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Abstract—The dirty paper wiretap channel, also referred to
as the Gaussian wiretap channel with noncausal state at the
transmitter, is revisited. First, we determine the secrecy capacity
of the dirty paper wiretap channel with noiseless feedback,
where the feedback channel is from the legitimate receiver to
the transmitter. Next, we obtain lower and upper bounds on
the secrecy capacity of the action-dependent dirty paper wiretap
channel with noiseless feedback, and show that these bounds meet
for a special case. Unlike the fact that action on the state helps to
enhance the capacity of the dirty paper channel with feedback,
numerical results of this paper indicate that it may not help to
enhance the secrecy capacity of the dirty paper wiretap channel
with feedback.

Index Terms—Action-dependent channel, dirty paper channel,
feedback, secrecy capacity, wiretap channel.

I. INTRODUCTION

1 The effect of channel feedback on the physical layer
security (PLS) of communication systems was initially studied
in [1], where the pioneering work on the wiretap channel
[2] has been re-visited by considering a noiseless feedback
channel from the legitimate receiver to the transmitter. Since
the transmitter also knows the legitimate receiver’s channel
output via the feedback channel, [1] showed that generating
keys from this shared channel output and using them to
encrypt the transmitted message help to increase the secrecy
capacity (i.e., channel capacity with weak perfect secrecy
constraint [2]) of the original channel model. Furthermore,
[1] showed that this usage of feedback is optimal if the
channel is physically degraded. Very recently, [3] showed that
for feedback communication systems, a better usage of the
feedback is to generate not only a key but also a cooperative
message from it, and such a cooperative message helps the
legitimate receiver to improve the decoding performance.
Moreover, [4]-[5] showed that the well-known Schalkwijk-
Kailath (SK) feedback scheme for the Gaussian channel [6]
achieves the secrecy capacity of the Gaussian wiretap channel
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with noiseless feedback, which equals the capacity of the
Gaussian channel without the eavesdropper.

In this paper, we revisit the Gaussian wiretap channel with
noncausal state information at the transmitter [7]-[8] (which is
also referred to as the dirty paper wiretap channel), and would
like to answer the following three open questions:

1) In [4]-[5], it has been shown that the secrecy capacity
of the Gaussian wiretap channel with feedback equals the
capacity of the Gaussian channel without secrecy constraint.
Does this still hold if the Gaussian wiretap channel with
feedback is further corrupted by a state which is noncausally
known at the transmitter, i.e., for the dirty paper wiretap
channel with feedback?

2) Furthermore, does the same nature of result hold if the
state is controlled by action. Namely, the secrecy capacity
of the action-dependent dirty paper wiretap channel with
feedback equals the capacity of the same channel model
without secrecy constraint?

3) In [11], it has been shown that an action on the state
helps to enhance the capacity of the dirty paper channel with
noiseless feedback. Does such an action on the state also
enhance the secrecy capacity of the dirty paper wiretap channel
with feedback?

This paper provides the answers to the aforementioned
questions. Our main contributions are summarized as follows:

1) We prove that the secrecy capacity of the dirty paper
wiretap channel with feedback equals the capacity of the dirty
paper channel with feedback, i.e., the secrecy requirement
does not reduce the capacity. Here note that if the same
channel model is not state dependent, then [4]-[5] showed
that the original SK scheme achieves the secrecy capacity,
which transmits the original message only at the first step,
and then the transmissions after the first step combine only
channel noises in the previous transmission steps. Since the
information leakage occurs only in the first step of the trans-
mission, the leakage rate vanishes as the codeword length tends
to infinity. In this paper, since the channel is state-dependent,
we need to adopt a modified SK scheme. Differently from
the classical SK scheme, such a modified scheme transmits
the original message through all transmission steps, i.e., the
information leakage occurs in all transmission steps. Here the
key step to show that secrecy still holds is our proof that the

657978-1-5386-9291-2/19/$31.00 ©2019 IEEE ISIT 2019



amount of such leakage information is shrinking exponentially,
and hence the information leakage rate still vanishes as the
codeword length tends to infinity.

2) We prove that the secrecy capacity of the action-
dependent dirty paper wiretap channel with feedback equals
the capacity of the same channel under no secrecy constraint
for a special case, i.e., the secrecy constraint does not reduce
the capacity if the feedback channel has action-dependent
state. Here note that the modified SK scheme used in 1) does
not work well when the state is controlled by action. However,
we find that since the state and the action are known by the
transmitter, the channel input can be designed to be linear
combination of the state and the action, and this leads to
the equivalence of the action-dependent dirty paper wiretap
channel with feedback and the Gaussian wiretap channel with
feedback. Then applying the original SK scheme as used in
[4]-[5] and choosing appropriate parameters of the state and
the action (similar to the choice of the parameter in the dirty
paper channel [10]), we obtain a lower bound on the secrecy
capacity of the action-dependent dirty paper wiretap channel
with feedback. Somewhat surprisingly, we find that such a
scheme for the state-independent channel achieves the capacity
of the action-dependent state corrupted channel for a special
case.

II. PRELIMINARIES

A. SK scheme for Gaussian wiretap channel with feedback

For the Gaussian channel with noiseless feedback, the i-th
(i ∈ {1, 2, ..., N}) channel input and output satisfy

Yi = Xi + ηi, (2.1)

where Xi is the channel input subject to an average power
constraint P , Yi is the channel output, and ηi ∼ N (0, σ2)
is the channel noise and is independent identically distributed
(i.i.d.) across the time index i. The i-th time channel input
Xi is a function of the message M and the channel feedback
Y i−1. It is well known that the capacity Cgf of the Gaussian
channel with feedback equals to the capacity of the Gaussian
channel, i.e.,

Cgf =
1

2
log(1 +

P

σ2
). (2.2)

It has been shown that the classical SK feedback scheme [6]
achieves Cgf , which is described below.

The message M takes values in the set M =
{1, 2, ..., 2NR}. Divide the overall interval [0.5, 0.5] into 2NR

equally spaced sub-intervals, and the center of each sub-
interval is mapped to a message value in M. Let θ be the
center of the sub-interval with respect to (w.r.t.) the choosing
message M . At time 1,

X1 = θα (2.3)

is sent by the transmitter, where α =
√

P+σ2

σ2 . Upon receiving
the output Y1 = X1 + η1, the receiver computes

θ̂1 =
Y1
α

= θ +
η1
α

(2.4)

as an estimation of θ at time 1. At time i (i ∈ {2, 3, ..., N}),

Xi = αi(θ − θ̂i−1) = −αi

∑i−1
j=1 αjηj∑i−1
j=1 α

2
j

(2.5)

is sent by the transmitter, where αi =
√

P
σ2α

i−1 for i ∈
{2, 3, ..., N}. Then the receiver receives Yi = Xi + ηi and
computes

X̂i = θ̂i−1 +
Yi
αi
, (2.6)

θ̂i =

∑i
j=1 α

2
jX̂j∑i

j=1 α
2
j

= θ +

∑i
j=1 αjηj∑i
j=1 α

2
j

(2.7)

as an estimation of θ at time i. In [6], it has been shown that
the decoding error probability Pe (the probability of θ̂N not
belonging to the sub-interval of the choosing message M ) of
this proposed scheme doubly exponentially decays to zero for
sufficiently large N and R ≤ 1

2 log(1 + P
σ2 ).

For the Gaussian wiretap channel with noiseless feedback,
the i-th (i ∈ {1, 2, ..., N}) channel input and outputs satisfy

Yi = Xi + η1,i, Zi = Xi + η1,i + η2,i, (2.8)

where Xi and Yi are defined in the same way as those
in (2.1), Zi is the channel output at the eavesdropper, and
η1,i ∼ N (0, σ2

1), η2,i ∼ N (0, σ2
2) are independent channel

noises and are i.i.d. across the time index i. In [5], it has
been shown that the above introduced SK scheme [6] also
achieves the secrecy capacity of the Gaussian wiretap channel
with noiseless feedback (i.e., its secrecy capacity equals Cgf
in (2.2)), and the reason is given below. Since the transmitter
sends the message only at time 1 (see (2.3) and (2.5)),
the information leakage rate 1

N I(M ;ZN ) depends only on
1
N I(M ;Z1), and it vanishes as N goes to infinity. In Section
IV, we show that the SK scheme also achieves the secrecy
capacity of the action-dependent dirty paper wiretap channel
with feedback for a special case.

B. Dirty paper channel with noiseless feedback

For the dirty paper channel with noiseless feedback, the i-th
channel input and output satisfy

Yi = Xi + Si + ηi, (2.9)

where Xi is the channel input subject to an average power
constraint P , and Si ∼ N (0, Q), ηi ∼ N (0, σ2) are indepen-
dent Gaussian state interference and noise and are i.i.d. across
the time index i (1 ≤ i ≤ N ). Moreover, Xi is a function
of the transmitted message M , the noncausal interference SN

and the channel feedback Y i−1. It has already been shown that
the feedback does not increase the capacity of the channel with
noncausal state at the transmitter [13], and hence the capacity
Cf of the dirty paper channel with noiseless feedback equals
the capacity Cd of the dirty paper channel [10], i.e.,

Cf = Cd =
1

2
log(1 +

P

σ2
). (2.10)

658



In this subsection, we introduce a feedback scheme [9] that
achieves the capacity (2.10) of the dirty paper channel with
noiseless feedback, which can be viewed as a variation of the
SK scheme [6] introduced in the preceding subsection. The
scheme is described below.

Without loss of generality, assume that the number of chan-
nel uses N equals K+1 and the time instant k ∈ {0, 1, ...,K}.
At time k, the output Xk of the encoder is given by

Xk = aXk−1 − L(Yk−1 − Sk−1), (2.11)

where

a =

√
1 +

P

σ2
, L = a− 1

a
. (2.12)

Moreover, the k-th channel output Yk is given by

Yk = Xk + Sk + ηk, (2.13)

and at time k, the output X̂0,k of the decoder is given by

X̂0,k = X̂0,k−1 + a−k−1LYk. (2.14)

The transmitted message M is uniformly drawn from the
alphabet set

M = {1, 2, ..., a(K+1)(1−ε)}, (2.15)

where ε is an arbitrary small positive number. Similarly to the
definition of the transmitted message in the SK scheme, we
equally divide the overall interval

[−
√
P (1 +

1

aK+1 − 1
),
√
P (1 +

1

aK+1 − 1
)](2.16)

into a(K+1)(1−ε) sub-intervals, and the center of
each sub-interval corresponds to a specific value in
{1, 2, ..., a(K+1)(1−ε)}. To start the encoding procedure,
define s−1 = y−1 = x̂0,−1 = 0 (s−1, y−1 and x̂0,−1 are
the values of S−1, Y−1 and X̂0,−1, respectively), and define
x−1 = M+M∗

a , where M∗ is given by

M∗ = −
∑K
j=0 a

−j−1Lsj

1− a−K−2
, (2.17)

and sj is the value of Sj . For the decoder, at the end of time
K, an estimation M̄K defined by

M̄K =
X̂0,K

1− a−2K−2
(2.18)

is obtained, and then the receiver finds the closest sub-interval
center to M̄K and obtains the decoded message M̂ . The
decoding error is defined as Pr{M̂ 6= M}.

Let WM be the center of the sub-interval with respect to
(w.r.t.) the choosing message M . The above definitions imply
that the k-th channel input Xk can be expressed as

Xk = a−k(WM +M∗)−
k−1∑
j=0

a−k+1+jLηj . (2.19)

Finally, by combining (2.19) and the above definitions, [9]
proves that the average channel input power of Xk tends to P

as k tends to infinity, the transmission rate R = log |M|
K+1 tends

to Cf = 1
2 log(1 + P

σ2 ) as ε tends to zero, and the decoding
error Pr{M̂ 6= M} doubly exponentially decays to zero as K
tends to infinity.

III. THE DIRTY PAPER WIRETAP CHANNEL WITH
NOISELESS FEEDBACK

Fig. 1: The dirty paper wiretap channel with feedback.

In this section, we study the dirty paper wiretap channel
with noiseless feedback, see Figure 1. The i-th channel inputs
and outputs satisfy

Yi = Xi + Si + η1,i, Zi = Yi + η2,i, (3.20)

where Xi, Si are defined in the same way as those in Sub-
section II-B, Yi and Zi are channel outputs respectively at the
legitimate receiver and the eavesdropper, and η1,i ∼ N (0, σ2

1),
η2,i ∼ N (0, σ2

2) are the channel noises. The following
Theorem 1 shows the secrecy capacity Csf of the model of
Figure 1 equals Cf (the capacity of the dirty paper channel
with noiseless feedback).

Theorem 1: The secrecy capacity Csf of the dirty paper
wiretap channel with noiseless feedback is given by Csf =
1
2 log(1 + P

σ2
1
).

Proof: First, note that the secrecy capacity Csf cannot
exceed the capacity of the model of Figure 1 without the
eavesdropper. Hence, we have Csf ≤ Cf = 1

2 log(1 + P
σ2
1
).

Next, we show that the secrecy rate 1
2 log(1 + P

σ2
1
) can be

achieved by the previously proposed feedback coding scheme
for the dirty paper channel with feedback, and the detail is
given below.

In Subsection II-B, we have shown that the proposed
feedback scheme achieves the rate 1

2 log(1+ P
σ2
1
) with decoding

error probability doubly exponentially decaying to zero as
codeword length tending to infinity. Now it remains to show
that the eavesdropper’s equivocation rate ∆ = 1

NH(M |ZN ) ≥
1
2 log(1 + P

σ2
1
) − ε

′
, where ε

′
is an arbitrary small positive

number. Since

∆ =
1

N
H(M |ZN )

(1)
=

1

K + 1
H(WM |Z0, ..., ZK)

(2)
=

1

K + 1
H(WM |WM +M∗ + S0 + η1,0 + η2,0, ...,

a−K(WM +M∗)−
K−1∑
j=0

(a−K+1+jLη1,j) + SK

+η1,K + η2,K)
(3)

≥ 1

K + 1
H(WM |WM + η2,0, a

−1M + η2,1, ...,
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a−KWM + η2,K , S0, ..., SK , η1,0, ..., η1,K)

(4)
=

1

K + 1
H(WM |WM + η2,0, a

−1WM + η2,1, ...,

a−KWM + η2,K)

=
1

K + 1
(h(WM , η2,0, η2,1, ..., η2,K)− h(WM

+η2,0, a
−1WM + η2,1, ..., a

−KWM + η2,K))

(5)

≥ 1

K + 1
(H(WM ) +

K∑
i=0

h(η2,i)

−
K∑
i=0

h(a−iWM + η2,i))

(6)

≥ (1− ε) log(a) +
1

2(K + 1)
log(2πeσ2

2)K+1

− 1

2(K + 1)

K∑
i=0

log(2πe(
P

3
a−2i + σ2

2))

= (1− ε) log(a) +
1

2(K + 1)
log(2πeσ2

2)K+1

− 1

2(K + 1)
log((2πe)K+1

K∏
i=0

(
P

3
a−2i + σ2

2))

= (1− ε) log(a) +
1

2(K + 1)
log

 1∏K
i=0(1 + P

3
a−2i

σ2
2

)


= (1− ε) log(a)− 1

2(K + 1)

K∑
i=0

log(1 +
P

3

a−2i

σ2
2

)

(7)

≥ (1− ε) log(a)− 1

2(K + 1)

1

ln 2

K∑
i=0

P

3

a−2i

σ2
2

= (1− ε) log(a)− 1

2(K + 1) ln 2

P

3σ2
2

1− a−2K−2

1− a−2
(8)
= (1− ε)1

2
log(1 +

P

σ2
1

)− 1

2(K + 1) ln 2

P

3σ2
2

·

1− a−2K−2

1− a−2
, (3.21)

where (1) follows from the fact that M can be denoted
by WM , and the definition ZN = (Z0, ..., ZK), (2) fol-
lows from (3.20), (2.19) and (2.17), (3) follows from con-
ditions reduce entropy and the fact that M∗ is determined
by (S0, ..., SK) (see (2.17)), (4) follows from the fact that
S0,...,SK , η1,0,...,η1,K are independent of WM , WM + η2,0,
a−1WM + η2,1,...,a−KWM + η2,K , (5) follows from the fact
that η2,0, η2,1,...,η2,K are i.i.d. random variables, (6) follows
from (2.15), η2,i ∼ N (0, σ2

2), the fact that the variance of
WM equals P

3 as K tends to infinity, and the fact that WM is
independent of η2,i, which implies

h(a−iWM + η2,i) ≤
1

2
log(2πe(

P

3
a−2i + σ2

2)),(3.22)

(7) follows from the inequality ln(1 + x) ≤ x for x ≥ 0,
and (8) follows from (2.12). Finally, note that when K tends
to infinity, 1

2(K+1) ln 2
P
3σ2

2

1−a−2K−2

1−a−2 in (3.21) tends to zero.

Hence choosing sufficiently large K, we have ∆ ≥ 1
2 log(1 +

P
σ2
1
)− ε′ . The proof of Theorem 1 is completed.
Remark 1: From (2.19), we see that the original message is

sent through all time instants, which leads to the information
leakage occurs in all transmission steps. However, (3.21)
shows that such an information leakage vanishes as the number
of channel uses tends to infinity, which finally leads to the
fact that the secrecy requirement does not reduce the channel
capacity.

IV. THE ACTION-DEPENDENT DIRTY PAPER WIRETAP
CHANNEL WITH NOISELESS FEEDBACK

In this section, we study the action-dependent dirty paper
wiretap channel with noiseless feedback, see Figure 2. This
feedback model is defined the same as that introduced in
Section III, except that the i-th (i ∈ {1, 2, ..., N}) channel state
Si = Ai + Wi, where Ai is the output of an action encoder
subject to an average power constraint PA, and Wi, η1,i, η2,i
are independent Gaussian noises and are i.i.d. across the time
index i. The secrecy capacity of the action-dependent dirty
paper wiretap channel with noiseless feedback is denoted by
Cfsag . In the remainder of this section, we will show Cfsag is
upper bounded by the capacity Cag of the action-dependent
dirty paper channel without feedback [12], and the upper
bound Cag is capacity-achieving for a special case.

Fig. 2: The action-dependent dirty paper wiretap channel with
noiseless feedback.

First, recall that the capacity Cag of the action-dependent
dirty paper channel is given by

Cag = max
(ρ1,ρ2):ρ21+ρ

2
2≤1

1

2
log

(
1 +

P (1− ρ21 − ρ22)

σ2
1

)
+

1

2
log

(
1 +

(
√
PA + ρ2

√
P )2

P (1− ρ21 − ρ22) + (σw + ρ1
√
P )2 + σ2

1

)
,

(4.23)

where −1 ≤ ρ1 ≤ 0 and 0 ≤ ρ2 ≤ 1. The following Theorem
2 characterizes the secrecy capacity Cfsag for one regime and
the bounds on Cfsag for the remaining parameter regime based
on (4.23).

Theorem 2: Suppose that the pair (ρ∗1, ρ
∗
2) achieves Cag ,

and define L = 1
2 log

(
1 +

(
√
PA+ρ∗2

√
P )2

P (1−ρ∗21 −ρ∗22 )+(σw+ρ∗1
√
P )2+σ2

1

)
. If

ρ∗21 +ρ∗22 = 1, then Cfsag = Cag = L. Otherwise, if ρ∗21 +ρ∗22 <

1, then L ≤ Cfsag ≤ Cag = L+ 1
2 log

(
1 +

P (1−ρ∗21 −ρ
∗2
2 )

σ2
1

)
.
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Remark 2: From Theorem 2, we conclude that if Cag is
achieved at the boundary of the constraint condition, i.e.,
ρ∗21 + ρ∗22 = 1, then Cfsag equals Cag , and this implies
that the secrecy constraint does not reduce the capacity
if the feedback channel model has action-dependent state.
Otherwise, if Cag is achieved with ρ∗21 + ρ∗22 < 1, then
Cag serves as an upper bound on Cfsag , and part of Cag
(i.e., 12 log

(
1 +

(
√
PA+ρ∗2

√
P )2

P (1−ρ∗21 −ρ∗22 )+(σw+ρ∗1
√
P )2+σ2

1

)
) serves as a

lower bound on Cfsag .
Proof: Since feedback does not increase the capacity Cag

of the action-dependent dirty paper channel [11], and Cfsag
cannot exceed the capacity of the action-dependent dirty paper
channel with feedback, we have Cfsag ≤ Cag . Next, for the

case that ρ∗21 + ρ∗22 = 1, construct X =
ρ∗2
√
P√

PA
A +

ρ∗1
√
P

σw
W .

Substituting the above definition of X and S = A + W into
Y = X + S + η1 and Z = X + S + η1 + η2, we have
Y = (1+

ρ∗2
√
P√

PA
)A+(1+

ρ∗1
√
P

σw
)W+η1, and Z = Y +η2, which

indicates that the action-dependent GWTC-N-CSIT with feed-
back is equivalent to the Gaussian wiretap channel with feed-
back shown in Subsection II-A. To be specific, the equivalent
model has input X

′
= (1 +

ρ∗2
√
P√

PA
)A with power constraint

P
′

= (1 +
ρ∗2
√
P√

PA
)2PA, has legitimate receiver’s channel noise

η
′

1 = (1 +
ρ∗1
√
P

σw
)W + η1 satisfying η

′

1 ∼ N (0, σ
′2
1 =

(1 +
ρ∗1
√
P

σw
)2σ2

w + σ2
1), and has eavesdropper’s channel noise

η
′

2 = η2 satisfying η
′

2 ∼ N (0, σ2
2). Defining α =

√
P ′+σ

′2
1

σ
′2
1

and αi =

√
P ′

σ
′2
1

αi−1 for i ∈ {2, 3, ..., N}, and along the

lines of the SK scheme introduced in Subsection II-A, the rate
R = 1

2 log
(

1 + P
′

σ
′2
1

)
= 1

2 log
(

1 +
(
√
PA+ρ∗2

√
P )2

(σw+ρ∗1
√
P )2+σ2

1

)
= Cag

is achievable with weak perfect secrecy.
Similarly, if Cag is achieved with ρ∗21 + ρ∗22 < 1, construct

X =
ρ∗2
√
P√

PA
A+

ρ∗1
√
P

σw
W +G, where G is randomly generated

according to G ∼ N (0, P (1−ρ∗21 −ρ∗22 )) and it is independent
of A and W . Substituting X =

ρ∗2
√
P√

PA
A+

ρ∗1
√
P

σw
W+G and S =

A+W into Y = X+S+η1 and Z = X+S+η1+η2, we have
Y = (1+

ρ∗2
√
P√

PA
)A+(1+

ρ∗1
√
P

σw
)W +G+η1, and Z = Y +η2,

which implies that the action-dependent GWTC-N-CSIT with
feedback is equivalent to the Gaussian wiretap channel with
feedback. The equivalent model has input X

′′
= (1+

ρ∗2
√
P√

PA
)A

with power constraint P
′′

= (1 +
ρ∗2
√
P√

PA
)2PA, has legitimate

receiver’s channel noise η
′′

1 = (1+
ρ∗1
√
P

σw
)W+G+η1 satisfying

η
′′

1 ∼ N (0, σ
′′2
1 = (1 +

ρ∗1
√
P

σw
)2σ2

w + P (1− ρ∗21 − ρ∗22 ) + σ2
1),

and has eavesdropper’s channel noise η
′′

2 = η2 satisfying η
′′

2 ∼

N (0, σ2
2). Defining α =

√
P ′′+σ

′′2
1

σ
′′2
1

and αi =

√
P ′′

σ
′′2
1

αi−1

for i ∈ {2, 3, ..., N}, and along the lines of the SK scheme
introduced in Subsection II-A, the rate R = 1

2 log(1 + P
′′

σ
′′2
1

) =

1
2 log

(
1 +

(
√
PA+ρ∗2

√
P )2

P (1−ρ∗21 −ρ∗22 )+(σw+ρ∗1
√
P )2+σ2

1

)
is achievable with

weak perfect secrecy. The proof is completed.

The following Figure 3 plots the bounds on Cfsag , the secrecy
capacity of the dirty paper wiretap channel with noiseless
feedback and the already existing lower bound on the secrecy
capacity of the dirty paper wiretap channel [7]. From Figure
3, we see that the achievable secrecy rate for the dirty paper
wiretap channel is enhanced by action on the state and channel
feedback. Moreover, as we see, when the power P is small,
action on the state further increases the secrecy capacity of
the dirty paper wiretap channel with feedback. However, this
may not hold in general.

Fig. 3: Action versus non-action for PA = 1, σ2
w = 1, Q =

PA + σ2
w = 2, σ2

1 = 3, σ2
2 = 10 and P taking values in

[0, 100].
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