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Abstract— The capacity of the semi-deterministic relay channel
(SD-RC) with non-causal channel state information (CSI) only
at the encoder and decoder is characterized. The capacity is
achieved by a scheme based on cooperative-bin-forward. This
scheme allows cooperation between the transmitter and the relay
without the need of the later to decode a part of the message.
The transmission is divided into blocks, and each deterministic
output of the channel (observed by the relay) is mapped to a bin.
The bin index is used by the encoder and the relay to choose the
cooperation codeword in the next transmission block. In causal
settings, the cooperation is independent of the state. In non-causal
settings, dependence between the relay’s transmission and the
state can increase the transmission rates. The encoder implicitly
conveys partial state information to the relay. In particular,
it uses the states of the next block and selects a cooperation
codeword accordingly, and the relay transmission depends on
the cooperation codeword and, therefore, also on the states. We
also consider the multiple access channel with partial cribbing as
a semi-deterministic channel. The capacity region of this channel
with non-causal CSI is achieved by the new scheme. Examining
the result in several cases, we introduce a new problem of a
point-to-point (PTP) channel where the state is provided to the
transmitter by a state encoder. Interestingly, even though the CSI
is also available at the receiver, we provide an example showing
that the capacity with non-causal CSI at the state encoder is
strictly larger than the capacity with causal CSI.

Index Terms— Cooperative binning, random binning, relay
channel, multiple-access channel, semi-deterministic channel.

I. INTRODUCTION

SEMI-DETERMINISTIC models describe a variety of
communication problems in which there exists a deter-

ministic link between a transmitter and a receiver [1]. The
semi-deterministic relay channel plays an important role in
the study of relay channels, as it is the canonical model
where various schemes are known to achieve capacity. This
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work focuses on the semi-deterministic relay channel (SD-RC)
and the multiple access channel (MAC) with partial cribbing
encoders and non-causal channel state information (CSI) only
at the encoder and decoder. The state of a channel may
be governed by physical phenomena or by an interfering
transmission over the channel, and the deterministic link may
also be a function of this state.

The capacity of the relay channel was first studied by van
der Meulen [2]. In the relay channel, an encoder receives
a message, denoted by M , and sends it to a decoder over
a channel with two outputs. A relay observes one of the
channel outputs, denoted by Z , and uses past observations to
help the encoder deliver the message. The decoder observes
the other output, denoted by Y , and uses it to decode
the message that was sent by the encoder. Cover and El
Gamal [3] established achievable rates for the general relay
channel by using a partial-decode-forward scheme. If the
channel is semi-deterministic (i.e., the output to the relay
is a function of the channel inputs), El Gamal and Aref [4]
showed that this scheme achieves the capacity. Partial-decode-
forward operates as follows: first, the transmission is divided
into B blocks, each of length n; in each block b we send
a message M(b), at rate R, which is independent of the
messages in the other blocks. The message is split; after
each transmission block, the relay decodes a part of the
message and forwards it to the decoder in the next block
using its transmission sequence. Since the encoder also knows
the message, it can cooperate with the relay in the next
block. The capacity of the SD-RC is given by maximizing
min {I (X, Xr ; Y ), H (Z |Xr) + I (X; Y |Xr , Z)} over the joint
probability mass function (PMF) pX,Xr , where X is the input
from the encoder and Xr is the input from the relay. The
cooperation is expressed in the joint PMF, in which X and
Xr are dependent. However, when the channel depends on a
state that is unknown to the relay, the partial-decode-forward
scheme is suboptimal [5], i.e., it does not achieve the capacity.
The partial-decoding procedure at the relay is too restrictive
since the relay is not aware of the channel state.

Focusing on the state-dependent SD-RC (Fig. 1), we con-
sider two situations: when the CSI is available in a causal or
a non-causal manner. This family of channels can be thought
of as a setup in which both the encoder and the decoder
are aware of the disturbance in the channel, but the relay is
not. State-dependent relay channels were studied in [5]–[13];
Kolte et al. [5] derived the capacity of state-dependent
SD-RC with causal CSI and introduced a cooperative-
bin-forward coding scheme. In the cooperative-bin-forward
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Fig. 1. SD-RC with causal/non-causal CSI at encoder and decoder.

scheme, the relay does not have to explicitly recover the
message bits; instead, the encoder and relay agree on a map
from the deterministic outputs space Zn to a bin index. It thus
differs from partial-decode-forward because the relay does not
have to spend resources to decode a part of the message; rather,
it simply uses the bin index to cooperate. This index is used
by the relay to choose the next transmission sequence. Note
that this cooperative-binning is not a function of the state, and,
therefore, the relay does not need to have access to the state
to cooperate. The encoder is also aware of this index (since
the output is deterministic with respect to (w.r.t.) the state and
the inputs) and coordinates with the relay in the next block,
despite the lack of state information at the relay. The capacity
of this channel is given by maximizing min{I (X, Xr ; Y |S),
H (Z |Xr , S)+ I (X; Y |Xr , Z , S)} over pXr pX |Xr S . Note that X
and Xr are dependent, but Xr and S are not. When the state is
known causally, coordination between Xr and S is not feasible.
At each time i , the encoder can send information to the relay
about the states up to time i . The relay can only use strictly
causal observations Zi−1, which may contain information on
Si−1 but not on Si . Furthermore, since the states are distributed
independently, information about the past state at the relay
does not help to increase the achievable rate.

The main contribution of this paper is that it provides a
variant of the cooperative-bin-forward scheme that accounts
for non-causal CSI. While the former scheme allows coop-
eration between the encoder and the relay in the causal
setup, the new scheme also allows on top of it coordination
between the relay’s transmission and the state. Since the CSI
is known non-causally by the encoder, partial knowledge of
the state at the relay is feasible. The encoder can perform
a look-ahead operation and transmit to the relay information
about the upcoming states using an auxiliary sequence. The
relay can still cooperate with the encoder based on bin indexes,
which are chosen by the encoder to maximize the transmission
rate. The encoder chooses an index such that (s.t.) it reveals
compressed state information to the relay, using an auxiliary
cooperation codeword. This scheme is also extended to the
multiple access channel (MAC) with strictly causal partial
cribbing and non-causal CSI.

The MAC with cooperation can also be viewed as a
semi-deterministic model due the deterministic nature of
the cooperation link. A MAC with partially cooperating
encoders, which was introduced by Willems in [14], con-
sists of rate-limited private links between two encoders. Per-
muter et al. [15] showed that for the state-dependent setup,
the capacity can be achieved by superposition coding and rate-
splitting. The cribbing is a different type of cooperation, also
introduced by Willems and van der Meulen [16], in which

one transmitter has access to (is cribbing) the transmission
of the other. In [17], Simeone et al. considered cooperative
wireless cellular systems and analyzed their performance with
cribbing (referred to as in-band cooperation). The results show
how cribbing potentially increases the capacity. Asnani and
Permuter introduced in [18] a generalization of the cribbing
that, termed partial and controlled cribbing, describes a setup
in which one encoder has limited access to the transmission
sequence of the other. The cribbed information is a determin-
istic function of the transmission sequence. Kopetz et al. [19]
characterized the capacity region of combined partial crib-
bing and cooperation without states. When states are known
causally at the first encoder (while the other is cribbing),
Kolte et al. [5] derived the capacity, which is achieved by
cooperative-bin-forward. We show that the variation of this
scheme achieves the capacity when the states are known non-
causally.

The results are examined for several special cases; the
first is a point-to-point (PTP) channel where the CSI is
available to the transmitter (through a state encoder), and
to the receiver. Earlier work on limited CSI was done by
Rosenzweig et al. [20], where the link from the state encoder
to the transmitter is rate-limited. Steinberg [21] derived the
capacity of rate-limited state information at the receiver. In our
setting, the link between the state encoder and the transmitter
is not a rate-limited bit pipe, but rather, a communication chan-
nel where the transmitter can observe the output of the state
encoder in a causal fashion. We provide an example which
illustrates that in this setting the capacity with non-causal CSI
available at the state encoder is strictly larger than the capacity
with causal CSI at the state encoder even though the receiver
also has channel state information.

The remainder of the paper is organized follows.
Problem definitions and capacity theorems are given in
Section II. Special cases are given in Section III, and the
new state-encoder problem and the example are given in
Section IV. Proofs for theorems are given in Sections V, VI
and VII. In Section VIII, we discuss our conclusions and final
remarks.

II. PROBLEM DEFINITION AND MAIN RESULTS

A. Notation

We use the following notation. Calligraphic letters denote
discrete sets, e.g., X . Lowercase letters, e.g., x , represent
variables. A vector of n variables (x1, . . . , xn) is denoted by
xn . A substring of xn is denoted by x j

i , and includes variables
(xi , . . . , x j ). Whenever the dimensions are clear from the
context, the subscript is omitted. Let (�,F , P) denote a prob-
ability space where � is the sample space, F is the σ -algebra
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and P is the probability measure. Roman face letters denote
events in the σ -algebra, e.g., A ∈ F . P [A] is the probability
assigned to A, and 1[A] is the indicator function, i.e., it
indicates whether event A has occurred. Random variables are
denoted by uppercase letters, e.g., X , and similar conventions
apply for vectors. The probability mass function (PMF) of
a random variable, X , is denoted by pX . If x ∈ X , then
pX (x) = P [X = x]. Whenever the random variable is clear
from the context, we drop the subscript. Similarly, a joint
distribution of X and Y is denoted by pX,Y and a conditional
PMF by pY |X . Whenever Y is a deterministic function of X ,
we denote Y = f (X). If X and Y are independent, we denote
this as X ⊥⊥ Y , which implies that pX,Y = pX pY , and
a Markov chain is denoted as X ↔ Y ↔ Z and implies
that pX,Y,Z = pX,Y pZ |Y . The discrete uniform distribution is
denoted by U [1 : m], where [1 : n] stands for a collection of
integers from 1 to n.

An empirical mass function (EMF) is denoted by ν(a|xn) =
1
n

∑n
i=1 1[xi = a]. Sets of typical sequences are denoted by

A(n)
� (pX ), which is a �-strongly typical set with respect to

PMF pX , and defined by

A(n)
� (pX )�{xn : |ν(a|xn) − pX (a)| < �pX (a), ∀a ∈ X }.

Jointly typical sets satisfy the same definition w.r.t. the joint
distribution and are denoted by A(n)

� (pX,Y ). Conditional typi-
cal sets are defined as

A(n)
� (pX,Y |yn)�{xn : (xn,yn)∈A(n)

� (pX,Y )}

B. Semi-Deterministic Relay Channel

We begin with a non-causal state-dependent SD-RC
(Fig. 1). This channel depends on a state Si ∈ S, which is
known non-causally to the encoder and decoder but not to
the relay. An encoder sends a message M to the decoder
through a channel with two outputs. The relay observes an
output Zn of the channel, which at time i is a deterministic
function of the channel inputs, Xi and Xr,i , and the state
(i.e., Zi = z(Xi , Xr,i , Si )). Based on past observations Zi−1,
the relay transmits Xr,i to assist the encoder. The decoder uses
the state information and the channel output Y n to estimate
M̂ . The channel is memoryless and characterized by the PMF
pY,Z |X,Xr ,S where Z = z(X, Xr , S).

Definition 1 (Code for SD-RC) A (n, R) code Cn for the
SD-RC is defined by

xn :
[
1 : 2nR

]
× Sn → X n

xr,i : Z i−1 → Xr 1 ≤ i ≤ n

m̂ : Yn × Sn →
[
1 : 2nR

]
Definition 2 (Achievable rate) A rate R is achievable if
there exists a sequence of (n, R) codes s.t.

Pe(Cn) � PCn

[
m̂(Y n, Sn) �= M

] ≤ �

for any � > 0 and some sufficiently large n.

The capacity is defined to be the supremum of all achievable
rates.

Theorem 1 The capacity of the SD-RC with non-causal CSI
(Fig. 1), is given by

C = max min
{

I (X, Xr ; Y |S),

I (X; Y |Xr , Z , S, U)+ H (Z |Xr , U, S)− I (U ; S)
}

where the maximum is over pU |S pXr |U pX |Xr ,U,S s.t.
I (U ; S) ≤ H (Z |Xr , U, S), where Z = z(X, Xr , S) and
|U | ≤ min{|S|(|X ||Xr | − 1) + 2, |S|(|Y| − 1) + 2}.

The proof for the above theorem is given in Section V. Let
us first investigate the capacity and the role of the auxiliary
random variable U , which creates coordination between the
relay and the states. In the case of SD-RC without states,
the capacity can be achievable by a partial-decode-forward
scheme [3], and it coincides with the theorem by removing U .
In the partial-decode-forward, the relay decodes a part of
M and then uses these bits for superposition block Markov
coding. These bits are used for cooperation between the relay
and the encoder. When states are present, decoding message
bits reduces the transmission rates.

The original cooperative-bin-forward scheme, which is used
in the case of SD-RC with causal CSI, showed that there is
no need to decode a part of M because the cooperation can
be established by random binning. The bin index is used for
superposition coding, but the relay does not and cannot depend
on the states. In the non-causal setup, the superposition code
can be leveraged to achieve coordination between the relay
and the states, where U is a description of the states and is
selected by the bin index.

When the link between the encoder and the relay is not
deterministic, the cooperative binning is not applicable. The
scheme relies on the fact that the encoder and the relay
choose the same bin index based on Zn . When the link is
deterministic, the encoder can predict exactly which zn the
relay will observe by using the CSI and the codebook of the
relay. When the link is noisy, this cannot be done. In fact,
even without states, the setup of the general relay channel is
still an open problem.

C. Multiple Access Channel With Partial Cribbing

Consider a MAC with partial cribbing and non-causal state
information (Fig. 2). This channel depends on the state (S1, S2)
that is known to the decoder, and each encoder w ∈ {1, 2}
has non-causal access to one state component Sw ∈ Sw . Each
encoder w sends a message Mw over the channel. Encoder 2 is
cribbing Encoder 1; the cribbing is strictly causal, partial and
controlled by S1. Namely, the cribbed signal at time i , denoted
by Zi , is a deterministic function of X1,i and S1,i . The cribbed
information is used by Encoder 2 to assist Encoder 1 during
the transmission. Although this setup is relatively close to that
of the SD-RC, it is nonetheless different: 1) Encoder 2 plays
the role of the relay, but it has its own message to send, and
2) the semi-deterministic link now depends only on X1,i and
S1,i , while in the relay setup, it is also a function of X2i ,
according to this analogy.
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Fig. 2. State-dependent MAC with two state components and one side cribbing. When the cribbing is strictly causal, X2 = x2,i (M2, Sn
2 , Zi−1). When the

cribbing is causal, X2 = x2,i (M2, Sn
2 , Zi ).

Definition 3 (Code for MAC) A (n, R1, R2) code Cn for the
state-dependent MAC with strictly causal partial cribbing and
two state components is defined by

xn
1 : [1 : 2nR1 ] × Sn

1 → X n
1

x2,i : [1 : 2nR2 ] × Sn
2 × Zi−1 → X2 1 ≤ i ≤ n

m̂1 : Yn × Sn
1 × Sn

2 → [1 : 2nR1 ]
m̂2 : Yn × Sn

1 × Sn
2 → [1 : 2nR2 ]

for any � > 0 and some sufficiently large n.

Definition 4 (Achievable rate-pair) A rate-pair (R1, R2) is
achievable if there exists a sequence of (n, R1, R2) codes s.t.

Pe(Cn) � PCn

[
(M̂1, M̂2) �= (M1, M2)

]
≤ �

for any � > 0 and some sufficiently large n.

The capacity region of this channel is defined to be the closure
of the achievable rates region. We note here that a setup with
causal cribbing (Fig. 2), satisfies the same definitions except
x2,i : [1 : 2nR2 ] × Sn

2 × Zi → X2.

Theorem 2 The capacity region for discrete memoryless MAC
with non-causal CSI and strictly causal cribbing in Fig. 2 is
given by the set of rate pairs (R1, R2) that satisfy

R1 ≤I (X1; Y |X2, Z , S1, S2, U) (1a)

+ H (Z |S1, U) − I (U ; S1|S2)

R2 ≤I (X2; Y |X1, S1, S2, U)

R1 + R2 ≤ min
{

I (X1, X2; Y |S1, S2),

I (X1, X2; Y |Z , S1, S2, U)

+ H (Z |S1, U) − I (U ; S1|S2)
}

for PMFs of the form pX1,U |S1 pX2|U,S2 , with Z = z(X1, S1),
that satisfies

I (U ; S1|S2) ≤ H (Z |S1, U), (1b)

and |U | ≤ min
{|S1||S2|(|X1||X2|−1)+3, |S1||S2|(|Y|−1)+

4
}
.

Theorem 3 The capacity region for a discrete memoryless
MAC with non-causal CSI and causal cribbing in Fig. 2

is given by the set of rate pairs (R1, R2) that satisfies the
equations in (1) for PMFs of the form pX1,U |S1 pX2|Z ,U,S2 .

The proofs for Theorem 2 and Theorem 3 are given in
Sections VI and VII, respectively.

The main difference between Theorems 2 and 3 is the
conditioning on Z in the PMF pX2|Z ,U,S2 . We note here that
when S2 is degenerated, i.e., there is only one state component,
the capacity region in each theorem is given by removing S2
from the inequalities.

The auxiliary random variable U plays a double role in
the MAC configuration. The first role is similar to that in
the SD-RC, i.e., it creates coordination between X2 and S1.
This coordination is the result of the non-causal setup, and,
it is expressed in the PMF factorization pX1,U |S1 pX2|U,S2 and
can be intuitively explained as in the case of Theorem 1.
The second role is to create cooperation between the encoders.
For example, revisit the case without states, a MAC with
cribbing. In [16], Willems showed that the capacity can be
achieved by superposition block Markov coding by selecting
the un sequence using M1. Essentially, in each transmission
block, cooperation codewords un are selected by M1 of the
previous block, and the codewords xn

1 and xn
2 are superimposed

on un . Then, M1 of the current block is decoded by the second
encoder and used to select un for the next block. In [5], Kolte
el al. shown that there is no need to decode M1. Instead,
random binning is used with superposition coding.

In the following section, we examine the results in cases that
emphasize the role of U . These are proved in Appendix A.

III. SPECIAL CASES

A. Cases of State-Dependent SD-RC

Case 1: SD-RC without states: When there is no state to
the channel, the capacity of SD-RC is given by Cover and El
Gamal [4] as

C = max
pXr ,X

min{I (X, Xr ; Y ), I (X; Y |Xr , Z) + H (Z |Xr)}.

Since there are no states, S can be omitted from the
information terms in Theorem 1 and the joint PMF is
pU pXr |U pX |U pZ ,Y |X,Xr . Removing U recovers the capacity.
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Fig. 3. Case A - MAC with CSI at one encoder.

Case 2: SD-RC with causal states: Consider a similar
configuration to that in Fig. 1, and assume that the states are
known to the encoder in a causal manner. Although this is
not a special case of the non-causal configuration, it further
emphasizes the role of U . The capacity for this channel was
characterized by Kolte et al. [5, Theorem 2] by

C = max
pXr pX |Xr ,S

min{I (X, Xr ; Y |S),

I (X; Y |Xr , Z , S) + H (Z |Xr , S)}
where Z = z(X, Xr , S). Let us compare this capacity to that
with non-causal states. In the latter case, we see that while X
and Xr are dependent, Xr and S are not. In the non-causal case
(Theorem 1), Xr and S are dependent. The random variable U
generates empirical coordination w.r.t. PU |S , and it then uses it
as common side information at the encoder, the relay and the
decoder. When the state is known causally, such dependency
cannot be achieved since the states are drawn i.i.d. and the
relay observes only past outputs of the channel. The capacity
of the causal case is directly achievable by Theorem 1 by
removing U .

B. Cases of State-Dependent MAC With Partial Cribbing

We consider here the naive case of one state component,
i.e., S2 is degenerated. This setup emphasizes how U is used
in each case and what role it plays. We denote S � S1 to
emphasize this fact.

Case 1: Multiple access channel with states (without crib-
bing):

Consider the case of a MAC with CSI at Encoder 1 and at
the decoder (Fig. 3), which is a special case without cribbing
(i.e., z is constant). The capacity region, characterized by
Jafar [22, Theorem 5], is defined by the convex hull of all
rate pairs (R1, R2) satisfying the following inequalities:

R1 ≤I (X1; Y |X2, S)

R2 ≤I (X2; Y |X1, S)

R1 + R2 ≤I (X1, X2; Y |S) (2)

for all pX1|S pX2 .
Case 2: Multiple Access Channel with Partially Cooperating

Encoders:
Consider a case of MAC with a private link between the

encoders (Fig. 4). In this case, the channel depends only
on part of x1, which we denote by x1c. The other part of
x1, denoted by x1p, is known in a strictly causal manner to
Encoder 2.

This setting is different from those described in previous
works, which considered rate-limited cooperation. Here we

Fig. 4. Case B - MAC with CSI at one encoder and partial cooperation.

Fig. 5. Case C - PTP with non-causal CSI.

use a sequence with noiseless communication and a fixed
alphabet X1p. It turns out that the capacity region of the
channel is the same for both strictly causal and non-causal
cooperation links. The capacity of both cases when X2,i =
x2,i(M2, Xi−1

1p ) and X2,i = x2,i(M2, Xn
1p) is

R1 ≤I (X1c; Y |U, S) + R12 − I (U ; S)

R2 ≤I (X2; Y |X1c, U, S)

R1 + R2 ≤ min{I (X1c, X2; Y ),

I (X1c, X2; Y |U) + R12 − I (U ; S)}
R12 = log2 |X1p| (3)

for pU,X1c|S pX2|U pY |X1c,X2,S .
Case 3: Point-to-point with non-causal CSI : Consider a

configuration of a PTP channel with non-causal CSI (Fig. 5).
This is a special case of the MAC, when R2 = 0 and
pY2|X1,X2,S = pY2|X1,S . The capacity of this channel was given
by Wolfowitz [23, Theorem 4.6.1] as

C = max
pX1|S

I (X1; Y |S). (4)

IV. POINT-TO-POINT WITH STATE ENCODER

AND CAUSALITY CONSTRAINT

A. The State Encoder With a Causality Constraint

We introduce a new setting of a PTP channel with a state
encoder (SE) and a causality constraint (Fig 6). The SE has
non-causal access to CSI and assists the encoder to increase
the transmission rate. The causality constraint enforces the
encoder to depend on past observations of the SE. This
setting is attractive because it models situations in which
the state represent interference from another party that can
send information about the interference, and, the interference
only affects the communication between the encoder and
decoder.

The setting is defined for two cases: one with non-causal
CSI and the other with causal CSI. Explicitly, the setting
with non-causal CSI is defined by a state encoder (E1)
x1,i : Sn → X1, an encoder (E2) x2,i : [1 : 2nR2 ] ×
X i−1

1 → X2 and a decoder (D). Note that the encoder
depends on strictly causal information from the state encoder.
The definition of the second setting, however, is slightly
different. First, the state encoder depends on causal CSI, i.e.,
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Fig. 6. Comparison between causal and non-causal CSI. (a) Non-causal CSI, strictly-causal cribbing x2,i (M2, Xi−1
1 ). (b) Causal CSI, causal cribbing

x2,i (M2, Xi
1).

x1,i : S i → X1. Second, the encoder can use causal informa-
tion rather than strictly causal from the state encoder. Namely,
x2,i : [1 : 2nR2 ]×X i

1 → X2. We will first discuss the inclusion
of the non-causal case in the MAC setting.

To apply the MAC with partial cribbing to this case, con-
sider the following situation with only one state component.
Encoder 1 has no access to the channel, i.e., pY |X1,X2,S =
pY |X2,S , and no message to send (R1 = 0). Its only job is
to assist Encoder 2 by compressing the CSI and sending it
via a private link. The private link is the partial cribbing with
z(x1, s) = x1. When the link between the encoders is non-
causal, i.e., when x2,i = f (M2, Xn

1 ), using the characterization
of Rosenzweig et al. [20] with a rate limit of Rs = log |X1|
yields

C = max
pU |S pX2|U :

I (U ;S)≤log2 |X1|
I (X2; Y |U, S). (5)

When there is a causality constraint, the transmission at time
i can only depend on the strictly causal output of the state
encoder, i.e., x2,i = f (M2, Xi−1

1 ); nonetheless, the capacity
remains.

Briefly explained, the capacity is achieved as follows. The
transmission is divided into blocks (block-Markov encoding).
In each block, Encoder 1, which serves as the state encoder,
sends a compressed version of the states of the next block.
After each transmission block, Encoder 2 has a compressed
version of the state of the current transmission block and uses
it to ensure coherent transmission.

B. An Example - Non-causal CSI Increases Capacity

Here we provide an example to prove the claim that
the non-causal CSI in the MAC configuration increases
the capacity region in the general case. Consider a model
wherein the channel states are coded (Fig. 6). Case (a) is a
non-causal case, and (b) is causal. As we previously discussed,
the channel in Fig. 6a is a special case of the non-causal
state-dependent MAC with partial cribbing. Similarly, Fig. 6b
is a special case of causal state-dependent MAC with partial
cribbing [5].

Since this is a point-to-point configuration, it is a bit
surprising that the non-causal CSI increases capacity; when
the states are perfectly provided to the encoder, the capacity
with causal CSI and with non-causal CSI coincide. As we
will next show, in the causal case, the size of X1 can enforce
lossy quantization on the state, while in the non-causal case,
the states can be losslessly compressed.

For every channel pY |X2,S and states distribution pS ,

Cnc = max
pU |S PX2|U :

I (U ;S)≤log2 |X1|
I (X2; Y |S, U),

Cc = max
pX2|X1 ,x1(s)

I (X2; Y |S, X1)

where Cnc and Cc are the capacity of non-causal and causal
CSI configurations, respectively. Assume that the states distri-
bution is

pS(s) =
{

p
2 if s = 0, 1

1 − p if s = 2.

For each state there is a different channel: a Z-channel for
s = 0 and an S-channel for s = 1, where both channels share
the same parameter α, and a noiseless channel for s = 2
(Fig. 7).

The idea is that when the CSI is known non-causally,
in contrast to a causal case, we can compress Sn . Assume
that X1 is binary and that p is small enough, for instance,
p = 0.2, s.t.

H (S) < log2 |X1| = 1.

Taking U = S satisfies I (U ; S) = H (S) ≤ 1 and results in
the non-causal capacity

Cnc = p

2
(CZ-channel(α)+CS-channel(α))+(1− p)

where

CZ-channel(α) = CS-channel(α)

= Hb

(
2Hb(α)/ᾱ

1 + 2Hb(α)/ᾱ

)
− Hb(α)/ᾱ

1 + 2Hb(α)/ᾱ
.

On the other hand, the capacity for causal CSI under the same
assumptions is

Cc = max
β

[
(1 − p)Hb(β)+ p

2
CZ-channel(α)+

p

2

(
Hb
(
β + β̄α

)− β̄ Hb(α)
)]

,

which can be achieved by one of several deterministic func-
tions x1,i(Si ). One such function can be a mapping from
si = 2 to x1,i = 0 and si = 0/1 to x1,i = 1. Note that
this operation causes a lossy quantization of the CSI. For
comparison, we also provide the capacity when there is no
CSI at the encoder, which is

Cno-CSI = p

(
Hb

(
1 + α

2

)
− 0.5Hb(α)

)
+ (1 − p).
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Fig. 7. Example of a state-dependent channel.

TABLE I

CAPACITY OF PTP WITH CODED CSI - NUMERICAL

EVALUATIONS FOR p = 0.2.

The capacity of the channels (non-causal, causal, no CSI)
for p = 0.2 are summarized in Table I. There are two points
where all the three channels result in the same capacity. In the
first, when α = 0, the channel is noiseless for s = 0, 1, 2 and
the capacity is 1. There is no need for CSI at the encoder, and
therefore, the capacity is the same (among the three cases).
At the second point, when α = 1, the channel is stuck at
0 and stuck at 1 for s = 0 and s = 1, respectively, and
noiseless for s = 2. In this case, we can set pX1(1) = 0.5
for every s and achieve the capacity. Therefore, the encoder
does not use the CSI in those cases. However, for every α ∈
(0, 1), the capacity of the non-causal case is strictly larger
than those of the others, which confirms that non-causal CSI
indeed increases the capacity region.

V. PROOF FOR THEOREM 1

A. Direct

The scheme is based on superposition block Markov cod-
ing. The cooperative binning scheme uses the deterministic
property of the channel, i.e., the link from the encoder to the
relay, to determine exactly which output the relay will observe
during the transmission. In turn, this output is mapped to a bin
index to perform superposition encoding.

Codebook: Divide the transmission to B block, choose a
distribution pX,U |S pXr |S and split the message of each block,
i.e., m(b) = (m	(b), m		(b)), m	(b) ∈ 2nR	

, m		(b) ∈ 2nR		
.

For each block b ∈ [1 : B], a codebook C(b)
n is generated as

follows:
– Binning: Partition the set Zn into 2nRB bins by uni-

formly and independently choosing an index bin(b)(zn) ∼
U
[
1 : 2nRB

]
.

– Cooperation codewords: Generate 2nRB u-codewords

un
(

l(b−1)
)

∼
n∏

i=1

pU (ui )

for l(b−1) ∈ [1 : 2nRB ].
– Relay codewords: For each un ∈ Un generate

xr -codeword xn
r (un) ∼ ∏n

i=1 pXr |U
(
xr,i |ui

)
.

Fig. 8. Encoding procedure: looking for a sequence zn such that bin(zn)
points toward a coordinated sequence un .

– z-codewords: For each un ∈ Un , xn
r ∈ X n

r and sn ∈ Sn ,
generate 2n(R	+R̃) z-codewords

zn(m	(b), k(b)|xn
r , un, sn) ∼

n∏
i=1

pZ |Xr ,U,S(zi |xr,i , ui , si )

for m	(b) ∈ [1 : 2nR	 ], k(b) ∈ [1 : 2nR̃ ]
– Transmission codewords: For each zn ∈ Zn , un ∈ Un ,

xn
r ∈ X n

r and sn ∈ Sn draw 2nR		
x-codewords

xn(m		(b)|zn, xn
r, un, sn)∼

n∏
i=1

pX |Z ,Xr ,U,S(xi |zi,xr,i, ui, si )

for m		(b) ∈ [1 : 2nR		 ].
Encoder: Denote the bin index chosen in block b by l(b)

and let l(0) = m	(1) = m		(1) = m	(B) = m		(B) = k(B) = 1.
Assume that l(b−1) is known due to former operations at the
encoder. For xn

r (un(l(b−1))), un(l(b−1)), we denote

zn(m	(b), k(b)|l(b−1), sn(b))=zn(m	(b), k(b)|xn
r , un, sn(b))

throughout the proof.
In each block b, the encoder observes m(b). Since the link

is between the encoder and the relay is deterministic, it can
dictate which sequence the relay will observe during the block.
It thus dictates a sequence s.t. the auxiliary codeword un of
the next block will coordinate with sn(b+1). This procedure is
illustrated in Fig. 8 and performed by the following steps.

First, the encoder finds k(b) s.t. for zn =
zn(m	(b), k(b)|l(b−1), sn(b)),(

un(bin(zn)), sn(b+1)
)

∈ A(n)
� (pS,U)

If there exist multiple k(b) that satisfy the above, choose the
first one. Then, the encoder sends

xn
(

m		(b)|zn, xn
r (un(l(b−1))), un(l(b−1)), sn(b)

)
.
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and sets l(b) = bin
(
zn(m	(b), k(b)|l(b−1), sn(b))

)
. We abbrevi-

ate the notation of the chosen transmission sequence by
xn(b)

(
m		(b)|m	(b), k(b), l(b−1), sn(b)

)
.

Relay: Assume l(b−1) is known. At block b, send
xn

r

(
un(l(b−1))

)
. Denote this sequence by xn

r

(
l(b−1)

)
. After the

relay observes zn(b), it determines l(b) = bin(zn(b)). Note that
the relay is choosing the same index l(b) as the encoder does.
Thus, both xn(b) and xn(b)

r are superimposed on the same un(b).
Decoder: We perform decoding using a sliding window; this

is a decoding procedure that decodes from block 1 to B − 1,
and therefore, it reduces the delay for recovering message bits
at the decoder.1 We start at block 2, since the first cooperation
sequence is not necessarily coordinated with the states at that
block. Moreover, since the first message is fixed, the decoder
can imitate the encoder’s operation and find l(1).

Assume l(b−1) is known due to previous decoding opera-
tions. At block b, the decoder operates in two steps:

1) For each m	(b), it looks for k̂(b)(m	(b), l(b−1),
sn(b), sn(b+1)) and l̂(b)(m	(b), l(b−1), sn(b), sn(b+1))
the same way that the encoder does. We denote these
indexes by k̂(b)

(
m	(b)

)
and l̂(b)

(
m	(b)

)
.

2) The decoder finds a unique (m̂	(b), m̂		(b)) s.t. (6), as
shown at the bottom of the next page are satisfied.

Error analysis: The code Cn is defined by the
block-codebooks and the encoders and decoder functions.
We bound the average probability of an error at block b,
conditioned on successful decoding in blocks [1 : b − 1].
Without loss of generality, we assume that M 	(b) = 1 for each
b ∈ [1 : B]. For each block step of the encoding/decoding
procedure, we define the error events as

E1(b)=
{

∀k(b) :(Un(Bin(b)(Zn)), Sn(b+1)
)

/∈ A(n)
�

(
pS,U

)
Zn = Zn(1, k(b)|L(b−1), Sn(b))

}

E2(b)=
{

∃k, m	(b) �=1:
Bin(b)(Zn(m	(b), k|L(b−1), Sn(b)))=L(b)

}

E3(b)=
{

Condition (6) is not satisfied by(
m̂	(b), m̂		(b)

)=(1, 1)

}

E4(b)=
{

Condition (6) is satisfied by some(
m̂	(b), m̂		(b)

) �=(1, 1)

}

E5(b)=
{

L̂(b) �= L(b)
}

and the event of error in all blocks up to b as

E(b)=
b⋃

j=1

{E1( j) ∪ E2( j) ∪ E3( j) ∪ E4( j) ∪ E5( j)}

Each event E j , j ∈ [1 : 5] stands for an error during the
encoding/decoding procedures: E1(b) is a failure at the lookup
procedure at the encoder, E2(b) is when the decoder associates
the wrong message with the right bin index, E3(b) and E4(b)
are the errors when performing typicality tests at the decoder
(eq. (6)) and E5(b) may cause decoding errors in the next

1The sliding window technique achieves capacity for the relay channel but
not for the MAC [24].

block. The average probability of an error is upper bounded
by the probability of failure up to block B , i.e.,

Pe =ECn [Pe (Cn)]

≤P [E(B)]

≤
B∑

b=1

P
[
E1(b)|Ec

5(b − 1)
]︸ ︷︷ ︸

(1)

+ P
[
E2(b)|Ec

5(b − 1)
]︸ ︷︷ ︸

(2)

+ P
[
E3(b)|Ec

5(b − 1), Ec
1(b)

]︸ ︷︷ ︸
(3)

+ P
[
E4(b)|Ec

5(b − 1), Ec
2(b), Ec

1(b)
]︸ ︷︷ ︸

(4)

+ P
[
E5(b)|Ec

5(b − 1), Ec
1(b), Ec

2(b), Ec
4(b)

]︸ ︷︷ ︸
(5)

,

where the second inequality follows from union bound and
total probability.2

We analyze each event separately. Beforehand, let us intro-
duce a lemma that ensures us that E1(b) does not occur. That
is, at the beginning of block b, during the lookup by the
encoder, we will find a bin index Bin(b) s.t. the corresponding
cooperation codeword Un(Bin(b)) is coordinated with Sn(b+1).

Lemma 1 (Indirect covering lemma) Let {Zn(k)}k∈[1:2nR ]
be a collection of sequences, each sequence is drawn i.i.d.
according to

∏n
i=1 pZ |V (zi |vi ). For every zn ∈ Zn, let

l(zn) = Bin(zn) ∼ U[1 : 2nRB ]. Then, for every vn ∈ A(n)
� ,

and, for any δ1, δ2 > 0, if

R <H (Z |V ) − δ1

R <RB − δ2,

then,

lim
n→∞P

[
|{l : ∃k s.t. Bin(Zn(k))= l}|< 2n(R−δn )|V n=vn

]
=0

where δn → 0 as n → ∞,

The corresponding proof for this is given in Appendix B. It
states that by choosing R < H (Z |V ) − δ1 and RB > R + δ2,
we guarantee (with high probability) that we can choose
approximately 2n(R−	n) different bin indexes by selecting
zn(k), k ∈ [1 : 2nR ] and hashing the binning function l(·).
Note that the lemma does not guarantee that the bin index
of each zn is unique; rather, it guarantees a lower bound
on the number of different bin indexes that are assigned to
zn sequences. Since each bin is associated with a sequence
un , we can utilize this property together with a covering
lemma [25, Lemma 3.3].

We now proceed to bound the probability of the error events.
1) P[E1(b)|Ec

5(b − 1)]: By lemma 1, the probability of see-

ing fewer than 2n(R̃−	n ) different bin indexes (indexed
by l) goes to 0 if R̃ < H (Z |Xr , U, S) − δ1 and RB >
R̃ + δ2. This is done by identifying V = (Xr , U, S).
Denote

A =
{

there are less than 2n(R̃−	n)different bin indexes
}

D = {l : ∃k such that Bin(Zn(k)) = l
}

2Assume that A and B are two events. Then P [A ∪ B] ≤ P [A]+P
[
B|Ac].
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Therefore,

P[E1(b)|Ec
5(b − 1)] ≤

≤ P
[
E1(b)|Ec

5(b − 1), Ac]+ P
[
A|Ec

5(b − 1)
]

= P
[∀k,

(
Un(Bin(Zn(k))), Sn) /∈A(n)

� (pU,S)|Ec
5(b−1), Ac]

+ �	
n

≤ P
[ ∩l∈D (Un(l), Sn) /∈ A(n)

� (pU,S)|Ec
5(b−1), Ac]+ �	

n

≤ (1 − 2−n(I (U ;S)+δ	(�)))2n(R̃−	n ) + �	
n

≤ exp{−2n(R̃−I (U ;S)−	n−δ	(�))} + �	
n

which tend to 0 when n → ∞ if

R̃ > I (U ; S) + 	n + δ	(�).

2) P
[
E2(b)|Ec

5(b − 1)
]
: Denote

Zn(m	(b), k) = Zn(m	(b), k|L(b−1), Sn(b)),

and let K (b) denote the chosen index by the lookup in
block b, i.e., L(b) = Bin(b)(Zn(1, K (b))).
Consider

P
[
E2(b)|Ec

5(b − 1)
] =

=P

[
∃k, m	(b) �= 1 : Bin(b)(Zn(m	(b), k))=L(b)

]
=P

[
∃k, m	(b) �= 1 :

Bin(b)(Zn(m	(b), k))=Bin(b)(Zn(1, K (b)))

]
(a)≤
∑

m	(b)>1,k

P

[
Bin(b)(Zn(m	(b), k))=Bin(b)(Zn(1, K (b)))

]
(b)≤
∑

m	(b)>1,k

P

[
Bin(b)(Zn(m	(b), k))=Bin(b)(Zn(1, K (b)))

Zn(m	(b), k)=Zn(1, K (b))

]

+
∑

m	(b)>1,k

P

[
Bin(b)(Zn(m	(b), k))=Bin(b)(Zn(1, K (b)))

Zn(m	(b), k) �=Zn(1, K (b))

]

≤
∑

m	(b)>1,k

P

[
Zn(m	(b), k)=Zn(1, K (b))

]

+
∑

m	(b)>1,k

P

⎡
⎢⎣Bin(b)(Zn(m	(b), k))=Bin(b)(Zn(1, K (b)))

conditioned on

Zn(m	(b), k) �=Zn(1, K (b))

⎤
⎥⎦

≤2n(R	+R̃)2−n(H(Z |Xr ,U,S)−δ1(�)) + 2n(R	+R̃)2−nRB

where (a) follows by union bound and (b) by the law of
total probability. Therefore, this probability goes to zero
if

R	 + R̃ <RB

R	 + R̃ <H (Z |Xr , U, S) − δ1(�)

TABLE II

STATISTICAL RELATIONS IN THE DECODING PROCEDURE FOR THE SD-RC.

3) P
[
E3(b)|Ec

5(b − 1), Ec
1(b)

]
: Since (Un(L̂(b)(1)), Sn(b))

∈ A(n)
� (pS,U), following the conditional typicality

lemma [25, Chapter 2.5], the probability of this event
goes to zero as n goes to infinity.

4) P
[
E4(b)|Ec

5(b − 1), Ec
2(b), Ec

1(b)
]
: We distinguish

the events in block b and block b + 1. Note
that conditioning on Ec

2 ensures us that for
m	(b) �= 1 we have l̂(b)(m	(b)) �= L(b). Therefore,
at block b + 1, for each m	(b) �= 1 the
tuple

(
Sn(b+1), Un(l̂(b)(m	(b))), Xn

r (l̂(b)(m	(b)))
)

is independent of Y n(b+1) given Sn(b+1). At
block b, (Un(L̂(b−1)), Xn

r (L̂(b−1)), Sn(b), Y n(b)) ∈
A(n)

� (pS,U,Xr ,Y ) with high probability.
The probability of the error is divided into two dif-
ferent cases (Table II). Applying the standard packing
lemma [25, Lemma 3.1] to each gives the following
bounds:

R <I (Z , X; Y |Xr , U, S)+I (Xr , U ; Y |S)−δ3(�)−δ4(�)

R		 <I (X; Y |Z , Xr , U, S) − δ5(�)

Note that I (Z , X; Y |Xr , U, S) + I (Xr , U ; Y |S) =
I (Xr , X; Y |S) since U ↔ (Z , Xr , X, S) ↔ Y forms
a Markov chain and Z is a function of (X, Xr , S).

5) P
[
E5(b)|Ec

5(b − 1), Ec
1(b), Ec

2(b), Ec
4(b)

]
: If previous

events did not occur, then the probability of this event
is 0.

Following this derivation, the probability of an error goes to
zero if

R	 + R̃ <RB

R	 + R̃ <H (Z |Xr , U, S) − δ1(�)

R̃ >I (U ; S) + 	n + δ	(�) (7)

R <I (X, Xr ; Y |S) − δ3(�) − δ4(�)

R		 <I (X; Y |Z , Xr , U, S) − δ5(�) (8)

Performing Fourier-Motzkin elimination (see [26]) on the rates
in (8) yields

R ≤ I (X, Xr ; Y |S)

R ≤ I (X; Y |Xr , Z , S, U) + H (Z |Xr , U, S) − I (U ; S)

Cardinality bounds on the auxiliary random
variable U are obtained using the convex cover
method [25, Appendix C]. �

(
sn(b), un(l(b−1)), xn

r (l(b−1)), zn(m̂	, k̂(m̂	)|l(b−1), sn(b)), xn(m̂		(b)|m̂	, k̂(m̂	), l(b−1), sn(b)), yn(b)
)
∈ A(n)

� (pS,U,Xr ,X,Z ,Y ) (6a)(
sn(b+1), un(l̂(b)(m̂	(b))), xn

r (l̂(b)(m̂	(b))), yn(b+1)
)
∈ A(n)

� (pS,U,Xr ,Y ) (6b)
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B. Converse

Assume that the rate R is achievable. The first bound on
the rate is obtained by

n R =H (M)

(a)= H (M|Sn)

(b)≤ I (M; Y n |Sn)+n�n

=
n∑

i=1

I (M; Yi |Y i−1, Sn)+n�n

(c)=
n∑

i=1

I (M, Xi ; Yi |Y i−1, Sn)+n�n

(d)=
n∑

i=1

I (M, Xi , Xr,i ; Yi |Y i−1, Sn)+n�n

≤
n∑

i=1

I (M, Xi , Xr,i , Y i−1, Sn\i ; Yi |Si )+n�n

(e)=
n∑

i=1

I (Xi , Xr,i ; Yi |Si ) + n�n

( f )= n
(
I (X Q , Xr,Q; YQ |SQ , Q)+�n

)
≤n

(
I (Q, X Q , Xr,Q ; YQ |SQ)+�n

)
(g)=n

(
I (X Q , Xr,Q; YQ |SQ)+�n

)
where:
(a) - since M ⊥⊥ Sn ,
(b) - follows by Fano’s inequality,
(c) - Xn is a function of (M, Sn),
(d) - Xr,i is a composition of functions of Xi−1, Si−1,3

(e) - since (M, Xi−1, Y i−1, Sn\i ) ↔ (Xi , Xr,i , Si ) ↔ Yi is a
Markov chain,
(f) - by setting Q ∼ U [1 : n] to be an independent
time-sharing random variable,
(g) - since Q ↔ (X Q , Xr,Q , SQ) ↔ YQ is a Markov chain.

The second bound is obtained by

n R =H (M)

=H (M|Sn)

=H (M, Zn|Sn)

=H (Zn|Sn) + H (M|Zn, Sn)

The first term is bounded by

H (Zn|Sn)=H (Zn, Sn)−H (Sn)

(a)=
n∑

i=1

(
H (Zi, Si |Zi−1, Si−1)−H (Si)

)

=
n∑

i=1

(
H (Zi |Zi−1, Si )+H (Si |Zi−1, Si−1)−H (Si)

)
(b)=

n∑
i=1

(
H (Zi |Xr,i , Si , Ui )−I (Ui ; Si )

)
3 Xr,i is a function of Zi−1, which is a function of Xi−1 , Si−1 and Xr,i−1 .

Repeatedly, Xr,i−1 is a function of Xi−2 , Xi−2 and Xr,i−1 and so on.

=n
(
H (Z Q|Xr,Q , SQ , UQ , Q)−I (UQ; SQ |Q)

)
(c)=n

(
H (Z Q|Xr,Q , SQ , UQ , Q)−I (UQ , Q; SQ)

)
where:
(a) - since Sn is i.i.d.,
(b) - by setting Ui � (Si−1, Zi−1), and Xr , i = f (Zi−1),
(c) - since Q ⊥⊥ SQ .
Define U = (UQ, Q), X = X Q , Xr = Xr,Q , S = SQ and
Z = Z Q . The non-negativity of the entropy also imposes
distributions pU,S,Xr ,Z that comply with

I (U ; S) ≤H (Z |Xr , S, U)

The second term is upper bounded by

H (M|Zn, Sn) ≤ I (M; Y n |Zn, Sn) + n�n

=
n∑

i=1

I (M; Yi |Y i−1, Zn, Sn) + n�n

≤
n∑

i=1

I (M, Y i−1, Zn
i+1, Sn

i+1, Xi ; Yi |Zi , Xr,i , Si , Ui ) + n�n

(d)=
n∑

i=1

I (Xi ; Yi |Zi , Xr,i , Si , Ui ) + n�n

= n
(
I (X Q; YQ |Z Q, Xr,Q , SQ , UQ , Q) + �n

)
= n (I (X; Y |Z , Xr , S, U) + �n)

where (d) follows since (M, Y i−1, Zn
i+1, Sn

i+1) ↔
(Xi , Si , Ui , Zi , Xr,i ) ↔ Yi is a Markov chain and
Xr,i = xr,i (Zi−1). Therefore,

n R ≤ n(I (X; Y |Z , Xr , S, U)+H (Z |Xr , S, U)−I (U ; S)+�n)

We need to show that the following conditions hold:
• Q ⊥⊥ SQ

• The following Markov chains hold

(M, Xi−1, Y i−1, Sn\i ) ↔ (Xi , Xr,i , Si ) ↔ Yi

(M, Y i−1, Zn
i+1, Sn

i+1) ↔ (Xi , Si , Ui , Zi , Xr,i ) ↔ Yi

• pYQ |X Q,Xr,Q ,Z Q,SQ,UQ,Q = pY |X,Xr ,Z ,S

• Z Q = z(X Q , Xr,Q , SQ )

The first condition follows since Sn is i.i.d. All other condi-
tions can be derived from the factorization of the PMF:

p(m,sn, xn, xn
r , zn, yn)

=p(m)

n∏
i=1

p(si )

n∏
i=1

1(xi |m, sn)1(xr,i |zi−1)×

× 1(zi |xi , xr,i , si )pY |X,Xr ,Z ,S(yi |xi , xr,i , zi , si ).

The Markov chains can be readily proven by the factorization
above. For each i , Zi = z(Zi , Xr,i , Si ) and Sn is i.i.d.,
and therefore, the fourth condition also holds. To conclude,
we have

R ≤I (X, Xr ; Y |S) + �n

R ≤I (X; Y |Xr , Z , U, S) + H (Z |Xr , U, S) − I (U ; S) + �n

with a PMF that factorizes as

pU |S pXr |U pX |Xr ,U,S
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that satisfies I (U ; S) ≤ H (Z |Xr , U, S). This completes the
proof for the converse part. �

VI. PROOF FOR THEOREM 2

Although the MAC setup differs from that of the SD-RC,
there is some resemblance between the two. First, the deter-
ministic link between the two encoders implies that Encoder 2
plays the role of the relay. In contrast to the SD-RC, however,
in the MAC setup Z is a function only of X1 and S1 but
not of X2. Moreover, Encoder 2 now has its own message to
send over the channel, and the nature of this message causes
X2 to inherit randomness. Lastly, the MAC setup entails an
additional state component, S2, which is also known at the
decoder. Considering the differences and similarities, we will
follow basically the same strategy we used with the SD-RC,
with the following adaptation: we will account for the different
factors by adding superbins that contain multiple cooperation
codewords and by generating transmission sequences for M2.
The rest of this section contains the direct part for the proof.
The converse part is given in appendix C.

Codebook: Using superposition block Markov coding,
we set m(1)

1 = m(1)
2 = m(B)

1 = m(B)
2 = 1 and each

block-codebook C(b)
n is generated as follows:

– Binning: Partition the set Zn into 2nR	
B bins by uniformly

and independently drawing an index

bin(b)(zn) ∼ U [1 : 2nRu ], ∀zn ∈ Zn

– Cooperation codewords: Generate 2n(R	
B+R		

B)

u-codewords

un(l 	(b−1), l 		(b−1)) ∼
n∏

i=1

pU (ui (l
(b−1))),

for l 	(b−1) ∈ [1 : 2nR	
B ], l 		(b−1) ∈ [1 : 2nR		

B ].
– Cribbed codewords: For each l 	(b−1), l 		(b−1) and sn

1 ∈ Sn
1 ,

generate 2n(R	
1+R̃) z-codewords,

zn(m	(b)
1 , k(b)|l 	(b−1), l 		(b−1), sn

1 )

∼
n∏

i=1

pZ |U,S(zi |ui (l
	(b−1), l 		(b−1)), s1,i )

for m	(b)
1 ∈ [1 : 2nR	

1], k(b) ∈ [1 : 2nR̃1].
– Transmission codewords at Encoder 1: For each

m	(b)
1 , k(b), l 	(b−1), l 		(b−1) and sn

1 ∈ Sn
1 generate 2nR		

1

codewords

x1
n(m		(b)

1 |m	(b)
1 , k(b), l 	(b−1), l 		(b−1), sn

1 )

∼
n∏

i=1

pX1|Z ,U,S(x1,i |zi (m
	(b)
1 ), ui (l

	(b), l 		(b), s1,i )),

for m		(b)
1 ∈ [1 : 2nR		

1 ].
– Transmission codewords at Encoder 2: For each

l 	(b−1), l 		(b−1) and sn
2 ∈ Sn

2 , draw 2nR2 codewords

xn
2 (m(b)

2 |l 	(b−1), l 		(b−1), sn
2 )

∼
n∏

i=1

pX2|U (x2,i |u(b)
i (l 	(b−1), l 		(b−1)), s2,i ),

for m2 ∈ [1 : 2nR2 ].

Fig. 9. Choosing a sequence zn that points toward a bin containing a
coordinated sequence un . The thick dots are the chosen sequences.

Encoder 1: Since this encoder can predict the cribbed
sequence that the second encoder will observe, we perform
bin selection by hashing it using the binning function. Instead
of selecting the exact cooperation sequence from the collection
of generated u-sequences, it selects l 	(b), which is the index
of the superbin. Given m	(b)

1 , it looks for k(b) s.t. there exists
l̃ 		(b) that satisfies(

un(b+1)(l̃ 	(b), l̃ 		(b)), sn(b+1)
1

)
∈ A(n)

� (pS1,U ),

where l̃ 	(b) = bin(zn(b)(m	(b)
1 , k(b)|l 	(b−1), l 		(b−1), sn(b)

1 ))
is the superbin index. This procedure is illustrated
in Figure. 9.

Encoder 2: At the end of each block (b − 1), the superbin
index l 	(b−1) is known from the cribbed sequence zn(b−1).
To cooperate with first encoder, it first has to extract the
exact cooperation u-sequence from the superbin. Hence,
look for the first l̃ 		(b−1) s.t.

(
un(b)(l 	(b−1), l 		(b−1)), sn(b)

2

)
∈

A(n)
� (pS2,U ). Subsequently, in block b, the second encoder

sends xn
2 (m(b)

2 |l 	(b−1), l 		(b−1), sn
2 ), which conveys the message

it is required to send over the channel.
Decoder: The sliding window technique is suboptimal for

the MAC setup.4 Therefore, the decoding procedure is done
backwards: we start decoding from block B to block 2. Note
that in each block b, all transmissions are superimposed on a
u-sequence that is defined by l(b−1) = (l 	(b−1), l 		(b−1)). When
decoding at block b, assume that l(b) = (l 	(b), l 		(b)) is known
from previous decoding operations. The decoder operates in
three steps:

1) It seeks each superbin for sequences that are coordinated
with sn(b)

2 . That is, for each l̃ 	(b−1) ∈ [1 : 2nR	
B ], it finds

l̃ 		(b−1)(l 	(b−1), sn(b)
2 ) the same way that Encoder 2 does.

2) Then, using the decoded l(b) from pre-
vious decoded block, it finds functions
m̂	(b)

1 (l 	(b−1), sn(b)
2 ) and k̂(b)(l̃ 	(b−1), sn(b)

2 ) s.t.
bin(zn(b)(m̂	(b)

1 , k̂(b)|l 	(b−1), l̃ 		(b−1), sn(b)
1 )) = l(b).

If there are multiple functions that satisfy the above,
choose one uniformly. Note that there are a total of 2nR	

B

tuples of functions, one for each l̃ 	(b−1) ∈ [1 : 2nR	
b ].

4In [24], Laneman and Kraner showed that in some cases of MAC (in
contrary to SD-RC), the sliding window technique is inferior to backward
decoding in terms of achievable rates.
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(
sn(b)

1 , sn(b)
2 , un(l̂(b−1)), xn

1 (m̂		(b)
1 |m̂	(b)

1 , k̂(b), l̂(b−1), sn(b)
1 ), zn(m̂	

1, k̂|l̂(b−1), sn(b)
1 ), xn

2 (m̂(b)
2 |l̂(b−1), sn(b)

2 ), yn(b)
)

∈ A(n)
� (pS1,S2 PU,X1|S1 pX2|U,S2 pY,Z |X1,X2,S1,S2) (9)

3) Finally, it performs a typicality test by searching
(l̂ 	(b−1), m̂		(b)

1 , m̂(b)
2 ) that satisfy eq. (9), as shown at the

top of this page.

Error analysis: Define the events

E1(b) =

⎧⎪⎨
⎪⎩

∀k(b) :
(Un(b+1)(Bin(b)(Zn)), Sn(b+1)

1 ) /∈A(n)
� (pS,U)

Zn = Zn(1, k(b)|L(b−1), Sn(b)
1 )

⎫⎪⎬
⎪⎭

E2(b) =
{
(Un(b+1)(L 	(b), L 		(b)), Sn(b+1)

2 ) /∈A(n)
� (pS2,U )

}
E3(b) =

{ ∃l 		(b) �= L 		(b) :
(Un(b)(L 	(b−1), l 		(b−1)), Sn(b)

2 ) ∈ A(n)
� (pS2,U )

}

E4(b) =
{

∃k, m	(b)
1 �= 1 :

Bin(b)(Zn(m	(b)
1 , k|L(b−1), Sn(b)

1 ))=L(b)

}

E5(b) =
{

Condition (9)is not satisfied by

(l̂ 	(b−1), m̂		(b)
1 , m̂(b)

2 )=(L(b−1), 1, 1)

}

E6(b) =
{

Condition (9) is satisfied by some

(l̂ 	(b−1), m̂		(b)
1 , m̂(b)

2 ) �=(L 	(b−1), 1, 1)

}

E7(b) = {L̂(b) �=L(b)}

Define two unions of error events by

Ẽ1(b) =
b⋃

j=1

{E1( j) ∪ E2( j) ∪ E3( j)}

Ẽ2(b) =
B⋃

j=b

{E4( j) ∪ E5( j) ∪ E6( j) ∪ E7( j)}

where Ẽ1(b) is a union of encoding errors up to block
b, and Ẽ2(b) are decoding errors down to block b (back-
wards). The average probability of an error is upper bounded
by

Pe = ECn [Pe (Cn)]

≤P

[
Ẽ1(B) ∪ Ẽ2(1)

]
≤P

[
Ẽ1(B)

]
+P

[
Ẽ2(1)|Ẽc

1(B)
]

≤
B∑

b=1

(
P[E1(b)]+P[E2(b)|Ec

1(b)] + P[E3(b)] + P[E4(b)]

+P[E5(b)|Ec
7(b+1), Ẽc

1(B)]+P[E6(b)|Ec
7(b+1), Ẽc

1(B)]
+P[E7(b)|Ec

5(b), Ec
6(b), Ec

7(b + 1), Ẽc
1(B)]

)
Without loss of generality, assume all messages
m	(b)

1 , m		(b)
1 , m(b)

2 are equal to 1 for all b ∈ [1 : B].

– P [E1(b)]: According to lemma 1 and the covering lemma,
this probability goes to zero for n → ∞ if

R̃ ≤H (Z |U, S1)

R̃ <R	
B

I (U ; S1) <R		
B + R̃ (10a)

– P
[
E2(b)|Ec

1(b)
]
: by Markov lemma [25, Lemma 12.1],

this probability also vanishes to zero.
– P[E3(b)]: By setting

R		
B <I (U ; S2), (10b)

the packing lemma ensures that this probability will
reduce to 0.

– P[E4(b)]: Following similar derivation as in section V,
this probability goes to zero by taking

R	
1 + R̃ < H (Z |U, S1)

R	
1 + R̃ < R	

B (10c)

– P[E5(b)|Ec
7(b + 1), Ẽc

1(B)]: By the conditional typicality
lemma, this probability goes to 0 for n → ∞.

– P[E6(b)|Ec
7(b + 1), Ẽc

1(B)]: This event is bounded by the
union of the following events:

1)
(

l̂ 	(b−1), m̂		(b)
1 , m̂(b)

2

)
= ( �= L(b−1), ∗, ∗)

2)
(

l̂ 	(b−1), m̂		(b)
1 , m̂(b)

2

)
= (L(b−1),> 1,> 1)

3)
(

l̂ 	(b−1), m̂		(b)
1 , m̂(b)

2

)
= (L(b−1), 1,> 1)

4)
(

l̂ 	(b−1), m̂		(b)
1 , m̂(b)

2

)
= (L(b−1),> 1, 1)

A standard application of the packing lemma results in

R	
B+R		

1+R2< I (X1, X2; Y |S1, S2)+I (U ; S1)

R		
1+R2< I (X1, X2; Y |Z1, U, S1, S2)

R2< I (X2; Y |X1, U, S1, S2)

R		
1 < I (X1; Y |X2, Z1, U, S1, S2) (10d)

– P[E7(b)|Ec
5(b), Ec

6(b), Ec
7(b + 1), Ẽc

1(B)]: If the preced-
ing events did not occur, then the probability of this event
is 0.

Performing FME on (10) yields

R1 <I (X1; Y |Z , U, X2, S1, S2)

+ H (Z |U, S1) − I (U ; S1|S2)

R2 < I (X2; Y |X1, U, S1, S2)

R1 + R2 <I (X1, X2; Y |U, Z , S1, S2)

+ H (Z |U, S1) − I (U ; S1|S2)

R1 + R2 <I (X1, X2; Y |S1, S2)

I (U ; S1|S2) <H (Z |U, S1),

for all PMFs that factorize as pX1,U |S1 pX2|U,S2 and Z =
z(X1, S1). Note that I (U ; S1)− I (U ; S2) = I (U ; S1|S2) since
S2 ↔ S1 ↔ U forms a Markov chain. �
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VII. PROOF FOR THEOREM 3

The proof for this theorem relies heavily on the proofs
from previous sections. The achievability part builds on the
cooperative-bin-forward scheme from section VI by combin-
ing it with instantaneous relaying (a.k.a. Shannon strategy).
To avoid unnecessary repetition, we only show the differences
in the achievability part of the proof and the proofs for Markov
chains in the converse.

Achievability: Codebook generation is done as in VI,
with additional conditioning on Z when drawing
xn

2 (m(b)
2 |l(b−1), sn

2 ). Namely, the codebook constructed
for Encoder 2 is as follows. For each block b, sn

2 ∈ Sn
2 , z ∈ Z

and (l 	(b−1), l 		(b−1)), draw 2nR2 codewords

xn
2 (m(b)

2 |z, un(l 	(b−1), l 		(b−1)), sn
2 )

∼
n∏

i=1

pX2|Z ,U,S2(x2,i |z, ui (l
	(b−1), l 		(b−1)), s2,i )

In each transmission block, Encoder 1 performs the
same operations as before. Encoder 2 also performs
the same operation, but at each time i , it transmits
x2,i (m

(b)
2 |zi , un(l 	(b−1), l 		(b−1)), sn

2 ). The decoder performs
backward decoding as before w.r.t. the new codebook. All
other operations are preserved and the same error analy-
sis holds. Likewise, the derivation results in the same
achievable rate region but under the new PMF factorization
pU,X1|S1 pX2|Z ,U,S2.

Converse: The only difference between the converse and
the proof of the previous section is that here we need to show
the PMF factorization and prove the new Markov chains. The
rate bounds on R1 and R2 are the same and are obtained using
identical arguments. Continuing the derivation from this point,
we need to show that the following Markov chains hold

S2,i ↔ S1,i ↔ Ui

S2,i ↔ (S1,i , Ui ) ↔ Zi

(S1,i , X1,i ) ↔ (S2,i , Ui , Zi ) ↔ X2,i

Note that now the PMF of the random variables is

p(m1,m2, sn
1 , sn

2 , x1,i , zn, x2,i ) =

= p(m1)p(m2)

[
n∏

i=1

p(s1,i , s2,i )

]
×

× 1(x1,i , zn |sn
1 , m1)1(x2,i |zi , sn

2 , m2)

Now x2,i is also a function of zi and not only zi−1. Therefore,
the first two Markov-chains hold due to the same arguments
in the previous section. As for the last Markov, consider

p(m1, m2, sn
1 , sn

2 , x1,i , zn, x2,i ) =

=p(m1)p(m2)

[
n∏

i=1

p(s1,i , s2,i )

]
×

× 1(x1,i , zn|sn
1 , m1)1(x2,i |zi , sn

2 , m2)

=p(si−1
1 )p(s1,i , s2,i )p(sn

2,i+1)p(si−1
2 |si−1

1 )p(sn
1,i+1|sn

2,i+1)

× p(x1,i , zn, m1|sn
1 )1(x2,i , m2|zi , sn

2 )

=p(si−1
1 )p(s1,i , s2,i )p(sn

2,i+1)p(x1,i , zn, m1, sn
1,i+1|si

1, sn
2,i+1)

× p(x2,i , m2, si−1
2 |zi, sn

2,i , si−1
1 )

Summing for (m1, m2, , zn
i+1, si−1

2 , sn
1,i+1) results in

p(si−1
1 )p(s1,i , s2,i )p(sn

2,i+1)×
× p(x1,i , zi , |si

1, sn
2,i+1)p(x2,i |zi , sn

2,i , si−1
1 )

in which (S1,i , X1,i ) ↔ (S2,i , Si−1
1 , Zi−1, Sn

2,i+1, Zi ) ↔ X2,i

is Markov. All other arguments regarding the memoryless
property of the channel and the time-sharing random variable
Q hold. This concludes the proof of Theorem 3. �

VIII. CONCLUSIONS AND FINAL REMARKS

Using a variation of the cooperative-bin-forward scheme,
we found the capacity of the SD-RC and MAC with partial
cribbing when non-causal CSI is given to the decoder and
one of the transmitters. Remarkably, in both setups only
one auxiliary random variable is used to obtain the capacity
region. One cooperation codeword is designated to play the
role of creating cooperation and that of compression of the
state sequence. It is also evident that in the special case
of the MAC, the non-causal access to the state conferred
states compression that, consequently, increased the capacity
region.

The cooperative-bin-forward scheme relies heavily on the
fact that the link for the cooperation, i.e., the link from the
encoder to the relay (or the cribbed signal in the MAC),
is deterministic. Since the transmitter can predict and dictate
the observed output (by the relay), it can coordinate with the
relay based on the same bin index. However, it is not known
how the cooperative-bin-forward scheme can be generalized
to cases in which the link between the encoder and the relay
is a general noisy link.

APPENDIX A
PROOFS FOR SPECIAL CASES OF MAC

The special cases in section III are captured by Theorem 2.
We restate here the region for the case of one state component
as a reference for the following derivations. The capacity
region for discrete memoryless MAC with non-causal CSI
in Fig. 2 with one state is given by the set of rate pairs (R1, R2)
that satisfies

R1 ≤I (X1; Y |X2, Z , S, U)+H (Z |S, U)−I (U ; S)

R2 ≤I (X2; Y |X1, S, U)

R1 + R2 ≤I (X1, X2; Y |Z , S, U)+H (Z |S, U)−I (U ; S)

R1 + R2 ≤I (X1, X2; Y |S) (11a)

for PMFs of the form pU |S pX1|S,U pX2|U , with Z = z(X1, S),
that satisfies

I (U ; S) ≤ H (Z |U, S), (11b)

Case A: Multiple Access Channel with states (without
cribbing): This case is captured by Theorem 2 by setting
z(x1, s) = 0, ∀x1 ∈ X1, s ∈ S because this configuration
lacks cribbing between the encoders. The inequality in (11b)
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results in I (U ; S) ≤ 0, which enforces U to be independent
of S. Thus, the region in (11) becomes

R1 ≤ I (X1; Y |S, U, X2)

R2 ≤ I (X2; Y |S, U, X1)

R1 + R2 ≤ I (X1, X2; Y |S, U)

R1 + R2 ≤ I (X1, X2; Y |S), (12)

with a PMF of the form pU pX1|U,S pX2|U . Note that U ↔
(X1, X2, S) ↔ Y forms a Markov chain. Therefore, the last
inequality is redundant. It also implies that the capacity region
in (12) is outer bounded by (2); removing U achieves that
outer bound.

Case B: State-dependent MAC with partially cooperating
encoders: We investigate the capacity region for the case
of the orthogonal cooperation link and channel transmission
(Fig. 4). The cooperation link here is strictly causal due to
the cribbing, i.e., X2,i = f (M2, Xn

1,p). First, note that the
region in (3) is an outer bound, since it is the capacity region
of non-causal cooperation, i.e., when X2,i = f (M2, Xn

1,p).
The strictly causal configuration is captured by the cribbing
setup when setting X1 = (X1c, X1p), Z = X1,p and the
channel transition PMF to pY |X1c,X2,S . Then, the region in (11)
becomes

R1≤I (X1c; Y |S, X1p, U, X2)+H (X1p|U, S)−I (U ; S)

R2≤I (X2; Y |S, U, X1c, X1p)

R1 + R2≤I (X1c, X2; Y |S, U, X1p) +H (X1p|U, S)−I (U ; S)

R1 + R2≤I (X1c, X1p, X2; Y |S) (13a)

for PMFs of the form pU |S pX1|U,S pX2|U that satisfies

I (U ; S) ≤ H (X1c|U, S). (13b)

Note that I (X1c, X1p, X2; Y |S) = I (X1c, X2; Y |S) because
X1p ↔ (X1c, X2, S) ↔ Y is a Markov chain. We iden-
tify the rate H (X1p|U, S) as the cooperation rate R12. Let
pX1|U,S = pX1p|U,S pX1c|U,S , and pX1p|U=u,S=s be a uni-
form distribution for every (u, s) ∈ U × S. By doing so,
H (X1p|U, S) = log2 |X1p| and I (X1; Y |X2, U, S, X1p) =
I (X1c; Y |X2, U, S). The latter holds since X1p ↔
(X1c, X2, S) ↔ Y is a Markov chain and X1c is independent
of X1p . By denoting R12 = log2 |X1p|, the regions in (3)
and (13) coincide.

Case C: Point-to-point with non-causal CSI : First, note that
the channel depends only on X1 and S. Encoder 1 sends a
message over the channel, and the states are revealed to it
non-causally at the beginning of the transmission. Encoder
2, however, has no message to send; in fact, it cannot send
anything over the channel since the channel’s output is not
affected by X2 at all. Therefore, the rate R2 is 0. This
configuration is captured by the MAC when

R2 = 0

pY |X1,X2,S = pY |X1,S . (14)

Inserting (14) into Theorem 2 derives with

R1≤ I (X1; Y |S, U, Z , X2) + H (Z |U, S) − I (U ; S)

R1≤ I (X1, X2; Y |S, U, Z) + H (Z |U, S) − I (U ; S)

R1≤ I (X1, X2; Y |S) (15a)

with pS,U,X1 pX2|U pZ ,Y |X1,S that satisfies

I (U ; S) ≤ H (Z |U, S). (15b)

Due to the Markov chains X2 ↔ (X1, S) ↔ Y , X2 ↔
(X1, U, S, Z) ↔ Y and X2 ↔ (U, S, Z) ↔ Y , the following
identities hold

I (X1, X2; Y |S) =I (X1; Y |S)

I (X1, X2; Y |S, U, Z) =I (X1; Y |S, U, Z , X2)

I (X1, X2; Y |S, U, Z) =I (X1; Y |U, Z , S)

Therefore, the region in (15) reduces to

R1 ≤ I (X1; Y |S, U, Z) + H (Z |U, S) − I (U ; S)

R1 ≤ I (X1; Y |S)

I (U ; S) ≤ H (Z |U, S)

This region is smaller than or equal to (4); if we drop the
first and last inequalities, we get the expression for capacity.5

Taking U to be constant results in I (U ; S) = 0, which
makes the last inequality redundant. The first inequality is also
redundant because

I (X1; Y |S, Z) + H (Z |S) =
=I (X1, Z; Y |S) − I (Z; Y |S) + H (Z |S)

=I (X1, Z; Y |S) + H (Z |Y, S)

=I (X1; Y |S) + H (Z |Y, S),

which is larger than the right-hand side of the second inequal-
ity.

Point-to-point with state encoder and output causality con-
straint: This configuration is captured by the MAC with
cribbing by setting

R1 = 0

pY |X1,X2,S = pY |X2,S

z(x1, s) = x1.

The region in (11) reduces to

R2 ≤ I (X2; Y |S, U, X1)

R2 ≤ I (X2; Y |S, U, X1) + H (X1|U, S) − I (U ; S)

R2 ≤ I (X1, X2; Y |S)

I (U ; S) ≤ H (X1|U, S).

with pU,X1|S pX2|U pY |X2,S . Notice that I (X2; Y |S, U, X1) ≤
I (X1, X2, U ; Y |S), and both (U, X1) ↔ (X2, S) ↔ Y
and X1 ↔ (X2, S) ↔ Y are Markov chains. Therefore,
the third inequality is redundant. Moreover, from the constraint
I (U ; S) ≤ H (X1|U, S), it follows that I (X2; Y |S, U, X1) ≤

5The expressions for the capacity after dropping the constraints are not
exactly the same, since the PMF domains are different. However, the capacities
coincide due to the objective and maximization.
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I (X2; Y |U, X1, S) + H (X1|U, S) − I (U ; S); thus, the sec-
ond inequality is also redundant. The Markov chains Y ↔
(U, S) ↔ X1 and Y ↔ (X2, S, U) ↔ X1 imply that
I (X2; Y |S, U, X1) = I (X2; Y |S, U). Therefore, the region is
further reduced to

R2 ≤ I (X2; Y |S, U)

I (U ; S) ≤ H (X1|U, S).

Note that H (X1|U, S) ≤ log2 |X1|, and therefore, this region
is upper bounded by the capacity. By taking pX1|U,S to be
uniform distribution for every (u, s) ∈ U × S, the conditional
entropy H (X1|U, S) is equal to log2 |X1| and we achieve the
capacity.

APPENDIX B
PROOF FOR INDIRECT COVERING LEMMA

We bound the following probability

P(n)
e �P

[
|{l :∃k s.t. Bin(Zn(k))=l

}|<2n(R−δn)|V n =vn
]
≤	n

and ensure that both δn and 	n go to zero as n goes to infinity.

Assume vn ∈ A(n)
� (pV ) and recall that Bin(zn)

i.i.d∼ U[1 :
2nRB ]. Thus,

P

[
{Zn(k)}={zn(k)}k, {Bin(Zn(k))}={bin(zn(k))}k |V n =vn

]

=
2nR∏
k=1

pn
Z |V (zn(k)|vn)2−nRB

where pn
Z |V (zn(k)|vn) = ∏n

i=1 pZ |V (zi (k)|vi ).
Define the sets

D1�
{

k : (Zn(k), vn) ∈ A(n)
�	 (pZ ,V |vn)

}
D2�

{
k : Zn(k) �= Zn( j),∀ j �= k and k, j ∈ D1

}
D3�

{
k : Bin

(
Zn(k)

) �= Bin
(
Zn( j)

)
,∀ j �= k and k, j ∈ D2

}
and the events

E1 � |D1| < 2n(R−δ
(1)
n )

E2 � |D2| < 2n(R−δ
(2)
n )

E3 � |D3| < 2n(R−δ
(3)
n )

By the definition of E3 and the law of total probability,
it follows that

P(n)
e ≤P

[
E3|V n = vn]

≤ P
[
E1|V n = vn]︸ ︷︷ ︸

(1)

+ P
[
E2|Ec

1, V n = vn]︸ ︷︷ ︸
(2)

+ P
[
E3|Ec

2, Ec
1, V n = vn]︸ ︷︷ ︸

(3)

We bound each probability separately.

1) Define θk = 1
[
(Zn(k), vn) ∈ A(n)

�	 (pZ ,V )
]
, and note

that θk
i.i.d∼ Bernoully (ρn), where 1 − δ̃n ≤ ρn ≤ 1

and δ̃n → 0 as n → ∞. Therefore, for any δ	 > 0 we
have

P
[
E1|V n =vn] =P

[
|D1| < 2n(R−δ

(1)
n )|V n =vn

]
(a)=P

[
�2nR

k=1θk < 2nRρn(1 − δ	)|V n =vn
]

(b)≤2−2nRρnδ	2/2

=	(1)
n

where:
(a) - by setting δ

(1)
n � − 1

n log2
(
ρn(1 − δ	)

) −−−→
n→∞ 0,

(b) - by Chernoff’s inequality [25, Appendix B], and
	

(1)
n → 0 as n → ∞.

2) First, note that given Ec
1, we have that with a probability

of one, |D1| > 2n(R−δ
(1)
n ). Define the normalized amount

of non-unique sequences in D1,

C2= 1

|D1|
∑

k∈D1

1
[∃ j �=k :Zn( j)=Zn(k),∈ D1

]
By this definition, it follows that |D2| = |D1|(1 − C2).
First, we bound the expected value of C2 by

E[C2|V n=vn , Ec
1] =

=
∑
d1

P[D1=d1|V n=vn, Ec
1]E[C2|V n=vn, Ec

1,D1=d1]

=
∑

d1:|d1|>2n(R−δ
(1)
n )

P[D1=d1|V n =vn, Ec
1]

1

|d1|×∑
k∈d1

P[∃ j �= k : Zn( j)=Zn(k), j ∈D1|V n =vn, Ec
1]

≤
∑

d1:|d1|>2n(R−δ
(1)
n )

P[D1=d1|V n =vn, Ec
1]

1

��|d1|
∑
k∈d1

��|d1|2−n(H(Z |V )−�	)

=
∑

d1:|d1|>2n(R−δ
(1)
n )

P
[D1 = d1|V n =vn, Ec

1

] |d1|2−n(H(Z |V )−�	+δ
(1)
n )

≤2n(R−H(Z |V )+�	+δ
(1)
n )

Therefore, for any γ 	
1 > 0 it follows by Markov’s

inequality that

P

[
C2 > 2−nγ 	

1 |Ec
1, V n = vn

]
≤2n(R−H(Z |V )+δ

(1)
n +�	+γ 	

1)

=	(2)
n

where 	
(2)
n → 0 as n → ∞ if R < H (Z |V )− γ1, γ1 =

δ
(1)
n +�	+γ 	

1. By setting δ
(2)
n = δ

(1)
n − 1

n log2

(
1 − 2−nγ 	

1

)
,

we have

P
[
E2|Ec

1, V n = vn] ≤ 	
(n)
2 .

and δ
(2)
n → 0 as n → ∞.

3) We follow similar arguments as those for the previous
bound. Define

C3= 1

|D2|
∑

k∈D2

1
[∃ j �=k :Bin(Zn( j))=Bin(Zn(k)), j ∈D2

]
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and recall that the probability of each bin index is
independent of the realization of {Zn(k)}k . It follows
that

E
[
C3|Ec

2, Ec
1, V n = vn] ≤ 2n(R−RB+δ

(2)
n ).

By Markov’s inequality, for any γ 	
2 > 0

P[E3|Ec
2, Ec

1, V n = vn] =
=P[|D3| < 2n(R−δ

(3)
n )|Ec

2, Ec
1, V n = vn]

=P[C3 > 2−nγ 	
2 |Ec

2, Ec
1, V n = vn]

≤2n(R−RB+δ
(2)
n +γ 	

2)

=	(3)
n

where 	
(3)
n → 0 and δ

(3)
n = δ

(2)
n − 1

n (1 − 2−nγ 	
2) → 0 as

n → ∞, if R < H (Z |V ) − γ2 where γ2 = δ
(2)
n + γ 	

2.

Finally, for any γ1, γ2 > and a sufficiently large n, if

R < H (Z |V ) − γ1

R < H (Z |V ) − γ2

then

P(n)
e ≤ 	(1)

n + 	(2)
n + 	(3)

n

where δ
(i)
n ,	

(i)
n tends to 0 when n → ∞ for i = 1, 2, 3. �

APPENDIX C
CONVERSE FOR MAC

Let Ui � (Zi−1, Si−1
1 , Sn

2,i+1). We have

H(Zn |Sn
1 , Sn

2 ) =
=H (Zn, Sn

1 , Sn
2 ) − H (Sn

1 , Sn
2 )

(a)=
n∑

i=1

[
H (Zi , S1,i , S2,i |Zi−1, Si−1

1 , Sn
2,i+1)−H (S1,i, S2,i )

]
(b)=

n∑
i=1

[
H (Zi |S1,i , S2,i , Ui )+H (S1,i, S2,i |Ui )−H (S1,i, S2,i )

]

=
n∑

i=1

[
H (Zi |S1,i , S2,i , Ui )−I (Ui ; S1,i , S2,i )

]

≤
n∑

i=1

[
H (Zi |S1,i , S2,i , Ui )−I (Ui ; S1,i |S2,i )

]
(c)=n

[
H (Z Q|S1,Q, S2,Q , UQ , Q)−I (UQ; S1,Q |S2,Q , Q)

]
where (a) follows since Sn

1 and Sn
2 are drawn i.i.d. in pairs,

(b) follows by our definition of Ui and (c) is derived by setting
Q ∼ U[1 : n] to be a time sharing random variable. Note that
the following Markov chains hold:

S2,i ↔ S1,i ↔ Ui

S2,i ↔ (S1,i , Ui ) ↔ Zi

(S1,i , X1,i ) ↔ (S2,i , Ui ) ↔ X2,i (16)

Fig. 10. Proof for Markov chains S2,i ↔ S1,i ↔ Ui
and S2,i ↔ (S1,i , Ui ) ↔ Zi using an undirected graphical
technique [27]. The undirected graph corresponds to the PMF p(sn

1 , sn
2 , zn) =

p(si−1
1 , si−1

2 )p(s1,i , s2,i )p(sn
1,i+1, sn

2,i+1)p(zn |sn
1 ). The Markov chains fol-

low since all paths from S2,i to all other nodes go through S1,i .

Recall that the PMF on (m1, m2, sn
1 , sn

2 , x1,i , zn, x2,i) is

p(m1, m2, sn
1 , sn

2 , x1,i , zn, x2,i ) =

=p(m1)p(m2)

[ n∏
i=1

p(s1,i , s2,i )

]
×

× 1(x1,i, zn |sn
1 , m1)1(x2,i |zi−1, sn

2 , m2)

Note that since Xn
1 is a deterministic function of (M1, Sn

1 ),
so is Zn . Therefore, the Markov chain (S1,i , X1,i ) ↔
(S2,i , Ui ) ↔ X2,i is readily proven from the PMF. As for
the other Markovs in (16), we use an undirected graphical
technique in Figure 10. It is also straightforward to show that
S2,Q ↔ (S1,Q , UQ , Q) ↔ Z Q holds. Therefore,

H(Zn|Sn
1 , Sn

2 ) =
=n

[
H (Z Q|S1,Q , S2,Q , UQ , Q) − I (UQ ; S1,Q |S2,Q, Q)

]
=n

[
H (Z Q|S1,Q , UQ , Q) − I (UQ; S1,Q |S2,Q , Q)

]
(17)

Note that due to this identity, I (UQ ; S1,Q |S2,Q , Q) ≤
H (Z Q|S1,Q , UQ , Q). We proceed to bound R1 and R2. Note
that by Fano’s inequality,

H (M1, M2|Y n, Sn
1 , Sn

2 ) ≤ n�n

where �n → 0 when n → ∞. Bounding R1 yields

n R1 =H (M1)

(a)= H (M1|Sn
1 , Sn

2 )

(b)= H (M1, Zn |Sn
1 , Sn

2 )

=H (M1|Zn, Sn
1 , Sn

2 )+H (Zn|Sn
1 , Sn

2 )

(c)= H (M1|Zn, Sn
1 , Sn

2 , M2)+H (Zn|Sn
1 , Sn

2 )

≤I (M1; Y n|Zn, Sn
1 , Sn

2 , M2)+H (Zn|Sn
1 , Sn

2 )+n�n

where:
(a) - follows since M1 ⊥⊥ (Sn

1 , Sn
2 )

(b) - follows since Zn = f (M1, Sn
1 ),

(c) - follows since M2 ⊥⊥ (M1, Zn, Sn
1 , Sn

2 ). It follows that

I (M1;Y n|Zn, Sn
1 , Sn

2 , M2) =

=
n∑

i=1

I (M1; Yi |Y i−1, Zn, Sn
1 , Sn

2 , M2)

(d)=
n∑

i=1

I (M1, X1,i ; Yi |X2,i , Y i−1, Zn, Sn
1 , Sn

2 , M2)
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(e)≤
n∑

i=1

I (X1,i ; Yi |X2,i , Zi , Si
1, Sn

2,i )

=
n∑

i=1

I (X1,i ; Yi |X2,i , Zi , S1,i , S2,i , Ui )

=nI (X1,Q; YQ |X2,Q, Z Q, S1,Q , S2,Q , UQ, Q)

where (d) follows since X1,i is a function of (M1, Sn
1 ) and

(e) follows by moving (M2, Y i−1, Zn
i+1, Sn

1,i+1, Si−1
2 ) from

the conditioning to the left-hand side of the mutual informa-
tion. Since the channel is memoryless and without feedback,
(M2, Y i−1, Zn

i+1, Sn
1,i+1, Si−1

2 ) ↔ (X1,i , X2,i , S1,i , S2,i ) ↔
Yi holds.

We derive with the bound

R1 ≤ n[I (X1,Q; YQ |X2,Q, Z Q , S1,Q , S2,Q , Q)

+H (Z Q|S1,Q, UQ , Q) − I (UQ ; S1,Q |S2,Q) + �n]
Following similar steps, we have

n R2 = H (M2)

=H (M2|Sn
1 , Sn

2 , M1)

≤I (M2; Y n|Sn
1 , Sn

2 , M1)+n�n

=
n∑

i=1

I (M2; Yi |Y i−1, Sn
1 , Sn

2 , M1)+n�n

=
n∑

i=1

I (M2, X2,i ; Yi |Y i−1, Sn
1 , Sn

2 , M1, X1,i )+n�n

≤
n∑

i=1

I

(
Y i−1, Sn

1,i+1, Si−1
2

M1, M2, X2,i ; Yi

∣∣∣∣Si
1, Sn

2,i , X1,i

)
+n�n

=
n∑

i=1

I (X2,i ; Yi |Si
1, Sn

2,i , X1,i )+n�n

=nI (X2,Q ; YQ |X1,Q, S1,Q , S2,Q , Q)+n�n

The sum-rate R1 + R2 is upper bounded by

n(R1+R2) = H (M1) + H (M2)

=H (M1, M2)

=H (M1, M2|Sn
1 , Sn

2 )

=H (M1, M2, Zn|Sn
1 , Sn

2 )

=H (M1, M2|Zn, Sn
1 , Sn

2 ) + H (Zn|Sn
1 , Sn

2 )

≤I (M1, M2; Y n|Zn, Sn
1 , Sn

2 ) + H (Zn|Sn
1 , Sn

2 ) + n�n

where

I (M1,M2; Y n|Zn, Sn
1 , Sn

2 ) =

=
n∑

i=1

I (M1, M2; Yi |Y i−1, Zn, Sn
1 , Sn

2 )

≤
n∑

i=1

I

(
M1, M2, Sn

1,i+1, Si−1
2 , Y i−1

Zi−1, X1,i , X2,i ; Yi

∣∣∣∣Zi , Si
1, Sn

2,i

)

=
n∑

i=1

I (X1,i , X2,i ; Yi |Zi , S1,i , S2,i , Ui )

=nI (X1,Q , X2,Q; YQ |Z Q, S1,Q , S2,Q , UQ , Q)

and therefore, it follows from the identity in (17) and the above
that

n(R1 + R2)≤n
[
I (X1,Q, X2,Q; YQ |Z Q, S1,Q , S2,Q , UQ , Q)+

H (Z Q|S1,Q, UQ , Q − I (UQ; S1,Q |S2,Q)) + �n
]

and the second upper bound by:
n (R1 + R2) = H (M1, M2)

= H (M1, M2|Sn
1 , Sn

2 )

= H (M1, M2, Zn |Sn
1 , Sn

2 )

≤ I (M1, M2; Y n|Sn
1 , Sn

2 ) + n�n

=
n∑

i=1

I (M1, M2; Yi |Y i−1, Sn
1 , Sn

2 )+n�n

≤
n∑

i=1

I (M1, M2, Y i−1, Sn\i
1 , Sn\i

2 , X1,i , X2,i ; Yi |S1,i , S2,i )+n�n

=
n∑

i=1

I (X1,i , X2,i ; Yi |S1,i , S2,i )+n�n

= n
(
I (X1,Q , X2,Q; YQ |S1,Q, S2,Q , Q)+�n

)
≤ n

(
I (X1,Q , X2,Q; YQ |S1,Q , S1,Q)+�n

)
where the last inequality is due to the Markov chain Q ↔
(X1,Q, X2,Q , SQ) ↔ YQ . Thus, we obtain the following region

R1 ≤I (X1,Q; YQ |X2,Q, Z Q , S1,Q , S2,Q , Q)

+ H (Z Q|S1,Q, UQ , Q) − I (UQ ; S1,Q |S2,Q)

R2 ≤I (X2,Q; YQ |X1,Q, S1,Q , S2,Q , Q)

R1 + R2 ≤I (X1,Q , X2,Q; YQ |Z Q, S1,Q , S2,Q , UQ , Q)

+ H (Z Q|S1,Q, UQ , Q) − I (UQ ; S1,Q |S2,Q)

R1 + R2 ≤I (X1,Q , X2,Q; YQ |S1,Q, S1,Q)

0 ≤H (Z Q|S1,Q , UQ, Q) − I (UQ; S1,Q |S2,Q , Q)

for PMFs of the form

p(q)pS1,S2(s1,q ,s2,q)p(uq, x1,q |s1,q, q)p(x2,q |uq , s2,q)×
× pY |X1,X2,S1,S2(yq |x1,q, x2,q , s1,q , s2,q ).

The rest of the proof (regarding the removal of the time
sharing random variable Q) is straight-forward using similar
arguments to those employed the SD-RC in section V-B.
Therefore, by letting U = (UQ , Q), X1 = X1,Q, X2 =
X2,Q, Y = YQ , Z = Z Q , S1 = S1,Q and S2,Q , we obtain
the capacity region in Theorem 2. The upper bound of the
cardinality of the auxiliary variable U is obtained by the
convex cover method. �
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