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Abstract—This paper studies an n-dimensional additive Gaus-
sian noise channel with a peak-power-constrained input. It
is well known that, in this case, the capacity-achieving input
distribution is supported on finitely many concentric shells.
However, due to the previous proof technique, neither the exact
number of shells of the optimal input distribution nor a bound
on it was available.

This paper provides an alternative proof of the finiteness of
the number shells of the capacity-achieving input distribution
and produces the first firm upper bound on the number of shells,
paving an alternative way for approaching many such problems.
In particular, for every dimension n, it is shown that the number
of shells is given by O(A2) where A is the constraint on the input
amplitude. Moreover, this paper also provides bounds on the
number of points for the case of n = 1 with an additional power
constraint.

I. INTRODUCTION

We consider an additive noise channel where the input-
output relationship is given by

Y = X + Z, (1)

where the input X ∈ Rn is independent of the standard
Gaussian noise Z ∈ Rn. We are interested in finding the
capacity of the channel in (1) subject to the constraint that
X ∈ B0(A) where B0(A) is an n-ball centered at zero with
radius A (i.e., peak-power constrained input), that is

Cn(A) = max
X : X∈B0(A)

I(X;Y ). (2)

In his seminal paper [1], for the case of n = 1, Smith
has shown that an optimizing distribution in (2) is unique,
symmetric, and, perhaps surprisingly, discrete with finitely
many mass points. Using tools such as the Identity Theorem
from complex analysis, Smith has proven that the cardinality
of the support set of the optimal input distribution cannot
be infinite, and, thus, must be finite. Employing this proof
by contradiction, Shamai and Bar-David [2] have extended
the method of Smith to n = 2, and showed that, in this
setting, the maximizing input random variable is given by
X? = R? · U? where the magnitude R? is discrete with
finitely many points and the random unit vector U?, which
is independent of R?, has a uniform phase on [0, 2π). In
other words, the support of X? consists of finitely many
concentric shells. As a matter of fact, this phenomena that
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the optimal input distribution lies on finitely many concentric
spheres remains true for any n ≥ 2, cf. [3], [4] and [5].

Regrettably, the method of proof by contradiction does not
lead to a characterization of the number of spheres (number
of mass points when n = 1) in the capacity-achieving input
distribution. In fact, as of the writing of this paper, very little
is known about the structure of that distribution, and a very
simple question remains open about 50 years after Smith’s
contribution: When n = 1, what is the cardinality of the
support of the optimal input distribution as a function of A?

In this work, we provide the first firm upper bound on
the number of points for n = 1 and the number of shells
for every n ≥ 2, partially answering the above question.
Furthermore, for the case of n = 1, using similar methods,
we also provide an upper bound on the cardinality of the
support of the distribution achieving

C(A,P) = max
X : |X|≤A
E[X2]≤P

I(X;Y ). (3)

a) Prior Work: The history of the problem begins with
[1], where Smith proves the discreteness of the capacity-
achieving input distribution and also shows the optimality of
the equiprobable binary input on {±A} so long as A ≤ 0.1.
Sharma and Shamai [6] extend the result of Smith, and argue
that an equiprobable input on {±A} is optimal if and only
if A ≤ Ā ≈ 1.665. The proof of the result in [6], which
generalizes to vector channels, is shown in [7].

A progress on the algorithmic aspect of computing the
optimal input distribution is made in [8] which proposes an
iterative procedure that converges to the a capacity achieving
distribution based on the cutting-plane method. The bound
on the number of mass points found in this work is relevant
for numerical methods as it reduces the optimization space.

A number of papers have also focused on upper and lower
bounds on the capacity in (2). Broadly speaking, there are
three types of capacity upper bounding approaches. The first
approach uses the maximum entropy principle [9, Chapter
12] and upper bounds the output differential entropy, h(Y ),
subject to some moment constraint [10]. The second approach
uses a dual capacity characterization where the maximization
of the mutual information over the input distribution is re-
placed by minimization of the relative entropy over the output
distribution. A suboptimal choice of an output distribution
in the dual capacity expression results in an upper bound
on the capacity [11], [12], [13]. The third approach uses a
characterization of the mutual information as an integral of
the minimum mean square error (MMSE) [14], and leads to
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an upper bound by replacing the optimal estimator in the
MMSE term by a suboptimal one [7].

There is also a substantial literature that extends the proof
recipe of Smith to the other channels. For example, the
approach of Smith for showing discreteness of an optimal
input distribution has been extended to complex Gaussian
channels [2], Rayleigh fading channels [15], and Poisson
channels [16]. For an overview of the literature on various
optimization methods that show discreteness of a capacity-
achieving distribution the interested reader is referred to [17].

b) Contributions and Paper Outline: In what follows:
1) Section II presents our main results;
2) Section III provides an upper bound on the number of

extreme points, for the scalar case, of an arbitrary output
probability density function (pdf) of the Gaussian channel
described in (1). The proof of this result exploits the ana-
lyticity of the Gaussian density together with Tijdeman’s
Number of Zeros Lemma [18, Lemma 1];

3) Section IV provides the proof of our main result for the
case of n = 1. The idea behind this proof is to show that
the maximum number of extreme points of the output pdf
provides an upper bound on the number of mass points
of the optimal input distribution. The main element of
the proof relies on Karlin’s Oscillation Theorem and the
bounds on the number of extreme points developed in
Section III. The proof for the vector case (n ≥ 2) follows
along the same lines as the proof for the scalar case (n =
1), albeit with a more involved algebra, therefore it is
omitted to abide the space constraints; and

4) Section V concludes the paper with some final remarks.
c) Notation: Throughout the paper, the deterministic

scalar quantities are denoted by lower-case letters, determin-
istic vectors are denoted by bold lowercase letters, random
variables are denoted by uppercase letters, and random vec-
tors are denoted by bold uppercase letters (e.g., x, x, X , X).
We denote the distribution of a random vector X by PX .
Moreover, we say that a point x is in the support, denoted
by supp(PX), of the distribution PX if for every open set
O 3 x we have that PX(O) > 0. The number of zeros of a
function f : R→ R on the interval I is denoted by N(I, f).
Similarly, if f : C→ C is a function on the complex domain,
N(D, f) denotes the number of its zeros in the region D.

II. MAIN RESULT

Theorem 1, stated below, gives the first firm upper bound
on the support size of the capacity-achieving input of the
additive Gaussian channel with an amplitude constraint.

Theorem 1. Consider the amplitude constrained scalar
additive Gaussian channel Y = X + Z where the input
X , satifying |X| ≤ A, is assumed to be independent from
the noise Z ∼ N (0, 1). Assuming A ≥ 1, let PX? be the
optimizing input distribution for this channel. Then, PX? is
a symmetric discrete distribution with√

1 +
2A2

πe
≤ |supp(PX?)| ≤ a2A2 + a1A + a0, (4)

where

a2 = 9e + 6
√

e + 5,

a1 = 6e + 2
√

e,

a0 = e + 2 log
(
4
√

e + 2
)

+ 1.

Shown in Section IV, the proof of Theorem 1 uses an
upper bound on the number of extreme points of Gaussian
convolution that can be found in Section III.

Remark 1. Observe that the upper and lower bounds in (4)
are not of equal order. We conjecture that the order of the
lower bound is tight. See the extended version of this paper
in [19] for a more detailed discussion.

Theorem 2. Consider the amplitude constrained vector ad-
ditive Gaussian channel Y = X + Z where the input X ,
satisfying ‖X‖ ≤ A, is assumed to be independent from the
white Gaussian noise Z ∼ N (0, In). Let X? ∼ PX? be
the optimizing input for this channel. Then, PX? is unique,
radially symmetric, and the distribution of its amplitude,
namely P‖X?‖, is a discrete distribution with∣∣supp (P‖X?‖

)∣∣ ≤ an2
A2 + an1

A + an0
, (5)

where

an2
= 4 + 4e +

√
8e + 4,

an1 =
(
3 + 4e +

√
2e + 1

)
n+

√
32

n− 1
,

an0 = log
e2
√
π Γ
(
n
2

)
Γ
(
n−1
2

)
+
(
3 + 4e +

√
2e + 1

)
log

e
n
2
√
π Γ
(
n
2

)
Γ
(
n−1
2

) .

Omitted because of the space constraint, the proof of
Theorem 2 benefits from the same technique that is used
in the proof of Theorem 1. For details, see [19].

Remark 2. Note that when the vector channel is of dimension
2, Theorem 2 gives an upper bound on the number of shells
of the optimal input distribution for the additive complex
Gaussian channel with an amplitude constraint.

For the sake of demonstrating the versatility of our novel
method, shown next1 is an upper bound on the support size of
the optimal input distribution for the scalar additive Gaussian
channel with both a peak- and an average-power constraints.

Theorem 3. Consider the amplitude and power constrained
scalar additive Gaussian channel Y = X+Z where the input
X , satisfying |X| ≤ A and E[|X|2] ≤ P, is assumed to be
independent from the noise Z ∼ N (0, 1). Assuming A ≥ 1,
let PX? be the optimizing input distribution for this channel.
Then, PX? is a symmetric discrete distribution with√

1 +
2 min {A2, 3P}

πe
≤ |supp(PX?)| (6)

≤ aP2
A2
P + aP1

AP + aP0
, (7)

where

AP =
AP

P− log(1 + P)1 {P < A2}
,

aP2
= (1 + 2λP)(9e + 6

√
e + 1) + 2(2− λP)(1− 2λP),

aP1
= (1 + 2λP)(6e + 2

√
e),

aP0
= (1 + 2λP)e + 2 log

(
2 + 4

√
e(1 + 2λP)

1− 2λP

)
+ 1,

λP =
log(1 + P)

2P
1
{
P < A2

}
.

1Proof is omitted because of space constraints. See [19] for the details.
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Remark 3. In the case of P ≥ A2, the power constraint is
inactive and Theorem 3 recovers the result of Theorem 1.

III. BOUNDS ON THE NUMBER OF EXTREME POINTS OF
A GAUSSIAN CONVOLUTION

This section presents some of the main tools required in
our analysis. Specifically, given an unknown constant 0 ≤
κ1 ≤ maxb fY (b), our aim is to find a worst case upper
bound on the number of zeros of the shifted output pdf

fY − κ1.

Here fY denotes the pdf of the random variable Y = X+Z,
where X is an arbitrary zero mean2 random variable at
the input of the channel satisfying the amplitude constraint:
|X| ≤ A; Z is the standard Gaussian random variable
independent from X; and Y is the random variable induced
by the input X at the output of this additive Gaussian channel.

As a starting point, before chasing after the number of
zeros of fY − κ1, the following lemma shows that the zeros
of fY − κ1 are always contained on an interval that is only
“slightly” larger than [−A,A].
Remark 4. Since the capacity-achieving input distribution for
the channel in question is unknown, throughout this paper,
the bounds are uniform over all possible inputs X satisfying
|X| ≤ A. Equivalently, the bounds involving the output pdf
fY are uniform over all possible output distributions.

Lemma 1 (On the Location and Finiteness of Zeros). For a
fixed κ1 ∈

(
0, 1√

2π

]
there exists some Bκ1

= Bκ1
(A) < ∞

such that

N (R, fY − κ1) = N ([−Bκ1
,Bκ1

], fY − κ1) <∞. (8)

In other words, there are finitely many zeros of fY (y) − κ1
all of which are contained within the interval [−Bκ1

,Bκ1
].

Moreover, Bκ1
can be upper bounded as follows:

Bκ1
≤ A + log

1
2

(
1

2πκ21

)
. (9)

Since the exact value of the constant κ1 is unknown,
in counting the number of zeros of fY − κ1, a worst-case
approach needs to be taken. In an attempt at doing so, the
following elementary result from calculus provides a bound
on the number of zeros of a function in terms of the number
of its extreme points. As simple as it is, Lemma 2 is one of
the key steps in this paper. It states that, to find a bound on
the number of zeros of fY − κ1, it suffices to find a bound
on that of f ′Y , eliminating the dependence on the nuisance
constant κ1.

Lemma 2. Suppose that f is continuous on [−R,R] and
differentiable on (−R,R). If N([−R,R], f) <∞, then

N([−R,R], f) ≤ N([−R,R], f ′) + 1, (10)

where f ′ denotes the derivative of f .

Thanks to Lemma 2, to upper bound the number of zeros
of fY − κ1, all that is needed is to find an upper bound on
the number of zeros of the derivative of fY , namely

f ′Y (y) =
1√
2π

E
[
(X − y) exp

(
− (y −X)2

2

)]
. (11)

2Since the channel is symmetric, the capacity-achieving input is symmet-
ric. Therefore, there is no loss of optimality in restricting attention to zero
mean inputs.

At this point, there are several trajectories that one could
follow to produce an upper bound on the number of zeros, see
the full version of this paper [19] for a detailed discussion.
The method used in this paper is based on Tijdeman’s
Number of Zeros Lemma, which is presented next.

Lemma 3 (Tijdeman’s Number of Zeros Lemma). Let R, s, t
be positive numbers such that s > 1. For the complex valued
function f 6= 0 which is analytic on |z| < (st+ s+ t)R, its
number of zeros N(DR, f) within the disk DR = {z : |z| ≤
R} satisfies

N(DR, f) ≤ logs
max|z|≤(st+s+t)R |f(z)|

max|z|≤tR |f(z)|
. (12)

The following two lemmas, whose proofs (see [19]) are
omitted because of space constraints, find upper and lower
bounds on absolute value of the complex analytic extension3

of f ′Y over a disc of finite radius centered at the origin.

Lemma 4. Let f ′Y : R → R as in (11) and let f̆ ′Y : C → C
denote its complex extension. Then,

max
|z|≤B

∣∣∣f̆ ′Y (z)
∣∣∣ ≤ 1√

2π
(A + B) exp

(
B2

2

)
. (13)

Lemma 5. Let f ′Y : R → R as in (11) and let f̆ ′Y : C → C
denote its complex extension. For any |X| ≤ A ≤ B,

max
|z|≤B

∣∣∣f̆ ′Y (z)
∣∣∣ ≥ A√

2π
exp

(
−2A2

)
. (14)

By assembling the results of Lemmas 3, 4 and 5, The-
orem 4 below provides an upper bound on the number of
oscillations of a Gaussian convolution.

Theorem 4 (Bound on the Number of Oscillations of fY ).
Suppose X is a symmetric, real-valued random variable and
Z is standard Gaussian. Assuming |X| ≤ A < R, let Y =
X + Z and denote by fY the probability density function of
Y . Then, the number of extreme points of fY , namely the
number of zeros of f ′Y , within the interval [−R,R] satisfies

N([−R,R], f ′Y )

≤ min
s>1


((A+R)s+A)2

2 + 2A2 + log
(

2 + (A+R)s
A

)
log s

 .

(15)

Proof. Let DR ⊂ C be a disk of radius R centered at z0 = 0,
and note that

N([−R,R], f ′Y )

≤ N(DR, f̆ ′Y ) (16)

≤ min
s>1, t≥ A

R

{
logs

max|z|≤(st+s+t)R |f̆ ′Y (z)|
max|z|≤tR |f̆ ′Y (z)|

}
(17)

≤ min
s>1, t≥ A

R


(st+s+t)2R2+4A2

2 + log
(

1 + (st+s+t)R
A

)
log s


(18)

= min
s>1


((A+R)s+A)2+4A2

2 + log
(

2 + (A+R)s
A

)
log s

 , (19)

3The fact that the complex extension of fY , and hence that of f ′
Y , is

analytic on C is proven in [20, Appendix B].
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where (16) follows because zeros of f ′Y are also zeros of
f̆ ′Y ; (17) is a consequence of Lemma 3; (18) follows from
Lemma 4 with B← (st+s+t)R and Lemma 5 with B← tR;
and in (19) we use the fact that t = A

R is the minimizer.

Finally, combining the results of Lemmas 1 and 2, and
Theorem 4, the following corollary presents the desired result
of this section.

Corollary 1. Given an arbitrary constant κ1 ∈
(
0, 1

2π

)
,

suppose R > A + log
1
2

(
1

2πκ2
1

)
. Then, the number of zeros

of fY − κ1 satisfies

N(R, fY − κ1)

= N([−R,R], fY − κ1) (20)

≤ 1 + min
s>1


((A+R)s+A)2

2 + 2A2 + log
(

2 + (A+R)s
A

)
log s

 .

(21)

IV. PROOF OF THE MAIN RESULT

This section proves the result presented in Theorem 1. The
first ingredient of the proof is the following characterization
of the optimal input distribution shown in [1, Corollary 1].

Lemma 6. Consider the amplitude constrained scalar ad-
ditive Gaussian channel Y = X + Z where the input
X , satisfying |X| ≤ A, is independent from the noise
Z ∼ N (0, 1). Then, PX? is the capacity-achieving input
distribution if and only if

i(x;PX?) = C(A), x ∈ supp(PX?), (22)
i(x;PX?) ≤ C(A), x ∈ [−A,A], (23)

where

i(x;PX?) =

∫
R

e−
(y−x)2

2

√
2π

log
1

fY ?(y)
dy − h(Z), (24)

with h(Z) = log
√

2πe denoting the differential entropy of
the standard Gaussian distribution, and fY ?(y) denoting the
output pdf induced by the input PX? , that is, for X ∼ PX? ,

fY ?(y) =
1√
2π

E
[
e−

(y−X)2

2

]
. (25)

Remark 5. An immediate consequence of Lemma 6 is the
fact that x ∈ supp(PX?) =⇒ i(x;PX?) − C(A) = 0. In
other words,

|supp(PX?)| ≤ N([−A,A],ΞA(·;PX?)) (26)
≤ N(R,ΞA(·;PX?)), (27)

where the function Ξ(·;PX?) : R→ R is defined as

ΞA(x;PX?) = i(x;PX?)− C(A). (28)

a) Connecting the Number of Oscillation of fY to the
Number of Masses in PX : This section gives an alternative
proof that PX? is discrete by relating the cardinality of
supp(PX?) to the number of zeros of the shifted output pdf
fY ? − e−C(A)−h(Z). The following definition sets the stage.

Definition 1 (Sign Change of a Function). The number of
sign changes of a function ξ is given by

S (ξ) = sup
m∈N

{
sup

y1<···<ym
N {ξ(yi)}mi=1

}
, (29)

where N {ξ(yi)}mi=1 is the number of changes of sign of the
sequence {ξ(yi)}mi=1.

Proven in [21], the following theorem is the main tool
in connecting the number of zeros of an output pdf fY ?

to the number of mass points of a capacity-achieving input
distribution PX? .

Theorem 5 (Oscillation Theorem). Given open intervals I1
and I2, let p : I1 × I2 → R be a strictly Polyá type-∞
function.4 For an arbitrary y, suppose p(·, y) : I1 → R is an
n-times differentiable function. Assume that µ is a measure
on I2, and let ξ : I2 → R be a function with S (ξ) = n. For
x ∈ I1, define

Ξ(x) =

∫
ξ(y)p(x, y)dµ(y). (30)

If Ξ: I1 → R is an n-times differentiable function, then either
S (Ξ) ≤ N(I1,Ξ) ≤ n, or Ξ ≡ 0.

Note that Theorem 5 is applicable in our setting as the
Gaussian distribution is a member of the set of Polyá type-
∞ functions [21]. The following result shows the connection
between the support size of PX? and the number of zeros of
the optimal output pdf fY ? .

Lemma 7. The support set of the capacity-achieving input
distribution PX? satisfies

|supp(PX?)| ≤ N ([−R,R], fY ? − κ1) <∞. (31)

where κ1 = e−C(A)−h(Z) and R > A + log
1
2

(
1

2πκ2
1

)
.

Proof. First, observe that ΞA(x;PX?), defined in (28), can
be written as follows:

ΞA(x;PX?) =

∫
R

ξA(y)√
2π

e−
(y−x)2

2 dy, (32)

where ξA(y) = log
1

fY ?(y)
− C(A)− h(Z). (33)

Next, using the fact that the Gaussian distribution is a
member of Polyá type-∞ functions,

|supp(PX?)| ≤ N(R,ΞA(·;PX?)) (34)
≤ S (ξA) (35)
≤ N(R, ξA) (36)
= N (R, fY ? − κ1) (37)
= N ([−R,R], fY ? − κ1) <∞, (38)

where (34) is a consequence of Lemma 6, see Remark 5; (35)
follows from Theorem 5; (36) follows because the number of
zeros is an upper bound on the number of sign changes; (37)
follows by observing that ξA(y) = 0 if and only if fY ?(y)−
κ1 = 0; and finally (38) follows from Lemma 1.

b) Proof of the Upper Bound: We begin by simplifying
the previously provided upper bound on Bκ1

. Note that an
amplitude constraint |X| ≤ A induces a second moment
constraint E[X2] ≤ A2, and therefore

C(A) = max
|X|≤A

E[X2]≤A2

I(X;Y ) ≤ 1

2
log
(
1 + A2

)
. (39)

4A function f : I1 × I2 → R is said to be strictly Polyá type-n if
det

(
[p(xi, yj)]

m
i,j=1

)
> 0 for all 1 ≤ m ≤ n, and for all x1 < · · · <

xm ∈ I1, and y1 < · · · < ym ∈ I2. If f is Polyá type-n for all n ∈ N,
then f is Polyá type-∞.
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Since the differential entropy of a standard normal distribu-
tion is h(Z) = 1

2 log(2πe), (39) implies that

1

κ1
= exp(C(A) + h(Z)) ≤

√
2πe (1 + A2). (40)

Capitalizing on the bound in (9),

Bκ1 ≤ A +
√

1 + log(1 + A2) ≤ 2A + 1, (41)

where the last inequality follows because log(1+x) ≤ x and√
a+ b ≤

√
a+
√
b.

As the finalizing step, letting R← (2A + 1) in Lemma 7
above, an application of Corollary 1 in Section III yields

N([−Bκ1
,Bκ1

], fY ? − κ1)

= N([−2A− 1, 2A + 1], fY ? − κ1) (42)

≤ 1 + min
s>1


((3A+1)s+A)2

2 + 2A2 + log
(

2 + (3A+1)s
A

)
log s


(43)

≤ 1 + min
s>1

{
((3s+1)A+s)2

2 + 2A2 + log (2 + 4s)

log s

}
(44)

≤ a2A2 + a1A + a0, (45)

where (44) follows because 3A + 1 ≤ 4A for5 A ≥ 1; and
(45) follows by choosing a suboptimal value s =

√
e in the

minimization and letting a2 = 9e + 6
√

e + 5, a1 = 6e + 2
√

e
and a0 = e + 2 log (4

√
e + 2) + 1.

Remark 6. A more careful optimization of (45) over the
parameter s would lead to better absolute constants a0, a1
and a2. However, the order A2 in (45) would not change.

c) Proof of the Lower Bound: Using the fact that the
optimizing input distribution is discrete with finitely many
points and denoting by H(PX?) the entropy of the optimizing
input distribution PX? , it follows that

1

2
log

(
1 +

2A2

πe

)
≤ max
X : |X|≤A

I(X;Y ) (46)

≤ H(PX?) (47)
≤ log (|supp(PX?)|) , (48)

where (46) is thanks to Shannon [22, Section 25].

V. CONCLUDING REMARKS

This paper has introduced several new tools to study the ca-
pacity of amplitude constrained additive Gaussian channels.
Not only are the introduced tools strong enough to show that
the optimal input distribution is discrete with finite support,
but they are also able to provide concrete upper bounds on the
number of elements in that support. Moreover, the method has
been demonstrated to be easily generalizable to other settings
such as a scalar additive Gaussian channel with both peak and
average power constraints. In addition to the scalar cases,
the method is shown to work for a vector Gaussian channel
with an amplitude constraint A. In particular, for an optimal
input X? it has been shown that its magnitude ‖X?‖, is a
discrete random variable with at most O(A2) number of mass
points for any fixed dimension n. Finally, it is highly likely

5The unessential assumption that A ≥ 1 is just for simplifying the
presentation. In the case when A ≤ 1, the optimality of PX? that is
equiprobable on X = {−A,A} is known [6].

that the presented approach generalizes to other (possibly
non-additive) channels where channel transition probability is
given by a Polyá type-∞ function, e.g., the Poisson channel.
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