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Abstract—The problem of channel coding over the Gaussian
multiple-input multiple-output (MIMO) broadcast channel (BC)
with additive independent Gaussian states is considered. The
states are known in a noncausal manner to the encoder, and
it wishes to minimize the amount of information that the
receivers can learn from the channel outputs about the state
sequence. The state leakage rate is measured as a normalized
blockwise mutual information between the state sequence and
the channel outputs’ sequences. We employ a new version of
a state-dependent extremal inequality and show that Gaussian
input maximizes the state-dependent version of Marton’s outer
bound. Further, we show that our inner bound coincides with
the outer bound. Our result generalizes previously studied scalar
Gaussian BC with state and MIMO BC without the state.

Index Terms—Dirty paper coding, Gelf’and-Pinsker scheme,
noncausal CSI, Broadcast channel, state masking, extremal
inequality, enhanced channel, entropy power inequality.

I. INTRODUCTION

We consider the problem of reliable transmission of purely
digital information over a two-user MIMO Gaussian BC with
an additive interference, modeled as state, which is known
in a noncausal manner to the encoder. In our setting, we
impose an additional requirement to reduce the knowledge of
the receivers regarding the state, measured as a normalized
blockwise mutual information between the state sequence
and the received sequences, as depicted in Figure 1. The
problem under consideration can act as a simplified model to
many evolving practical communication systems. Consider, for
example, a base station (BS) which is equipped with multiple
antennas while the cell is partitioned to various sectors. The BS
wishes to prevent leakage of information between the sectors,
that is, to minimize the knowledge of mobile users in a specific
sector regarding the messages intended for other sectors. In
such a scenario, the part of the BS signal intended for other
sectors is modeled as a state sequence. The state sequence is
known to the BS in a noncausal manner since it is the one
that generates it.

Problems of information transmission over channels with
a noncausal channel state information (CSI) have been the
subject for extensive study. The single-letter expression for
the capacity of the point-to-point discrete memoryless channel
(DMC) with noncausal CSI at the encoder (the G-P channel)
was derived in the seminal work of Gel’fand and Pinsker
[1]. One of the most interesting special cases of the G-P
channel is the Gaussian additive noise and interference setting
in which the additive interference plays the role of the state
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Fig. 1. System model for general BC subject to state masking constraints.

sequence, which is known noncausally to the transmitter. Costa
showed in [2] that the capacity of this channel is equal to the
capacity of the same channel without additive interference.
Cohen and Lapidoth [3] showed that any interference sequence
can be totally removed when the channel noise is ergodic and
Gaussian.

The general DM-BC was introduced by Cover [4]. The
capacity region of the DM-BC is still an open problem. The
largest known inner bound on the capacity region of the
DM-BC was derived by Marton [5]. The best outer bound
for DM-BC with common and private messages is due to
Nair and El Gamal [6]. There are, however, some special
cases in which the capacity region is fully characterized. For
example, the capacity region of the Gaussian BC was derived
by Bergmans [7], where the conditional version of the Entropy
Power Inequality (EPI) was utilized. An interesting result is
the capacity region of the Gaussian MIMO BC which was
established by Weingarten et al. [8]. The authors showed
that Bergmans’ technique cannot be directly applied to the
MIMO scenario since a certain proportionality condition is
not always satisfied, hence they introduced a new notion of an
enhanced channel and used it jointly with the EPI to show their
result. Liu and Viswanath [9] developed an extremal inequality
proof technique and showed that it can be used to establish
a converse result in various Vector Gaussian multiterminal
networks, including the Gaussian MIMO BC with private
messages. The general DM-BC with a noncausal CSI at the
encoder was studied in [10]. An inner bound was derived, and
it was shown to be tight for the Gaussian BC with independent
additive interference at both channels. Outer bounds for DM-
BC with CSI at the encoder were derived in [11].

Leakage of information in terms of mutual information is
a classical measure. The problem of state-masking and infor-
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mation rate trade-off was introduced in [12]. In that work, the
state sequence was treated as undesired information that leaks
to the receiver and is known to the transmitter. The measure
of the ability of the receiver to learn about the state from the
received sequence was defined as the normalized blockwise
mutual information between the state sequence Sn and the
received sequence Yn, that is, I(Sn;Yn)/n. The concept of
state amplification is a dual problem to state masking. Kim
et al. [13] considered the problem of transmitting data at
rate R over a DMC with random parameters and CSI at
the encoder and simultaneously conveying the information
about the channel state itself to the receiver. Courtade [14]
considered a joint scenario, with two-encoder source coding
setting where one source is to be amplified, while the other
source is to be masked. Koyluoglu et al. [15] considered a
state-dependent BC with state sequence known in a noncausal
manner to Alice (the transmitter), and its goal is to effectively
convey the state to Bob (receiver 1) while "masking" it from
Eve (receiver 2). Liu and Chen [16] considered the problem of
message transmission and state estimation over the Gaussian
BC, where both received signals interfered by same additive
Gaussian state. Grover and Sahai [17] related the problem
of state masking to Witsenhausen’s Counter-example [18].
A privacy-constrained information extraction problem was
recently considered by Asoodeh et al. [19]. A good tutorial
on channel coding in the presence of CSI that also covers the
state masking setting can be found in [20].

In our previous work [21], we extended the state masking
scenario to the state-dependent DM-BC with noncausal CSI
at the encoder. We developed inner and outer bounds and
showed that they are tight for a special case of zero-rates
transmission and the scalar Gaussian BC with additive state.
As for this work, we consider the vector setting. Even though
we use the same single-letter expressions, the evaluation of
the capacity region for the MIMO case is not straightforward.
We propose a new approach for choosing the auxiliary random
variables in order to evaluate the inner bound. Furthermore,
our technique to derive the optimal coefficients can be applied
to other related problems in network information theory, where
a Gaussian signal is considered. Moreover, we develop a new,
conditional, extremal inequality, and show that a Gaussian
input distribution is optimal for the vector setting.

II. NOTATIONS AND PROBLEM FORMULATION

Throughout the paper, random variables are denoted using
a sans-serif font, e.g., X, their realizations are denoted by
the respective lower case letters, e.g., x, and their alphabets
are denoted by the respective calligraphic letter, e.g., X . Let
Xn stand for the set of all n-tuples of elements from X . An
element from Xn is denoted by xn = (x1, x2, . . . , xn). The
probability density function of X, the joint density function
of X and Y, and the conditional density of X given Y are
denoted by fX, fXY and fX|Y respectively. The expectation of
X is denoted by E [X]. The cross-covariance matrix of two
random vectors X and Y is denoted as ΣXY ≜ E


XYT


.

The probability of an event E is denoted as P (E). A set of

consecutive integers starting at 1 and ending in 2nR is denoted
as I(n)

R ≜ {1, 2, . . . , 2nR}.
An (2nR1 , 2nR2 , n) code for the broadcast channel with

state sequence Sn known noncausally at the encoder consists
of

• two message sets I(n)
R1

and I(n)
R2

,
• an encoder that assigns a codeword xn(m1,m2, s

n) to
each message-state triple (m1,m2, s

n) ∈ I(n)
R1

×I(n)
R2

×Sn,
• two decoders, where decoder k assigns an estimate

m̂k ∈ I(n)
Rk

to each received sequence ynk , k ∈ {1, 2}.

Let M̂1 and M̂2 denote the outputs of decoder 1 and decoder 2,
respectively. We assume that the message pair (M1,M2) is
uniformly distributed over I(n)

R1
×I(n)

R2
. The average probability

of error is defined as P
(n)
e = P


M̂1 ∕= M1, M̂2 ∕= M2


.

We are interested in the interplay between reliable coding
at rate pairs (R1, R2) which we would like to keep as
high as possible and the (normalized) mutual informations
I(Sn;Yn

1 )/n and I(Sn;Yn
2 )/n, which we would like to make

as small as possible.

Definition 1. For a given covariance matrix K, a quadruple
(R1, R2, E1, E2) is said to be achievable if for every  > 0 and
sufficiently large n, there exists a sequence of (2nR1 , 2nR2 , n)
codes such that the following conditions are simultaneously
satisfied: 1

n

n
i=1 XiX

T
i ≼ K, P (n)

e ≤ , and, 1
nI(S

n;Yn
k ) ≤

Ek + , k = 1, 2. The achievable region R(K) is the closure
of the set of all achievable quadruples (R1, R2, E1, E2).

III. PRELIMINARIES

We use inner and outer bounds that were derived in [21] for
the general DM-BC with random parameters and particularly
utilize the private messages only case by setting W = ∅.

Lemma 1 (Proposition 1 in [21]). An achievable region R(K)
consists of a quadruple (R1, R2, E1, E2) that satisfies the
following conditions

R1 ≤ I(U;Y1)− I(U;S), (1a)
R2 ≤ I(V;Y2)− I(V;S), (1b)

R1+R2≤I(U;Y1)−I(U;S)+I(V;Y2)−I(V;S)−I(U;V|S) (1c)
E1 ≥ I(S;U,Y1), E2 ≥ I(S;V,Y2), (1d)

for some pdf fSUVXY1Y2
= fSfUVX|SfY1Y2|XS.

The main idea behind the proof of the inner bound is an
integration of the Marton and the G-P coding schemes, where
for each message, a subcodebook is generated, whose size is
large enough such that for every state sequence sn, a jointly
typical auxiliary codeword can be found in the subcodebook.

Next, we provide the outer bound on R(K).

Lemma 2 (Proposition 2 in [21]). If a rate quadruple
(R1, R2, E1, E2) is achievable for the DM-BC with random
parameters and CSI known noncausally at the transmitter,
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then there exists a distribution fUVX|S such that the following
inequalities are satisfied:

R1 ≤ I(U;Y1|S), (2a)
R2 ≤ I(V;Y2|S), (2b)

R1 +R2 ≤ I(U;Y1|S) + I(X;Y2|U,S), (2c)
R1 +R2 ≤ I(X;Y1|V,S) + I(V;Y2|S), (2d)

Ek ≥ I(S;Yk) k = 1, 2, (2e)

where fSUVXY1Y2 = fSfUVX|SfY1Y2|XS.

IV. MIMO GAUSSIAN BROADCAST CHANNEL

Our goal in this paper is to characterize the achievable
region for the MIMO Gaussian State-Dependent BC with
masking constraints. We show that a Gaussian input distri-
bution maximizes the outer bound in Lemma 2. In order to
show this a new proof technique is needed and we show the
motivation to develop such technique.

The general two-user MIMO Gaussian BC with state [8],
is an additive interference and noise channel where each time
sample can be represented using the following equations:

Yk = X+ Sk + Zk, k ∈ {1, 2},

where X, S1, S2, Z1, Z2 are all real vectors of size t× 1 and
• X is the input vector whose covariance matrix satisfies

E

XXT


≼ K for some K ≽ 0,

• Yk is the output vector, k ∈ {1, 2},
• Sk is a real Gaussian random vector with zero mean and

a covariance matrix KSk
= E


SkS

T
k


≽ 0,

• Zk is a real Gaussian random vector with zero mean and
a covariance matrix KZk

= E

ZkZ

T
k


≽ 0,

• S1, S2, Z1 and Z2 are mutually independent.
In the following we evaluate the bounds from Lemma 1 and

Lemma 2 for the MIMO Gaussian BC setting. We first state
our main result in the subsequent theorem.

Let,

KS ≜

KS1 0
0 KS2


. (3)

Theorem 1. A rate-leakage region of the MIMO Gaussian
State-Dependent BC with private messages is the quadruple
(R1, R2, E1, E2) such that

R1 ≤ 1

2
log

|KX1
+KZ1

|
|KZ1 |

, (4)

R2 ≤ 1

2
log

|K − ΣXSK
−1
S ΣT

XS +KZ2 |
|KX1 +KZ2 |

, (5)

E1 =
1

2
log

|K + ΣXS1 + ΣT
XS1

+KS1 +KZ1 |
|K − ΣXSK

−1
S ΣT

XS +KZ1 |
, (6)

E2 =
1

2
log

|K + ΣXS2
+ ΣT

XS2
+KS2

+KZ2
|

|K − ΣXSK
−1
S ΣT

XS +KZ2 |
, (7)

for some covariance matrices (KX1 ,ΣXS1 ,ΣXS2), such that
0 ≼ KX1

≼ K − ΣXSK
−1
S ΣT

XS, where

ΣXS ≜

ΣXS1 ΣXS2


. (8)

The information rate region in (4) and (5) is similar to the
MIMO BC without state in [8]. The main difference is that part
of the transmitted signal, reflected by the covariance matrix
ΣXS, is utilized to mask the state sequence.

Remark 1. Our model and the definition of the leakage
in terms of normalized mutual information defines in fact
channels between the states and the receivers. Consider the
structured states scenario where the sequences are drawn
from some codebook with a given rate. The results of this
work imply that if the rate of the codebook is higher than
the leakage, reliable decoding of the structured states is
impossible.

V. PROOF OF THEOREM 1
Denote S = (ST

1 ,S
T
2 )

T .

A. Proof of the converse part of Theorem 1

Consider the RHS of (2b),

I(V;Y2|S) = I(V,X;Y2|S)− I(X;Y2|V,S)
(a)
= I(X;Y2|S)− I(X;Y2|V,S),

where (a) follows since Y2 = X + S2 + Z2 and hence
h(Y2|V,X,S) = h(Z2) = h(Y2|X,S). Define

A ≜ {fVX|S : V → (X,S) → (Y1,Y2),E

XXT


≼ K}.

The weighted sum rate upper bound (2d) can be written as

R1 + µR2

≤ µI(X;Y2|S) + I(X;Y1|V,S)− µI(X;Y2|V,S)
≤ sup

A
{µI(X;Y2|S) + I(X;Y1|V,S)− µI(X;Y2|V,S)}

≤ sup
A

{µI(X;Y2|S)}+sup
A

{I(X;Y1|V,S)−µI(X;Y2|V,S)} ,

where µ > 1.
The first term can be upper bounded as follows:

I(X;Y2|S) ≤
1

2
log

K − ΣXSK
−1
S ΣT

XS +KZ2


|KZ2 |

. (9)

As for the difference between mutual informations, we obtain

I(X;Y1|V,S)− µI(X;Y2|V,S) (10)
= h(X+ Z1|V,S)−h(Z1)−µ (h(X+Z2|V,S)−h(Z2)) .

Consider the following optimization problem, denoted as P :

sup
A

{h(X+ Z1|V,S)− µh(X+ Z2|V,S)}. (11)

We would like to show using a conditional version of an
extremal inequality that a conditional Gaussian distribution
fX|VS ∼ N (0,KX1) maximizes (11). Assume KZ1 ≼ KZ2 .
Let Z be such that Z2 = Z1 + Z, where Z ∼ N (0,KZ) and
KZ = KZ2 − KZ1 . The main tool used in the proof is the
conditional EPI by Bergmans [7], for which equality in

e
2
t h(X+Z1+Z|V,S) ≥ e

2
t h(X+Z1|V,S) + e

2
t h(Z) (12)

holds iff fX|VS ∼ N (0,KX1) with the same KX1 for every
(V = v,S = s) and KX1 +KZ1 is proportional to KZ. The
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problem is that the proportionality condition is not always
satisfied.

We start by restricting the solution space of P to be
Gaussian. Denote the respective optimization problem as PG.
Hence (11) becomes

max
KX≼K

1

2
log


(2πe)t|KX+KZ1|


−µ
2
log


(2πe)t|KX+KZ2 |


. (13)

The optimal solution of PG, K
X, must satisfy the following

KKT-like conditions
1

2
(K

X +KZ1)
−1

+M1 =
µ

2
(K

X +KZ2)
−1

+M2, (14)

M1K

X = 0, M2(K −K

X) = 0.

Obviously (PG) ≤ (P ). We now introduce the enhanced
channel with additive state

Ỹk = X+ Sk + Z̃k, k ∈ {1, 2},

where Z̃k ∼ N (0,KZ̃k
), k ∈ {1, 2} are constructed such that

KZ̃1
and KZ̃2

, be two real symmetric matrices satisfying

1

2
(K

X +KZ1)
−1

+M1 =
1

2


K

X +KZ̃1

−1
, (15a)

µ

2
(K

X +KZ2
)
−1

+M2 =
µ

2


K

X +KZ̃2

−1
. (15b)

We define the following auxiliary optimization problem P̃ with
optimum value (P̃ )

sup
A

h(X+ Z̃1|V,S)− µh(X+ Z̃2|V,S) + F. (16)

The constant F is defined as

F ≜ h(Z1)− h(Z̃1) + µ(h(XGK
+ Z̃2)− h(XGK

+ Z2)),

where XGK
∼ N (0,K), Z̃1 ∼ N (0,KZ̃1

), Z̃2 ∼ N (0,KZ̃1
),

and KZ̃2
≽ KZ̃1

.
It was shown in [9] that 0 ≼ KZ̃1

≼ KZ1 and
KZ̃1

≼ KZ̃2
≼ KZ2

, hence we can write Z̃2 = Z̃1 + Z̃,
where Z̃ ∼ N (0,KZ̃) and KZ̃ = KZ̃2

−KZ̃1
. By substituting

(15) into the KKT-like condition (14) we have

K
X +KZ̃1

= (µ− 1)−1KZ̃,

and hence the proportionality condition in EPI is satisfied for
the enhanced channel. The difference of differential entropy
terms in (16) can be upper bounded using EPI as

h(X+ Z̃1|V,S)− µh(X+ Z̃2|V,S)
(a)
≤ f


h(X+ Z̃1|V,S), h(Z̃)



(b)
≤ f


h(Z̃)− t

2
log(µ− 1), h(Z̃)


,

where f(a, b) = a − µt
2 log


e

2
t a + e

2
t b

. Equality in (a) and

(b) holds if fX|VS ∼ N (0,KX1) with same KX1 for all (V =
v,S = s) and by the proportionality condition. Hence the
optimizing distribution of (16) is Gaussian and the optimal
value equals to

max
KX≼K

1

2
log


(2πe)t|KX+KZ1|


− µ

2
log


(2πe)t|KX+KZ2 |


,

which is the same optimal value as was found for PG.
The last step is to show that the objective function of

the original channel (11) is less or equal than the objective
function of (16) for any fixed distribution fX|VS. Consider the
difference of those functions

h(X+ Z1|V,S)− h(Z1)− h(X+ Z̃1|V,S) + h(Z̃1)

− µ (h(X+ Z2|V,S)− h(XGK
+ Z2))

+ µ

h(X+ Z̃2|V,S)− h(XGK

+ Z̃2)

.

Since given (V,S), we have the Markov chain X → X+Z̃1 →
X+ Z̃1 + Ẑ1 and applying Data Processing Inequality [22, p.
24], we have

h(X+ Z1|V,S)− h(Z1)− h(X+ Z̃1|V,S) + h(Z̃1)

= I(X;X+ Z1|V,S)− I(X;X+ Z̃1|V,S)
= I(X;X+ Z̃1 + Ẑ1|V,S)− I(X;X+ Z̃1|V,S) ≤ 0,

Using KZ̃2
≼ KZ2 , denote Ẑ2 ≜ Z2 − Z̃2, hence

h(X+Z2|V,S)−h(X+Z̃2|V,S)−h(XGK
+Z2)+h(XGK

+Z̃2)

= I(Ẑ2;X+ Z̃2 + Ẑ2|V,S)− I(Ẑ2;XGK
+ Z̃2 + Ẑ2)

(a)
≥ I(Ẑ2;XG + Z̃2 + Ẑ2|V,S)− I(Ẑ2;XGK

+ Z̃2 + Ẑ2)

(b)
= I(Ẑ2;XG+ Z̃2+ Ẑ2|V,S)−I(Ẑ2;XG+X̂G+ Z̃2+ Ẑ2)

(c)
≥ 0,

where inequality in (a) follows from Worst Additive Noise
Lemma [23, Lemma II.2], (b) is due to XGK

= XG + X̂G,
X̂G is independent of XG. Inequality in (c) is again due to the
Markov chain Ẑ2 → XG+Z̃2+Ẑ2 → XG+X̂G+Z̃2+Ẑ2, and
Data Processing Inequality [22, p. 24]. Thus, we have shown
that the objective function of P is less or equal to the objective
function of P̃ for any choice of fX|VS. To conclude, we have
shown that (PG) = (P̃ ). Furthermore PG ≤ P ≤ P̃ for any
choice of fX|VS. Thus, fX|VS ∼ N (0,KX1

) also solves P .
Finally, by collecting (9), (10) and (13), we obtain

R1 + µR2

≤ 1

2
log

|KX1 +KZ1 |
|KZ1 |

+
µ

2
log

K − ΣXSK
−1
S ΣT

XS +KZ2


|KX1 +KZ2 |

.

Next we proceed to lower bound the leakage rates for k ∈
{1, 2},

I(S;Yk) = h(S)− h(S|Yk). (17)

The conditional differential entropy can be upper bounded as
follows

h(S|Yk) ≤
1

2
log(2πe)2

KS − ΣSYk
Σ−1

Yk
ΣT

SYk

 , (18)

where ΣSYk
= ΣT

XS+ΣSSk
and ΣYk

= K+ΣXSk
+ΣT

XSk
+

KSk
+KZk

. Next, by applying Sylvester’s Identity Theorem,
it can be shown that

|KS−ΣSYk
Σ−1

Yk
ΣT

SYk
|=|KS||K−ΣXSK

−1
S

ΣT
XS
+KZk

||Σ−1
Yk

|. (19)
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Gathering (17), (18), and (19), we obtain

I(S;Yk) ≥
1

2
log

|K + ΣXSk
+ ΣT

XSk
+KSk

+KZk
|

|K − ΣXSK
−1
S ΣT

XS +KZk
|

,

which concludes the proof of the converse part of Theorem 1.

B. Proof of the direct part of Theorem 1

Let

X = X1 +X2 +B1S1 +B2S2,

U = X1 +A10X2 +A11S1 +A12S2,

V = X2 +A21S1 +A22S2,

such that X1 ∼ N (0,KX1), X2 ∼ N (0,KX2),
S1 ∼ N (0,KS1

) and S2 ∼ N (0,KS2
) are mutually inde-

pendent. The achievability of Theorem 1 follows by evaluating
(1) with the above choice of Gaussian random vectors and the
following choice of matrix coefficients

A10 = KX1
(KX1

+KZ1
)−1,

A11 = KX1
(KX1

+KZ1
)−1(B1 + I),

A12 = KX1(KX1 +KZ1)
−1B2,

A21 = KX2(KX1 +KX2 +KZ2)
−1B1,

A22 = KX2
(KX1

+KX2
+KZ2

)−1(B2 + I)

Bk = ΣXSk
Σ−1

Sk
k ∈ {1, 2}.

The main idea for this choice of coefficients is to eliminate the
state variables from the mutual information terms in Lemma 1.
The complete proof is given in Appendix A of the extended
version of this paper [24].

VI. CONCLUSIONS

We considered the problem of reliable communication over
the Gaussian MIMO BC where each receiver is also interfered
by the Gaussian independent interferences which are known to
the encoder in a non-causal manner. We added an additional
requirement to reduce the amount of information that leaks to
the receivers regarding the states. The main contribution here
is the optimization of the outer bound. While in the scalar
setting [21], we showed that Gaussian signaling is optimal
using the EPI, in the vector case, however, EPI can no longer
be used since the covariance matrices of the noise vectors
are not degraded in general. This is similar to calculating
the capacity region of the MIMO BC, which is substantially
different from the evaluation of the scalar broadcast channel.
Hence, we derived a new state-dependent extremal inequality.
Although this inequality is based on the original extremal
inequality of [9] , it is far from being trivial, and it provides
the tool needed to approach this MIMO setting. Moreover, it
has not been used for state-dependent channels to the best of
our knowledge. Furthermore, the standard results of point-to-
point masking [12] and state-dependent BC [10] (no masking
requirements), emerge as special cases of the bounds here.
An extension to the MIMO Gaussian BC with an additional
common message is under current study.

ACKNOWLEDGMENT

The work of M. Dikshtein and S. Shamai (Shitz) has been
supported by the European Union’s Horizon 2020 Research
And Innovation Programme, grant agreement no. 694630. The
work of A. Somekh-Baruch and S. Shamai (Shitz) was also
supported by the Heron consortium via the Israel ministary of
economy and science.

REFERENCES

[1] S. Gel’fand and M. Pinsker, “Coding for channels with ramdom param-
eters,” Probl. Contr. Inf. Theory, vol. 9, no. 1, pp. 19–31, Jan 1980.

[2] M. H. M. Costa, “Writing on dirty paper,” IEEE Trans. Inform. Theory,
vol. 29, no. 3, pp. 439–441, May 1983.

[3] A. S. Cohen and A. Lapidoth, “Generalized writing on dirty paper,” in
Proc. IEEE ISIT, Jun/Jul 2002, p. 227.

[4] T. Cover, “Broadcast channels,” IEEE Trans. Inform. Theory, vol. 18,
no. 1, pp. 2–14, Jan 1972.

[5] K. Marton, “A coding theorem for the discrete memoryless BC,” IEEE
Trans. Inform. Theory, vol. 25, no. 3, pp. 306–311, May 1979.

[6] C. Nair and A. E. Gamal, “An outer bound to the capacity region of
the broadcast channel,” IEEE Trans. Inform. Theory, vol. 53, no. 1, pp.
350–355, Jan 2007.

[7] P. Bergmans, “A simple converse for broadcast channels with additive
white Gaussian noise (corresp.),” IEEE Trans. Inform. Theory, vol. 20,
no. 2, pp. 279–280, Mar 1974.

[8] H. Weingarten, Y. Steinberg, and S. Shamai, “The capacity region of
the Gaussian multiple-input multiple-output broadcast channel,” IEEE
Trans. Inform. Theory, vol. 52, no. 9, pp. 3936–3964, Sept 2006.

[9] T. Liu and P. Viswanath, “An extremal inequality motivated by multi-
terminal information-theoretic problems,” IEEE Trans. Inform. Theory,
vol. 53, no. 5, pp. 1839–1851, May 2007.

[10] Y. Steinberg and S. Shamai, “Achievable rates for the broadcast channel
with states known at the transmitter,” in Proc. IEEE ISIT, Sept 2005,
pp. 2184–2188.

[11] R. Khosravi-Farsani and F. Marvasti, “Capacity bounds for multiuser
channels with non-causal channel state information at the transmitters,”
in Proc. IEEE Information Theory Workshop, Oct 2011, pp. 195–199.

[12] N. Merhav and S. Shamai, “Information rates subject to state masking,”
IEEE Trans. Inform. Theory, vol. 53, no. 6, pp. 2254–2261, June 2007.

[13] Y. H. Kim, A. Sutivong, and T. M. Cover, “State amplification,” IEEE
Trans. Inform. Theory, vol. 54, no. 5, pp. 1850–1859, May 2008.

[14] T. A. Courtade, “Information masking and amplification: The source
coding setting,” in Proc. IEEE ISIT, July 2012, pp. 189–193.

[15] O. O. Koyluoglu, R. Soundararajan, and S. Vishwanath, “State ampli-
fication subject to masking constraints,” IEEE Trans. Inform. Theory,
vol. 62, no. 11, pp. 6233–6250, Nov 2016.

[16] W. Liu and B. Chen, “Message transmission and state estimation over
Gaussian broadcast channels,” in 2009 43rd Annual Conference on
Information Sciences and Systems, March 2009, pp. 147–151.

[17] P. Grover and A. Sahai, “Witsenhausen’s counterexample as assisted
interference suppression,” International Journal of Systems, Control and
Communications, vol. 2, no. 1-3, pp. 197–237, 2010.

[18] H. S. Witsenhausen, “A counterexample in stochastic optimum control,”
SIAM Journal on Control, vol. 6, no. 1, pp. 131–147, 1968.

[19] S. Asoodeh, M. Diaz, F. Alajaji, and T. Linder, “Information extraction
under privacy constraints,” Information, vol. 7, no. 1, pp. 15:1–37, 2016.

[20] G. Keshet, Y. Steinberg, and N. Merhav, “Channel coding in the presence
of side information,” Foundations and Trends R© in Communications and
Information Theory, vol. 4, no. 6, pp. 445–586, 2008.

[21] M. Dikshtein and S. Shamai, “Broadcasting information subject to state
masking,” in 2018 IEEE International Conference on the Science of
Electrical Engineering (ICSEE), Dec 2018.

[22] A. El Gamal and Y. Kim, Network information theory. Cambridge :
Cambridge University Press, c2011., 2011.

[23] S. N. Diggavi and T. M. Cover, “The worst additive noise under a
covariance constraint,” IEEE Trans. Inform. Theory, vol. 47, no. 7, pp.
3072–3081, Nov 2001.

[24] M. Dikshtein, A. Somekh-Baruch, and S. Shamai, “Broadcasting In-
formation subject to State Masking over a MIMO State Dependent
Gaussian Channel,” CoRR, vol. abs/1901.03377, 2019.

279


