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Abstract—Consider a primitive diamond relay channel, where
a source X wants to send information to a destination with the
help of two relays Y1 and Y2, and the two relays can communicate
to the destination via error-free digital links of capacities C1 and
C2 respectively, while Y1 and Y2 are conditionally independent
given X . In this paper, we develop new upper bounds on the
capacity of such primitive diamond relay channels that are tighter
than the cut-set bound. Our results include both the Gaussian
and the discrete memoryless case and build on the information
inequalities recently developed in [6]–[8] that characterize the
tension between information measures in a certain Markov chain.

I. INTRODUCTION

The diamond relay channel was first introduced in [1].
It models a communication scenario where a source wants
to send information to a destination with the help of two
relay nodes. The channels between the source and the two
relays form a broadcast channel in the first stage and the
channels between the two relays and the destination form a
multiple access channel in the second stage. The capacity of
the diamond relay channel remains open in general. Lower
bounds and upper bounds on the capacity have been developed
in [1]–[3].

In this paper, we study a class of diamond relay channels
where the multiple access channel between the two relays and
the destination is modeled by two orthogonal links with finite
capacities. This model has been of significant recent interest
as it captures the (single-user) uplink communication in Cloud
Radio Access Networks (C-RANs) [4]. In this paper, we will
call this channel model the primitive diamond relay channel.
The only known upper bound on the capacity of this channel
in the current literature is the so-called cut-set bound [5]. In
this paper, we develop new upper bounds on the capacity of
the primitive diamond relay channel that are tighter than the
cut-set bound.

Our results include both the Gaussian case and the general
discrete memoryless case. In the Gaussian case, our new
bound builds on the information inequality recently devel-
oped in [6]–[7].1 This inequality characterizes the tension
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1See also [9]–[10] for a weak version of the information inequality.

between information measures in a certain Markov chain,
and interestingly, was proved based on using an extended
isoperimetric inequality to study the geometric relations be-
tween the typical sets of the random variables involved. In
the discrete memoryless case, we build on an analogous
information inequality developed in [8], which was proved via
using measure concentration to study the geometric relations
between the typical sets. However, since the inequality in [8]
only applies to a symmetric Markov chain, we will use channel
simulation ideas [11]–[12] to connect the general asymmetric
diamond relay channel to a symmetric channel.

II. CHANNEL MODEL

Consider a general discrete memoryless primitive diamond
relay channel as depicted in Fig. 1. The source’s input X is
received by the two relays Y1 and Y2 through a broadcast
channel

(X , p(y1, y2|x),Y1 × Y2)

where X ,Y1 and Y2 are finite sets denoting the alphabets
of the source, the relay 1 and the relay 2, respectively, and
p(y1, y2|x) is the channel transition probability; the relay 1 and
the relay 2 can communicate to the destination via error-free
digital links of capacities C1 and C2, respectively. We assume
that the two relays’ observations Y1 and Y2 are conditionally
independent given X , i.e. p(y1, y2|x) = p(y1|x)p(y2|x).

p(y1, y2|x)X
S

R1

R2

D

C1

C2

Y1

Y2

Fig. 1. Primitive diamond relay channel.

For this channel, a code of rate R for n channel uses,
denoted by (C(n,R), (f1n, f2n), gn), consists of the following:

1) A codebook at the source,

C(n,R) =
{
xn(m) ∈ Xn : m ∈ [1 : 2nR]

}
;
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2) Two encoding functions f1n and f2n at the relay 1 and
relay 2 respectively,

f1n : Yn1 → [1 : 2nC1 ],

f2n : Yn2 → [1 : 2nC2 ];

3) A decoding function at the destination,
gn : [1 : 2nC1 ]× [1 : 2nC2 ]→ [1 : 2nR].

The average probability of error of the code is defined as

P (n)
e = Pr(gn(f1n(Y n1 ), f2n(Y n2 )) 6= M),

where the message M is assumed to be uniformly drawn from
the message set [1 : 2nR]. A rate R is said to be achievable if
there exists a sequence of codes {(C(n,R), (f1n, f2n), gn)}∞n=1

such that the average probability of error P (n)
e → 0 as n→∞.

The capacity of the primitive diamond relay channel is the
supremum of all achievable rates, denoted by C(C1, C2).

A. Gaussian Primitive Diamond Relay Channel
In this paper, we will also be interested in the Gaussian

version of this channel as depicted in Fig. 2. Here, we have{
Y1 = X +W1

Y2 = X +W2

where X ∈ R is the source signal constrained to average power
P , and W1 ∼ N (0, N1),W2 ∼ N (0, N2) are Gaussian noises
that are independent of each other and X .

X

W1 ⇠ N (0, N1)

W2 ⇠ N (0, N2)

C1

C2

Y1

Y2

R1

S D

R2

Fig. 2. Gaussian primitive diamond relay channel.

III. MAIN RESULTS

The only known upper bound on the capacity of the prim-
itive diamond relay channel is given by the cut-set bound.

Proposition 3.1 (Cut-set Bound): For a primitive diamond
relay channel depicted in Fig. 1, if a rate R is achievable, then
there exists some p(x) such that

R ≤ I(X;Y1, Y2) (1)
R ≤ I(X;Y1) + C2 (2)
R ≤ I(X;Y2) + C1 (3)
R ≤ C1 + C2. (4)

The main results of this paper are to develop new upper bounds
on the capacity of the primitive diamond relay channel that are
tighter than the cut-set bound. In the following, we present
our new upper bounds for the Gaussian case and the discrete
memoryless case, respectively. The proofs of these bounds are
provided in Sections IV and V.

A. Gaussian Case

Our new upper bound in the Gaussian case is given by the
following theorem.

Theorem 3.1: For a Gaussian primitive diamond relay
channel depicted in Fig. 2, if a rate R is achievable, then
there exists θi ∈ [arcsin(2−Ci), π/2], i ∈ {1, 2} such that

R ≤ 1/2 log (1 + snr1) + C2 + log sin θ2 (5)
R ≤ 1/2 log (1 + snr1) + min

ω2∈(π2−θ2,
π
2 ]
h2(ω2; θ2) (6)

R ≤ 1/2 log (1 + snr2) + C1 + log sin θ1 (7)
R ≤ 1/2 log (1 + snr2) + min

ω1∈(π2−θ1,
π
2 ]
h1(ω1; θ1) (8)

R ≤ C1 + C2 + log sin θ1 + log sin θ2 (9)

where snri = P/Ni for i ∈ {1, 2}, and hi(ω; θ) is defined as

1

2
log

([
P (N1 +N2) +N1N2sin2ω − 2P

√
N1N2cosω

]
sin 2θ

Ni(P +Nī)(sin2θ − cos2 ω)

)

for i, ī ∈ {1, 2}, i 6= ī.
One can show that the above bound is tighter than the cut-

set bound. In particular, when specialized to the Gaussian case,
the cut-set bound in Proposition 3.1 says that any achievable
rate R satisfies

R ≤ 1/2 log (1 + snr1 + snr2) (10)
R ≤ 1/2 log (1 + snr1) + C2 (11)
R ≤ 1/2 log (1 + snr2) + C1 (12)
R ≤ C1 + C2. (13)

Our bound (5)–(9) is in general tighter than the cut-set bound
(10)–(13) because of the following:

1) The constraints (6) and (8) in our bound imply the
broadcast bound (10) in the cut-set bound. Indeed, in
constraint (6), for any θ2 ∈ [arcsin(2−C2), π/2],

min
ω2∈(π2−θ2,

π
2 ]
h2(ω2; θ2) ≤ h2(π/2; θ2)

= 1/2 log (1 + snr1 + snr2)− 1/2 log (1 + snr1)

and therefore constraint (6) implies (10); similarly, con-
straint (8) also implies (10).

2) Since log sin θi ≤ 0 for any θi ∈ [arcsin(2−Ci), π/2],
i ∈ {1, 2}, the constraints (5), (7) and (9) in our bound
are in general stricter than (11), (12) and (13) in the
cut-set bound.

Now, to see that our bound can be indeed strictly tighter than
the cut-set bound, consider the special symmetric case when
snr1 = snr2. In this case, the optimal θ1 and θ2 in our
bound have to be strictly less than π/2 because otherwise
the second term in both (6) and (8) can be made arbitrarily
small by taking ω2 and ω1 to be arbitrarily close to zero,
thereby constraining the achievable rate R by 1

2 log (1 + snr1)
and 1

2 log (1 + snr2), respectively. This implies that when
snr1 = snr2, the constraints (5), (7) and (9) are strictly
stricter than (11), (12) and (13) respectively, and therefore our
bound is strictly tighter than the cut-set bound.
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In Fig. 3 we plot the upper bound in Theorem 3.1 together
with the cut-set bound for the symmetric case when snr1 =
snr2 =: snr0 and C1 = C2 =: C0, under two different
values of snr0. For reference, we also plot the rate achieved
by time sharing between decode-and-forward and a compress-
and-forward with Gaussian input distribution and Gaussian
quantization [13]. Note that all the three bounds coincide in the
regime when C0 is relatively small. Indeed, when 1/2 log(1+
snr0) ≥ 2C0, both relays can decode the transmitted message,
and the cut-set bound, which is equal to the multiple-access
bound 2C0 in this regime, can be trivially achieved. Known
achievable schemes fail to achieve the multiple-access bound
when 1/2 log(1 + snr0) < 2C0. As argued above, our new
bound establishes that the capacity itself deviates from the
multiple-access bound when 1/2 log(1 + snr0) < 2C0 and
therefore the multiple-access bound is achievable if and only
if 1/2 log(1 + snr0) ≥ 2C0. Also note that from these figures
one can visually observe that the new upper bound reaches
the value C(∞,∞) = 1/2 log (1 + snr1 + snr2) only as
C0 → ∞. Indeed, one can formalize this and show the
following corollary under the more general asymmetric setup.

Corollary 3.1: For a Gaussian primitive diamond relay
channel depicted in Fig. 2, its capacity C(C1, C2) is bounded
away from C(∞,∞) if C1 or C2 is finite.
Note that an immediate implication of the above corollary is
to say that in order to achieve the broadcast bound C(∞,∞),
both C1 and C2 have to be infinity. Proof of this corollary
follows along similar lines as the proof of Theorem 1 in [7]
and is omitted in this paper.

B. Discrete Memoryless Case

In the discrete memoryless case, our new bound is given by
the following theorem.

Theorem 3.2: For a discrete memoryless primitive diamond
relay channel depicted in Fig. 1, if a rate R is achievable, then
there exists some p(x) and a1, a2 ≥ 0 such that

R ≤ I(X;Y1, Y2) (14)
R ≤ I(X;Y1) + C2 − a2 (15)

R ≤ I(X;Y1, Ỹ2) +H2

(√
a2 ln 2/2

)
+
√
a2 ln 2/2 log(|Y2| − 1)− a2 (16)

R ≤ I(X;Y2) + C1 − a1 (17)

R ≤ I(X; Ỹ1, Y2) +H2

(√
a1 ln 2/2

)
+
√
a1 ln 2/2 log(|Y1| − 1)− a1 (18)

R ≤ C1 + C2 − a1 − a2 (19)

for any random variables Ỹ1 and Ỹ2 with the same conditional
distributions as Y1 and Y2 given X , i.e., pỸ1|X(y1|x) =
pY1|X(y1|x) and pỸ2|X(y2|x) = pY2|X(y2|x), where H2(·) is
defined as H2(r) = −r log r− (1−r) log(1−r) for r ∈ [0, 1]
and H2(r) = 0 for r /∈ [0, 1].

The evaluation of the bound in Theorem 3.2 involves
optimizing over all the Ỹ1 and Ỹ2 random variables that have
the same conditional distributions as Y1 and Y2 given X . While

C0 (bit/channel use)
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Achievable Rate
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Fig. 3. Capacity bounds for the Gaussian primitive diamond relay channel.

this optimization may not be trivial in general, note that any
valid choice of Ỹ1 and Ỹ2 would provide an upper bound on
the capacity. Moreover, in the case when the broadcast channel
is symmetric or stochastically degraded, it is straightforward
to determine the optimal Ỹ1 and Ỹ2:

1) When the broadcast channel is symmetric, i.e. Y1 =
Y2 = Y and pY1|X(y|x) = pY2|X(y|x) for all x ∈ X and
y ∈ Y , choosing Ỹ1 = Y2 and Ỹ2 = Y1 will minimize
the mutual information term in constraints (18) and (16)
respectively and this gives the tightest bound.

2) Now consider the case when the broadcast channel is
stochastically degraded, i.e. there exists some channel
transition probability q(y2|y1) such that p(y2|x) =∑
y1
p(y1|x)q(y2|y1). In this case, the optimal Ỹ1 is

such that pỸ1,Y2|X(y1, y2|x) = pY1|X(y1|x)q(y2|y1),
i.e. X − Ỹ1 − Y2 form a Markov chain; this is be-
cause in constraint (18), I(X; Ỹ1, Y2) ≥ I(X; Ỹ1) =
I(X;Y1), where the inequality holds with equality if
and only if X − Ỹ1 − Y2 form a Markov chain. Simi-
larly, the optimal Ỹ2 is such that pY1,Ỹ2|X(y1, y2|x) =

pY1|X(y1|x)q(y2|y1), i.e. X − Y1 − Ỹ2 form a Markov
chain; with such Ỹ2, I(X;Y1, Ỹ2) in constraint (16)
achieves the minimal value I(X;Y1).

It is easy to observe that the above bound is tighter than
the cut-set bound (1)–(4). In particular, since a1, a2 ≥ 0 in
Theorem 3.2, constraints (15), (17) and (19) are in general
tighter than (2), (3) and (4) respectively, and therefore our
bound in Theorem 3.2 is in general tighter than the cut-set
bound. To see that our bound can be indeed strictly tighter,
consider the above mentioned case when the broadcast channel
is symmetric or stochastically degraded. In this case, the
optimal a1 and a2 in our bound have to be strictly positive
because otherwise bounds (16) and (18) would constrain the
rate R by I(X;Y1). This implies that when the broadcast
channel is symmetric or stochastically degraded, constraints
(15), (17) and (19) are strictly tighter than (2), (3) and (4)
respectively, and therefore our bound is strictly tighter than
the cut-set bound.

IV. GAUSSIAN PRIMITIVE DIAMOND RELAY CHANNEL

Our new upper bound for the Gaussian primitive diamond
relay channel, i.e. Theorem 3.1, builds on the following lemma
proved in [6]–[7].
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Lemma 4.1: Consider a Markov chain Jn−Un−Xn−V n,
where Xn, Un and V n are n-length random vectors and
Jn = fn(Un) is a deterministic mapping of Un to a set of inte-
gers. Assume moreover that Un and V n are independent white
Gaussian vectors given Xn such that Un ∼ N (Xn, Nu In×n)
and V n ∼ N (Xn, Nv In×n) where In×n denotes the identity
matrix, and E[‖Xn‖2] = nP , and H(Jn|Xn) = −n log sin θn
for some θn ∈ [0, π/2]. Then the inequality (20) at the top of
the next page holds for any n.

Note that the above lemma provides an upper bound on
H(Jn|V n) in terms of H(Jn|Xn) for a Markov chain that
satisfies the conditions of the lemma. The proof of the lemma
can be found in [6]–[7] and is omitted here. Interestingly,
such a proof is based on considering the i.i.d. extensions of
the random variables (Xn, Un, V n, Jn) and studying the ge-
ometric relations between their typical sets using an extended
isoperimetric inequality. We now use this lemma to prove
Theorem 3.1.

A. Proof of Theorem 3.1

Suppose a rate R is achievable. Then there exists a sequence
of (C(n,R), (f1n, f2n), gn) codes such that the average proba-
bility of error P (n)

e → 0 as n → ∞. Let the transmissions
by the relay 1 and relay 2 be denoted by J1n = f1n(Y n1 )
and J2n = f2n(Y n2 ) respectively. By standard information
theoretic arguments, for this sequence of codes we have

nR = H(M)

= I(M ; J1n, J2n) +H(M |J1n, J2n)

≤ I(M ; J1n, J2n) + nµ (21)
≤ I(Xn;Y n1 , J2n) + nµ

= I(Xn;Y n1 ) + I(Xn; J2n|Y n1 ) + nµ (22)
≤ n/2 log (1 + snr1) +H(J2n|Y n1 )−H(J2n|Xn) + nµ,

(23)

for any µ > 0 and n sufficiently large.
Given (23), the standard way to proceed would be to upper

bound the first entropy term by H(J2n|Y n1 ) ≤ H(J2n) ≤
nC2 and lower bound the second entropy term H(J2n|Xn)
simply by 0. This would lead to the cross-cut bound (11) in
the cut-set bound. However, as pointed out in [6]–[7], this
bounding procedure will result in a loose bound since it does
not capture the inherent tension between how large the first
entropy term can be and how small the second one can be.
Instead, we can use Lemma 4.1 to more tightly upper bound
the difference H(J2n|Y n1 )−H(J2n|Xn) in (23). In particular,
we assume that H(J2n|Xn) = −n log sin θ2n for some θ2n ∈
[arcsin(2−C2), π/2], and leave it as it is in (23), yielding

R ≤ 1/2 log (1 + snr1) + C2 + log sin θ2n + µ,

which is bound (5). Then applying Lemma 4.1 to the Markov
chain J2n − Y n2 −Xn − Y n1 , we have

H(J2n|Y n1 )−H(J2n|Xn) ≤ n · min
ω2∈(π2−θ2n,

π
2 ]
h2(ω2; θ2n).

Plugging this into (23), we conclude that

R ≤ 1/2 log (1 + snr1) + min
ω2∈(π2−θ2n,

π
2 ]
h2(ω2; θ2n) + µ,

which proves bound (6). By symmetry, one can prove bounds
(7) and (8) similarly.

Finally, continuing with (21) we have

nR ≤ I(M ; J1n, J2n) + nµ

≤ I(Xn; J1n, J2n) + nµ

= I(Xn; J1n) + I(Xn; J2n|J1n) + nµ

= H(J1n)−H(J1n|Xn)

+H(J2n|J1n)−H(J2n|J1n, Xn) + nµ

≤ H(J1n)−H(J1n|Xn) +H(J2n)−H(J2n|Xn) + nµ

≤ nC1 + nC2 + n log sin θ1n + n log sin θ2n + nµ.

This proves bound (9) and concludes the proof of the theorem.

V. DISCRETE MEMORYLESS
PRIMITIVE DIAMOND RELAY CHANNEL

In the discrete memoryless case, we build on the following
lemma that was proved in [8] via measure concentration.

Lemma 5.1: Consider a Markov chain Jn−Un−Xn−V n,
where Xn, Un and V n are n-length discrete random vectors
and Jn = fn(Un) is a deterministic mapping of Un to a set of
integers. Assume moreover that Un and V n are memoryless
and conditionally i.i.d. given Xn, i.e.,

1) p(un, vn|xn) =
∏n
i=1 p(ui|xi)p(vi|xi);

2) pU |X(t|x) = pV |X(t|x), for any x ∈ X and t ∈ T ,
where X and T denote the alphabet of X and the
common alphabet of U and V respectively.

Suppose H(Jn|Xn) = nan for some an ≥ 0. Then

H(Jn|V n) ≤ n
[
H2

(√
an ln 2

2

)
+

√
an ln 2

2
log(|T | − 1)

]
(24)

Analogous to Lemma 4.1 in the Gaussian case, Lemma
5.1 provides an upper bound on H(Jn|V n) in terms of
H(Jn|Xn) in the discrete case. However, note that applying
this lemma requires a symmetric Markov chain structure,
which may not be always satisfied under a general discrete
memoryless diamond relay setup. For this, in the following we
will combine channel simulation ideas with the above lemma
to prove Theorem 3.2.

A. Proof of Theorem 3.2

Suppose a rate R is achievable. Then along the same lines
to reach (22), we have

nR ≤ I(Xn;Y n1 ) +H(J2n|Y n1 )−H(J2n|Xn) + nµ, (25)

for any µ > 0 and n sufficiently large. We now fix
H(J2n|Xn) = nan and leave it as it is in the above inequality,
yielding

nR ≤ I(Xn;Y n1 ) + nC2 − nan + nµ, (26)
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H(Jn|V n) ≤ n · min
ω∈(π2−θn,

π
2 ]

1

2
log

(
P (Nu +Nv) +NuNvsin2ω − 2P

√
NuNvcosω

Nu(P +Nv)(sin2θn − cos2 ω)

)
(20)

which proves bound (15).
To prove bound (16), we will upper bound H(J2n|Y n1 ) in

terms of an using Lemma 5.1. For this, we will first resort to
channel simulation theory [11]–[12] to construct an auxiliary
random variable Ỹ n2 so that Ỹ n2 and Y n2 are conditionally i.i.d.
given Xn. Specifically, consider the channel simulation setup
as depicted in Fig. 4, where we want to simulate some channel
pỸ2|X(y2|x) such that pỸ2|X(y2|x) = pY2|X(y2|x), i.e., Ỹ2
has the same conditional distribution as Y2. The simulation
encoder sees the source Xn, side information Y n1 , and a
common random variable Kn which is uniformly distributed
on [1 : 2nR2 ] and independent of those random variables
(Xn, Y n1 , Y

n
2 , J2n) associated with the original channel, and

it generates a simulation codeword Sn ∈ [1 : 2nR1 ] based
on a randomized encoding function En(Xn, Y n1 ,Kn). The
simulation decoder also observes Y n1 and Kn, and upon
receiving Sn it outputs a random variable Ỹ n2 based on a
randomized decoding function Dn(Sn, Y

n
1 ,Kn).

  

  Xn

  En   Dn

Kn

Sn

p(y1, y2|x)

J2n 2 [1 : 2nC2 ]Y n
2

Y n
1

Ỹ n
2

Channel Simulator: p(ỹ2|x)

Fig. 4. Channel simulation.

Following the similar lines as in [11]–[12] and [14], it can
be shown that the channel pỸ2|X(ỹ2|x) can be simulated in
the above setup, i.e., Ỹ n2 is (essentially) the same as if it is
generated by passing Xn through the channel pỸ2|X(ỹ2|x), if
R1 = I(X; Ỹ2|Y1)+ε and R2 is sufficiently large. In this case,
Ỹ n2 and Y n2 are conditionally identically distributed given Xn,
and due to the Markov chain Y n2 −Xn− (Y n1 , Sn,Kn)− Ỹ n2
they are also conditionally independent given Xn. Therefore
one can apply Lemma 5.1 to the Markov chain J2n − Y n2 −
Xn − Ỹ n2 and obtain that H(J2n|Ỹ n2 ) ≤ R.H.S. of (24) with
T replaced by Y2.

Now consider expanding H(J2n, Sn,Kn|Y n1 ) in two differ-
ent ways as follows:

H(J2n, Sn,Kn|Y n1 )

= H(J2n|Y n1 ) +H(Kn|Y n1 , J2n) +H(Sn|Y n1 , J2n,Kn)

= H(Kn|Y n1 ) +H(Sn|Y n1 ,Kn) +H(J2n|Y n1 ,Kn, Sn).

Therefore,

H(J2n|Y n1 )

= H(Kn|Y n1 ) +H(Sn|Y n1 ,Kn) +H(J2n|Y n1 ,Kn, Sn)

−H(Kn|Y n1 , J2n)−H(Sn|Y n1 , J2n,Kn)

≤ H(Kn|Y n1 ) +H(Sn|Y n1 ,Kn) +H(J2n|Y n1 ,Kn, Sn)

−H(Kn|Y n1 , J2n)

= H(Sn|Y n1 ,Kn) +H(J2n|Y n1 ,Kn, Sn) (27)

= H(Sn|Y n1 ,Kn) +H(J2n|Y n1 ,Kn, Sn, Ỹ
n
2 ) (28)

≤ n(I(X; Ỹ2|Y1) + ε) +H(J2n|Ỹ n2 ) (29)

≤ n(I(X; Ỹ2|Y1) + ε) + R.H.S. of (24) (30)

where (27) follows because Kn is independent of (Y n1 , J2n),
(28) follows from the Markov chain J2n − (Y n1 ,Kn, Sn) −
Ỹ n2 , and (29) follows because H(Sn|Y n1 ,Kn) ≤ nR1 =
n(I(X; Ỹ2|Y1) + ε) and removing condition does not reduce
entropy. Plugging (30) into (25) yields bound (16). Bounds
(17) and (18) can be proved similarly. Bounds (14) and (19)
are straightforward. This completes the proof of Theorem 3.2.
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