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Abstract - We examine the frequency-selective Gaussian 
primitive diamond relay channel, where the signal received at both 
relays is described by identical frequency-selective Gaussian 
channels, and where the relays are connected to the destination via 
noiseless fronthaul links of a given capacity. The frequency 
response of the filters are available to all system components. We 
characterize analytically the Gaussian input frequency power 
distribution that maximizes the optimal information rate of the 
oblivious (code independent) relay operation achieved by joint 
decompression-decoding (or optimized Wyner-Ziv) procedure. 

Index Terms — Oblivious processing, Gaussian information 
bottleneck, quantization, finite link capacity, relay, water-
pouring. 

I. INTRODUCTION 

    Relaying is used in order to improve the performance of a 

communication system by using intermediate nodes. An 

example is 'cloud' communication [1] and Cloud Radio Access 

Network (CRAN) [2], where there are several base stations, 

each has error free, fronthaul link to a cloud computing central 

processor. By joint processing the signals of the different base 

stations, we can increase the spectral efficiency of the cellular 

network. Another example is the Remote Radio Heads (RRH) 

system connected to base stations with Common Public Radio 

Interface (CPRI) [3]. The fronthaul importance is shown in [4]. 

One interesting model of the relay system is the oblivious 

relay. In this model there is no a priori knowledge of the 

modulation or the coding at the relay, thus the relaying system 

is universal and can serve many diverse users and operators, 

CPRI is in this category. This work present methods designed 

to reduce the bitrates from the relays to the final destination. 

    A single relay scheme and the optimal frequency-

dependent allocation of power and bitrate was investigated 

in [5], [6] using Gaussian bottleneck results [7] and 

Shannon's incremental frequency approach [8]. The problem 

can be compared to the remote source coding, only with 

logarithmic loss instead of mean square error in [9] The 

scheme for this relay is shown in [5, Fig. 2]. Frequency-flat 

channels were shown in [10]. In [5] the flat channel filter H(f) 

results were found, along with frequency dependent channel 

filter response. The expressions rely on standard coding 

theorems [11]. The optimization algorithms for the 

quantizers and their performance are shown in [12]. 

    In this paper we expand the system to a model with two 

relay channels, as shown in Fig. 1. The problem of parallel 

independent Gaussian channels with cross frequency 

dependent interference, was shown in [13]. We solve 

analytically the identical frequency-selective Gaussian 

diamond relay channel, and determine the optimal input 

spectrum under a fixed power constraint, the special case of 

which is the classical water-pouring result (infinite fronthaul 

link capacities). The analytical calculation is done by 

symbolic calculation using MATLAB Symbolic Toolbox. 

II. SYSTEM MODEL 

Fig.  1. Two relay channels communication system 

The system model is a real Gaussian signal X over two 

AWGN relay channels. Each relay channel is with signal to 

noise ratio (SNR) equal to � , has frequency dependent 

channel response and rate limited encoder. In this paper we 

limit the model for the case where H1(f) = H2(f). Each relay 

channel has limited bit rate [bits/ channel use]C  from the 

encoder to the decoder at the destination. The relay encoders 

are oblivious of the code used, and they do not communicate 

with each other. We aim to maximize the mutual information 

between X and  subject to the rate constraint 

between the relays and the destination. 

III. PRELIMINARIES 

In this section we discuss preliminaries about the bottleneck 

problem, waterpouring method and relevant results from [5]. 

 

Fig.  2. One relay channel communication system 

A. Bottleneck 

    The optimal performance of the oblivious system with no 

interference, is governed by the Gaussian Information 

Bottleneck (GIB) [14] and was analyzed in [7], [15], [16].  

While different than minimum mean squared distortion based 

remote source coding [17], [18], [19] it is the remote source 

coding with logarithmic distortion [20]. The system rate of the 

one relay channel system, shown in Fig. 2, is given by solving 

the problem: 

(1)  

 

The solution for that optimization problem on a specific 

frequency, which is presented in [15], is solved using 
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bottleneck results and standard Euler-Lagrange [21]. The 

expression is: 

(2)  

 

This is the optimal mutual information between X and Z 

subject to the constraint on the rate between Y and Z. 

B. Water-Pouring 

    In this method, that was shown in [5] and [6], we split the 

channel into separate bands, each with bandwidth of df. In our 

Gaussian model, the different bands are independent. For each 

band we assign rate of  per channel use. Then rate in 

the band equals , because we have  channel uses 

for each band (Nyquist). The SNR of each band is dependent 

on the spectrum allocation  of the input signal X, equals 

. Therefore, the frequency dependent rate derived 

from (2) is: 

 

 (3) 

 

The optimization problem in (1) becomes: 

 

  

(4)  

 

 

The solution for this problem is shown in [5], using the 

Lagrange multipliers method. We next expand this to the case 

of two relay channels. We will also show upper and lower 

bounds where the encoders are either cooperative or 

independent. 

IV. SYSTEM DESIGN AND ANALYSIS 

Now we investigate the two channels relay system shown in 

Fig. 1. The transmitter uses classic codes, resulting in 

Gaussian-distributed X. The compression in each relay is done 

by using single channel remote source-coding with Wyner-Ziv 

compression as in [1, 19, 21]. 

At a single frequency, the optimization problem we solve for 

the system in Fig. 1, special case of [20, Theorem 5]: 

(5)  

The set S is the set of all the relays, in our case of size 2, and 

tr  indicate the bandwidth wasted by quantizing the additive 

noise for t=1, 2. Solution for this problem was shown in [20] 

and [22] for the case of CRAN with no time sharing. We are 

interested in the solution of the real signal case, shown in [20, 

Corollary 5]. 

Using our notation, the required expression is: 

 (6)  

 

This result is achieved either with joint decompression-

decoding or optimized (time sharing) Wyner-Ziv approach 

(see [22, 22, 23], for the general K relays model, accounting 

for joint decompression/decoding). First we investigate the 

expression above and show that: 

 (7)  

  

 (8)  

Proof is in Appendix - A. This behavior for different C rates is 

shown on Fig. 3.  

Now we use the same water-pouring approach shown in [5] 

and (3), now with (6), yielding (9). 

  

(9) 

 

 

 

 

 

The problem we now solve is: 

 

(10)  

  

  

  

 

Using the Lagrange multipliers method as shown in [5], we get 

the following problem: 

(11)  

 

Where ˆ ˆ( ) , ( )S S f C C f� � . We also 7denote ( )H f h�
.
. 

And now in order to solve the optimization problem, we search 

for the optimal solution point where the gradient equals zero. 

Therefore we need to solve the following equations: 

(12) 

 

As shown in [5], the optimal solution of C and S 6at each 

frequency is either in the concave region of (6) or zero. This 

will ensure that there is only one non-zero solution for the 

optimization problem. The concavity is determined by the 

hessian matrix: 

(13)  

 

 

Where for our function xy yxf f� . In the concave region the 

hessian matrix terms fulfill the following inequalities: 

 

(14)  

 
 
In order to find the concave region we used numerical 

calculation with symbolic tools in MATLAB. Then we found 

the region where ˆ ˆ( , , )I f S C  of (9), fulfills (14). The region 

is shown in Fig. 4. It can be seen from Fig. 4 that the minimum 
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rate which defines the border line between the concave and 

non-concave region is C=0.5. The region curve is similar to 

the region shown in [5]. 

 
Fig.  3. Two relay channels communication system - performance 
at a single frequency. 

Fig.  4. Concavity region of ˆ ˆ( , , )I f S C . 

(9), (11), (12) gives the following equation system: 

          

 

 

 

 

(15) 

 

 

 

 

Solving (15) for S and C results in two different solutions for 

the power and rate frequency allocation, shown in (17). We 

use the same method described in [5] in order to find the 

optimal solution using grid search on the Lagrange 

multipliers. For each grid point we do the following: 

1) Find the frequency allocation functions of solution 1 from 

(17). 

2) Calculate the total power and rate over the frequency 

domain. 

3) If we do not fulfill the power or rate constraints of (10), 

we sort the frequencies by their information values derived 

by (9).  

4) Then we exclude the frequencies with the least values 

until the power and rate constraints are fulfilled, this is done 

by assigning zero power and zero rate to those frequencies. 

5) Next we calculate the total information over the 

frequency domain, as in (10). 

Finally we choose the grid point with the maximal value of 

the total information. 

A. Frequency flat filter response 

    First we investigate the solution for the case where 

( ) 1H f h  � . In Appendix - B we derive the Lagrange 

coefficients region, using (15), which for this case is: 

 

(16) 

 
 
Using (16), we can perform grid search on the Lagrange 

coefficients region, as was done in [5], in order to find the 

optimal solution. Solving (15) yielded the following two 

solutions: 

 

 

 

 

(17)  

 

 

 
Fig.  5. Solutions 1 and 2 over the SNR-C plane with concave 
region border line. 

The square root in the solution in (17) also restricts the grid 

area to a region where the solution is real. Complex values of 

the solutions over the grid were discarded in the numerical 

analysis. Checking both solutions over grid of the Lagrange 

coefficients, substitute the SNR and C rate from (17), then 

check the hessian concave condition in (14). The solutions 
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points over the grid are shown in Fig. 5. We denote solution 

number 1 or 2 as i=1 or i=2 of (17). 

    It can be seen from Fig. 5 that the solution which is inside 

the concave region is solution 1. The other solution is always 

outside the concave region. Thus solution 1 is our optimization 

problem solution. For this solution we can now find the 

optimal solution for a specific example shown in [5], for: 

P=100[Watt], C=9[nats/sec] and W=10[Hz]. The frequency 

allocation of the optimal solution is shown in Fig. 6(a). 

Interesting behavior of the optimal solution, shown also in [5], 

is that there are frequencies with zero allocation. 

 

 

(a) 

 

 

 

 

 

(b) 

 

 

 

 

 

(c) 

 

 

 

 

Fig.  6. Frequency allocation of the optimal solution with a 
constant H(f) for P=100[Watt], C=9[nats/sec] and W=10[Hz]. (a) 
our scheme. (b) upper bound. (c) lower bound. 

B. Frequency dependent filter response 

    Next we show the case of frequency dependent filter. We 

use the same filter as in [5]. The filter is:

( ) max ( ) ( )f A AH f H f H f� � where

1 21 ( ,1) 2 ( ,1)( ) ( ) ( )A N f N fH f G f G f" "� � � �  and 
1( ,1) ( )N fG f is the 

Gaussian curve with mean 
1

f  and variance 1. The results are 

shown in Fig. 7. Clearly the allocation of the power and bitrate 

resources is a monotonically increasing function of the 

channel response H(f) and no resources at all are allocated to 

regions in which H(f) is too weak. 

C. Upper and lower bounds 

    We compare our results to upper and lower bounds. The 

upper bound is the case of cooperative encoding of Enc 1 and 

Enc 2 in Fig. 1. In this case, the encoders can share information 

and operate jointly and the problem is similar to the scheme in 

Fig. 2, the two encoders system equals one encoder system 

with vectors input (Y1,Y2) and output (Z1,Z2). The SNR is 

doubled because the signals of both channels are identical and 

the noises are independent. Also the total compression rate of 

the system is doubled, because we have two rates of both 

encoders. We can use the formula of (3) for this case: 
 

(18)  

 

 

 

 

(a) 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

 

 

(c) 

 
 
Fig. 7. Frequency allocation of the optimal solution with a 
frequency dependent H(f) for P=100[Watt], C=9[nats/sec] 
and W=10[Hz].  (a) our scheme. (b) upper bound .(c) lower 
bound. 
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The lower bound is a system in which each relay operates as 

in [5], independently and without the Wyner-Ziv 

compression and the destination just averages the two 

signals, thus improving the final SNR by a factor of 2. To 

evaluate it we use (3), convert the information rate to the 

SNR of a single decompressed signalby the AWGN capacity 

formula, multiply by a factor of 2 and convert back to bitrate. 

The lower bound expression is: 
 

(19)  

 

 

V. CONCLUSIONS 

We investigated and derived the optimal frequency-

dependent allocation of power and bitrate for a pair of 

oblivious relays operating over the AWGN frequency-

dependent channel and using classical Gaussian codes. This 

is a basic extension of the single relay system [5]. We 

investigated the loss incurred by lack of cooperation between 

the relays which would necessitate an additional 

communication link between them. As shown in Table 1, the 

advantage of applying the distributed compression 

(optimized Wyner-Ziv) technique is evident and the limit on 

relay to destination bitrates and the lack of communication 

between the relays limit the performance. As in [5], the 

optimal allocation, shown in Fig. 6, 7, is zero for some 

frequencies even over some frequency-flat channels due to 

the need to concentrate power and bitrate resources. 
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APPENDIX 

In this section, due to space limitations, we shortly elaborate 

on the proofs of the above results. 

 

A. Information rate limits 

We develop the limits of (6). First we develop the limit for 

C �� : 

Next we develop the limit for � �� : 

 

 

 

 

 

Where we used the Taylor series near x=0:  

 

 

Continue with the expression inside the logarithm: 

 

 

 

 

 

 

 

 

 

Now back to the information expression we get: 

 

 

 

 

 

 

TABLE I 

SUMMARY OF I(X;Z) VALUES 

 I(X;Z) 
(P=100[Watt], W=10[Hz], C=9[nats/sec] unless specified) 

Case Our optimal 

scheme 
Collaborative 

encoding -  

upper bound 

Independently encoding 

- lower bound 
I(X;Z) 

C � �  

Frequency flat filter 15.31 16.44 12.98 44.21 

Frequency 

dependent filter 

6.8 8.16 6.54 10.48 
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B. Lagrange coefficients region 

We derive here the region of the Lagrange coefficients from 

(15). First we denote that , , 0s c X � . Thus 0c� �  . For the 

upper bound we use (14) condition: 

 

This means that the maximum value is achieved at C=0. 

 

 

 

 

 

Now develop S� : 

 

 

 

 

 

 

 

 

 

We check each expression in the above equation. 

1) 

2) 

 

 

 

 

 

 

From the above we can infer that:  . 

Now again: 

 

 

So: 
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