2) and (4) in [41]. In addition, [41, Th. 3.2]
shows that, for a given rq (Definition 2), the proposed scheme
can achieve any transmission rate r with r < rq .

Now, we need to prove that the proposed coding scheme
achieves secrecy with regard to the eavesdropper. In fact,
we can directly follow the proof of Proposition 2 and charac-
terize the channel inputs as

U(1) =A2
u M, U(2) = −Cu(W (1) + Q(1)),

U(k) =−Cu Ak
u

(
(1 − A−1

u BuCu)k−2 W (1)

A2
u

+
k−1∑
i=2

A−i−1
u (1 − A−1

u BuCu)k−1−i Bu(W (i) + Q(i))

)
,

k ≥ 3.
(28)

As a consequence, the channel inputs of the proposed coding
scheme depend only on the past forward channel noise W and
feedback quantization noise Q. This fact enables us to show
that, by following the proof of Theorem 1, this coding scheme
satisfies the secrecy requirement

lim
n→∞

1

n
I (M; Zn

1 , Z̃ n
1 , Ẑ n

1 ) = 0.

To avoid redundancy, we herein only provide a sketch of the
arguments. Details can be directly obtained by following the
same methodology from (13) to (18). First of all, we have
(23), as shown at the top of this page, where in the last
line Q1 depends on Y1 = Au

2 M + W (1). Then, we obtain
(24), as shown at the top of this page, where A = [A2

u ,
A2

u , A2
u , 000T ] (000 is an (d̄ + d̃ + d̂ + 2) × 1 zero matrix) and

B = [V1, Ṽ1, V̂1, W1, Q1, V 1+d̄
2 , Ṽ 1+d̃

2 , V̂ 1+d̂
2 ]. The rest of the

proof is omitted as it directly follows from (18).

V. CONCLUSION

In this paper, we have considered the finite-order ARMA
Gaussian wiretap channel with feedback and have shown that
the feedback secrecy capacity equals the feedback capacity
without the presence of an eavesdropper. We have further
extended our scheme to the AWGN channel with quantized
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feedback and proved that our scheme can achieve a positive
secrecy rate, which converges to the AWGN channel capacity
as the quantization noise decreases to zero.

We conclude this paper by pointing out a few related
research topics, which can facilitate a greater understanding of
secure communication with feedback. First of all, it is known
that the S-K coding scheme nicely unifies communications,
control and estimation for feedback systems. In this paper,
by leveraging the tools from both control and communications,
we have shown that a variant of the generalized S-K scheme
automatically provides secrecy for the legitimate users. How-
ever, understanding the secrecy nature of the S-K scheme from
an estimation perspective is missing from this work. One pos-
sible investigation along this line is to extend the fundamental
relation between the derivative of the mutual information and
the minimum mean-square error (MMSE) [42], known as I-
MMSE, from open-loop channels to feedback channels by
invoking the direct information studied in [37] and [38] rather
than the mutual information [43]. Furthermore, extending the
current results to channels with noisy feedback is also of inter-
est. Toward this end, it is necessary to first construct a feedback
coding scheme with a good positive achievable rate for noisy
feedback channels without the presence of an eavesdropper,
which itself is quite a challenging problem in general. What
is more, we remark that in this paper we have investigated
the condition of weak secrecy, i.e., the normalized mutual
information at the eavesdropper vanishes as the code block
length increases. However, according to (18), one can see that
our coding scheme imposes a finite upper bound on the leaking
information, i.e., the mutual information between the message
and the signals received by Eve. More importantly, this bound
is independent from the code length. That is, the level of
leaking information scales much slower (in fact, remains as a
constant) even when the code length increases. This indicates
that the nature of our linear coding scheme leads to a secrecy
level approaching to (but not exactly) the strong secrecy.
Therefore, it is of further interest to investigate a modified
version of the proposed coding scheme in this paper or other
coding schemes which can achieve strong or even semantic
secrecy for the colored Gaussian channels, and check under
which conditions noiseless feedback still offers secrecy for
free.
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