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Abstract— We investigate the state-dependent Gaussian wire-
tap channel with noncausal channel state information at the
transmitter (GWTC-N-CSIT), and explore whether three strate-
gies (i.e., taking action on the state, legitimate receiver’s
channel output feedback, and combining the former two
strategies together) help to enhance the secrecy capacity of
the GWTC-N-CSIT. To be specific, we first determine the secrecy
capacity of the GWTC-N-CSIT with noiseless feedback. Next,
we derive lower and upper bounds on the secrecy capacity
of the GWTC-N-CSIT with action-dependent state. Finally,
we derive lower and upper bounds on the secrecy capacity of the
GWTC-N-CSIT with both action-dependent state and noiseless
feedback, and show that these bounds meet for a special case.
Numerical results of this paper indicate that all three strategies
enhance the secrecy capacity of the GWTC-N-CSIT. The study
of this paper offers new options for enhancing the secrecy rates
of the state-dependent wiretap channel models.

Index Terms— Action-dependent channel, dirty paper channel,
feedback, secrecy capacity, wiretap channel.

I. INTRODUCTION

SHANNON first investigated the capacity of the channel
in the presence of state by considering a state-dependent
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discrete memoryless channel (DMC) with causal state infor-
mation available at the transmitter, and fully determined the
capacity of such a channel model in [1]. Subsequently, [2]
studied the state-dependent channel with noncausal state infor-
mation at the transmitter (also referred to as the C-N-CSIT),
and the capacity was established in [3]. [4] further pointed
out that noiseless channel feedback does not increase the
capacities of [1] and [3].

The Gaussian case of the model in [3], which is known
as the dirty paper channel, was studied in [5], and was shown
that the capacity of the dirty paper channel equals the capacity
of the same channel model without the state interference.
[6] further pointed out that the noiseless channel feedback
does not increase the capacity of the dirty paper channel [5].
Moreover, the Gaussian case of the model in [1], which is
known as the dirty tape channel, was studied in [7]–[9].
The capacity of the dirty tape channel remains open and is
only known for some special cases. In all the aforementioned
work [1]–[9], the channel state was assumed to be independent
of the transmitted message. In [10], the models of [1] and [3]
were revisited by considering the case that the transmitter can
take action on the channel state (i.e., the state is correlated
with the transmitted message). Such models are known as the
action-dependent channel with noncausal or causal states, and
their capacities were determined in [10]. Furthermore, [10]
showed that for the Gaussian case of the action-dependent
channel with noncausal states (also referred to as the action-
dependent dirty paper channel), taking action on the state
increases the capacity compared to the action-independent
channel, i.e., the dirty paper channel. The capacity of the
action-dependent dirty paper channel was fully determined
in [11].

As a natural extension of the above work, the study of the
state-dependent channel under additional secrecy requirements
receives much attention recently. Specifically, [14] and [15]
studied the discrete memoryless state-dependent wiretap chan-
nel with noncausal state at the transmitter (also referred
to as the WTC-N-CSIT), and proposed lower and upper
bounds on its secrecy capacity (i.e., channel capacity with
the perfect secrecy constraint). [16]–[18] proposed lower and
upper bounds on secrecy capacities of the discrete memo-
ryless state-dependent wiretap channel with causal state at
the transmitter (or at both the transmitter and the legitimate
receiver), and showed that these bounds meet for the case
that the eavesdropper’s received signal is a degraded version
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of the legitimate receiver’s. For the Gaussian case of [14]
(also referred to as the GWTC-N-CSIT), [19] showed that
the state interference non-causally known by the transmitter
helps to increase the secrecy capacity of the Gaussian wiretap
channel [20]. Furthermore, [21] extended the models of [14]
and [19] to a broadcast situation, and proposed inner and outer
bounds on the secrecy capacity region of such models.

The above works mainly adopted the framework and tools
in [12], [13] for establishing the secrecy rate/capacity. More
recently, there has been a lot of attention on developing
communication schemes to enhance the secrecy rates (i.e.,
reliable transmission rates subject to the perfect secrecy con-
straint). Artificial noise aided cooperative jamming [22]–[24]
and channel feedback have been proven to be useful tools
to enhance the secrecy rates of various channel models with
eavesdropper(s). However, note that in some circumstances,
such as Internet of Things (IoT), the artificial noise aided
cooperative jamming is not a good choice due to the energy
constraint of the devices [25], and hence the channel feedback
is of particular interest for such circumstances. The effect
of channel feedback on the physical layer security (PLS) of
communication systems was initially studied in [26], where the
pioneering work on the wiretap channel [12] was re-visited by
considering a noiseless feedback channel from the legitimate
receiver to the transmitter. Since the transmitter also knows the
legitimate receiver’s channel output via the feedback channel,
[26] showed that generating keys from this shared channel
output and using them to encrypt the transmitted messages
help to increase the secrecy capacity of the original channel
model. Furthermore, [26] showed that such a secret key
based feedback scheme is optimal if the channel is physically
degraded. In recognition of this, [27] further pointed out that
if the noiseless feedback channel can be used to transmit
anything as the legitimate parties wish, the best choice of
the legitimate parties is to send pure random bits (secret key)
over the feedback channel. Subsequently, [28] extended the
work of [27] to a broadcast situation, where two legitimate
receivers of the broadcast channel independently send their
secret keys to the transmitter via two noiseless feedback chan-
nels, and these keys help to increase the achievable secrecy
rate region of the broadcast wiretap channel [29], [30]. Other
related works in the PLS of feedback communication systems
include [31]–[34] and [35], where channel state information
(CSI) are introduced into various feedback channel models in
the presence of an eavesdropper.

Very recently, [36] showed that for feedback communication
systems, a better usage of the feedback is to generate not
only a key but also a cooperative message from it, and
such a cooperative message helps the legitimate receiver to
improve the decoding performance. Later, [37] and [38] further
applied the feedback scheme of [36] to the state-dependent
wiretap channel with and without action encoder, respectively.
Moreover, [39] and [44] showed that the secrecy capacity of
the Gaussian wiretap channel with noiseless feedback equals
the capacity of the same channel model without the secrecy
constraint, and it can be achieved by the classical Schalkwijk-
Kailath (SK) feedback scheme for the Gaussian channel [40].
Furthermore, [41] provided a generalized SK feedback scheme

for the colored Gaussian wiretap channel, and showed that this
scheme also achieves the capacity of the same channel model
without the secrecy constraint.

In this paper, we study the Gaussian wiretap channel that is
both state-dependent with noncausal state information at the
transmitter and with feedback, and would like to answer the
following three open questions:

1) In [39], it has been shown that the secrecy capacity of the
Gaussian wiretap channel with feedback equals the capacity
of the Gaussian channel without secrecy constraint. Does this
still hold if the Gaussian wiretap channel with feedback is
further corrupted by a state which is noncausally known at
the transmitter, i.e., for the GWTC-N-CSIT with feedback?

2) Furthermore, does the same nature of result hold if
the state is further controlled by action. Namely, whether
the secrecy capacity of the action-dependent GWTC-N-CSIT
with feedback equals the capacity of the same channel model
without secrecy constraint?

3) In [10] and [11], it has been shown that an action on the
state helps to enhance the capacity of the dirty paper channel.
Does such an action on the state also enhance the already
existing achievable secrecy rate of the GWTC-N-CSIT [19]?

This paper provides the comprehensive answers to the afore-
mentioned questions. Our main contributions are summarized
as follows:

1) We prove that the secrecy capacity of the GWTC-N-CSIT
with feedback equals the capacity of the dirty paper channel
with feedback, i.e., the secrecy requirement does not reduce
the capacity. Here note that if the same channel model is
not state dependent, then [39] showed that the original SK
scheme achieves the secrecy capacity, which transmits the
original message only at the first transmission, and then the
transmissions after the first one combine only channel noises
in the previous transmissions. Since the information leakage
occurs only in the first transmission, the leakage rate vanishes
as the codeword length tends to infinity. In this paper, since
the channel is state-dependent, we need to adopt a modified
SK scheme. Differently from the classical SK scheme, such
a modified scheme transmits the original message through
all transmissions so that the information leakage occurs in
all transmissions. Here the major technical step to show that
the secrecy still holds lies in establishing that the amount of
leakage information is shrinking exponentially, and hence the
information leakage rate still vanishes as the codeword length
tends to infinity.

2) We prove that the secrecy capacity of the action-
dependent GWTC-N-CSIT with feedback equals the capac-
ity of the same channel under no secrecy constraint for
a special case, in which case the secrecy constraint does
not reduce the capacity if the feedback channel has action-
dependent state. Here note that the modified SK scheme used
in 1) does not perform well when the state is controlled
by action. Alternatively, we find that since the state and
the action are known by the transmitter, the channel input
can be designed to be linear combination of the state and
the action, and this leads to the equivalence of the action-
dependent GWTC-N-CSIT with feedback and the Gaussian
wiretap channel with feedback. Then applying the original SK
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scheme as used in [39] and choosing appropriate parameters of
the state and the action (similar to the choice of the parameter
in the dirty paper channel [5]), we obtain a lower bound on the
secrecy capacity of the action-dependent GWTC-N-CSIT with
feedback. Somewhat surprisingly, we find that such a scheme
for the state-independent channel achieves the capacity of the
action-dependent state corrupted channel for a special case.
Moreover, we show that our new lower bound is tighter than
the already existing secret key based lower bound [37] when
the eavesdropper’s channel noise variance is sufficiently small.

3) We provide lower and upper bounds on the secrecy capac-
ity of the action-dependent GWTC-N-CSIT. To be specific,
first, we derive bounds on the secrecy capacity of the discrete
memoryless action-dependent wiretap channel with noncausal
state information at the transmitter, where the lower bound is
constructed by combining the coding scheme of [10] with the
random binning scheme of the wiretap channel [12], and the
upper bounds are constructed by applying the degradedness
assumption and the standard converse derivation of [13] into
the converse of [10]. Next, we further derive two lower bounds
on the secrecy capacity of the action-dependent GWTC-
N-CSIT by respectively introducing two different ways of
choosing the distributions of the random variables to the
corresponding discrete memoryless lower bound (see [10]
and [11]), where one way only obtains a lower bound on the
capacity of the action-dependent dirty paper channel [10], and
the other way achieves the capacity of the action-dependent
dirty paper channel [11]. Somewhat surprisingly, numerical
results show that the former way may help to obtain a tighter
lower bound on the secrecy capacity of the action-dependent
GWTC-N-CSIT than the latter one. Moreover, numerical
results indicate that the lower bounds for the action-dependent
GWTC-N-CSIT meet the upper bound when the transmitting
power is sufficiently large, and action on the state increases
the secrecy capacity of the GWTC-N-CSIT [19].

To get a better understanding of the contribution of this
paper and the related works studied in the literature, the
following Table I summarizes the capacity results on the
channels with noncausal state information at the transmitter,
and with or without action, feedback and eavesdropping.

For the rest of this paper, the random variables (RVs), values
and alphabets are denoted by uppercase letters, lowercase let-
ters and calligraphic letters, respectively. The random vectors
and their values are denoted by a similar convention. For
example, Y represents a RV, and y represents a value in the
alphabet Y . Similarly, Y N represents a N -dimensional random
vector (Y1, . . . , YN ), and yN = (y1, . . . , yN ) represents a
vector value in YN (the N -th Cartesian power of Y). In
addition, for an event {X = x}, its probability is denoted
by P (x). Throughout this paper, the base of the log function
is 2.

This paper is organized as follows. Section II gives formal
definition of the models studied in this paper. Section III
shows that an already existing modified SK scheme also
achieves the secrecy capacity of the GWTC-N-CSIT with
feedback. Section IV shows the capacity results on the discrete
memoryless action-dependent wiretap channel with noncausal
state information at the transmitter and its Gaussian case

TABLE I

SUMMARIZING ALL RESULTS ON THE CHANNELS WITH
NONCAUSAL/CAUSAL STATE AT THE TRANSMITTER, AND

WITH OR WITHOUT ACTION, FEEDBACK

AND EAVESDROPPER

(the action-dependent GWTC-N-CSIT). Section V intro-
duces a feedback coding scheme for the action-dependent
GWTC-N-CSIT, and shows that this scheme achieves the
secrecy capacity of the action-dependent GWTC-N-CSIT with
feedback for a special case. Section VI includes final conclu-
sion and future work.

II. MODEL FORMULATION

In this section, we give formal definitions of the
GWTC-N-CSIT with feedback, and the action-dependent
GWTC-N-CSIT with or without feedback. For convenience,
the following Table II provides notations about capacities of
various channel models introduced in the remainder of this
paper.

A. Model I: The GWTC-N-CSIT With Noiseless Feedback

In this subsection, we describe the Gaussian state-dependent
wiretap channel with noncausal state information at the
transmitter and noiseless feedback (the GWTC-N-CSIT with
noiseless feedback), see Figure 1. In Figure 1, the message
M is uniformly distributed over its alphabet set M =
{1, 2, . . . , |M|}, and the state sequence SN is independent
identically distributed (i.i.d.), which is generated according to
N (0, Q).
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TABLE II

NOTATIONS ON CAPACITIES OF VARIOUS CHANNEL
MODELS INTRODUCED IN THIS PAPER

Fig. 1. The GWTC-N-CSIT with noiseless feedback.

At each time i (i ∈ {1, 2, . . . , N}), the inputs and outputs
of this Gaussian model satisfy

Yi = Xi + Si + η1,i, Zi = Xi + Si + η1,i + η2,i, (2.1)

where Xi is the channel input at time i subject to an average
power constraint P , and it is a (stochastic) function of the
transmitted message M , the noncausal interference SN and
the channel feedback Y i−1, Yi and Zi are channel outputs
respectively at the legitimate receiver and the eavesdropper,
and Si, η1,i, η2,i are independent Gaussian state interference
and noises and are i.i.d. across the time index i. Here note
that Si ∼ N (0, Q), η1,i ∼ N (0, σ2

1) and η2,i ∼ N (0, σ2
2).

The legitimate receiver produces an estimation M̂ =
ψ(Y N ), where ψ is the legitimate receiver’s decoding func-
tion, and the average decoding error probability equals

Pe =
1

|M|
∑

m∈M
Pr{ψ(yN ) �= m|m sent}. (2.2)

The eavesdropper’s equivocation rate of the message M is
defined as

Δ =
1
N
H(M |ZN). (2.3)

Given a positive number R, if for arbitrarily small ε and
sufficiently large N , there exists a pair of channel encoder
and decoder described above such that

log |M|
N

≥ R− ε, Δ ≥ R− ε, Pe ≤ ε, (2.4)

Fig. 2. The action-dependent wiretap channel with noncausal state informa-
tion at the transmitter.

we say that R is achievable with perfect weak secrecy. The
secrecy capacity Cf

sg is the supremum over all achievable weak
secrecy rates, and it will be given in Section III.

B. Model II: The Action-Dependent GWTC-N-CSIT With or
Without Noiseless Feedback

In this subsection, first, we study the action-dependent wire-
tap channel with noncausal state information at the transmitter
and its Gaussian case (the action-dependent GWTC-N-CSIT).
Then, we study the action-dependent GWTC-N-CSIT with
noiseless feedback.

1) The Action-Dependent Wiretap Channel With Noncausal
State Information at the Transmitter: The action-dependent
wiretap channel with noncausal state at the transmitter is
shown in Figure 2, where the overall channel transition prob-
ability is given by

P (yN , zN |xN , sN) =
N∏

i=1

P (zi|yi)P (yi|xi, si), (2.5)

where si ∈ S, xi ∈ X , yi ∈ Y and zi ∈ Z .
The message M is uniformly distributed in its alphabet

set M = {1, 2, . . . , |M|}, and a stochastic action encoder
encodes M into an action sequence AN . The channel state
sequence SN is generated through a DMC AN → SN with
transition probability P (s|a). Since SN is non-causally known
by the channel encoder, the i-th (i ∈ {1, 2, . . . , N}) channel
input Xi = fi(M,SN ), where fi is a stochastic encoding
function. The legitimate receiver’s decoding error and the
eavesdropper’s equivocation rate are defined in the same way
as those in Subsection II-A (see (2.2) and (2.3)). The secrecy
capacity Csa of the model of Figure 2, is the supremum over
all achievable weak secrecy rates defined in Subsection II-A.
Bounds on Csa will be given in Section IV.

Now we turn to the Gaussian case of the model of Figure 2
(the action-dependent GWTC-N-CSIT), see Figure 3. At time
i (i ∈ {1, 2, . . . , N}), the inputs and outputs of this Gaussian
model satisfy

Si = Ai +Wi, Yi = Xi + Si + η1,i,

Zi = Xi + Si + η1,i + η2,i, (2.6)

where Xi is the channel input subject to an average power
constraint P , Ai is the output of the action encoder subject to
an average power constraint PA, Yi and Zi are channel outputs
respectively at the legitimate receiver and the eavesdropper,
and Wi, η1,i, η2,i are independent Gaussian noises and are

Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on May 24,2020 at 05:32:54 UTC from IEEE Xplore.  Restrictions apply. 



DAI et al.: IMPACT OF ACTION-DEPENDENT STATE AND CHANNEL FEEDBACK ON GAUSSIAN WIRETAP CHANNELS 3439

Fig. 3. The action-dependent GWTC-N-CSIT.

Fig. 4. The action-dependent GWTC-N-CSIT with noiseless feedback.

i.i.d. across the time index i. Here note that Wi ∼ N (0, σ2
w),

η1,i ∼ N (0, σ2
1) and η2,i ∼ N (0, σ2

2). The secrecy capacity
of the action-dependent GWTC-N-CSIT is denoted by Csag,
and bounds on Csag will be given in Section IV.

2) The Action-Dependent GWTC-N-CSIT With Noiseless
Feedback: The action-dependent GWTC-N-CSIT with noise-
less feedback is shown in Figure 4. This feedback model is
defined in the same way as the non-feedback model, except
that the i-th (i ∈ {1, 2, . . . , N}) channel encoder is a stochastic
function of the message M , the interference SN and the
channel feedback Y i−1. The secrecy capacity of the action-
dependent GWTC-N-CSIT with noiseless feedback is denoted
by Cf

sag , and bounds on Cf
sag will be given in Section V.

III. THE GWTC-N-CSIT WITH NOISELESS FEEDBACK

In this section, first, in order to show the advantage of
using channel feedback, we review the capacity results on the
GWTC-N-CSIT, see Subsection III-A. Next, we introduce a
modified SK scheme [6] achieving the capacity of the dirty
paper channel with feedback, see Subsection III-B. Finally,
in Subsection III-C, we show that the introduced modified SK
scheme in Subsection III-B also achieves the secrecy capacity
of the GWTC-N-CSIT with noiseless feedback.

A. Capacity Results on the GWTC-N-CSIT

In this subsection, we review the GWTC-N-CSIT(see
Figure 5). At each time i (i ∈ {1, 2, . . . , N}), the inputs and
outputs of this Gaussian model satisfy

Yi = Xi + Si + η1,i, Zi = Xi + Si + η1,i + η2,i, (3.1)

where Xi is the channel input subject to an average power
constraint P , Yi and Zi are channel outputs respectively at
the legitimate receiver and the eavesdropper, and Si, η1,i, η2,i

Fig. 5. The GWTC-N-CSIT.

are respectively independent Gaussian state interference and
noises, and are i.i.d. across the time index i. Here note that
Si ∼ N (0, Q), η1,i ∼ N (0, σ2

1) and η2,i ∼ N (0, σ2
2). The

secrecy capacity of the GWTC-N-CSIT is denoted by Csg .
A lower bound on Csg has been obtained in [19], and is

given by

Csg ≥ R∗
sg

= max
α

min
{

1
2

log
(P + α2Q)(P +Q+ σ2

1)
(P+α2Q)(P+Q+σ2

1)−(P+αQ)2

−1
2

log
P + α2Q

P
,

1
2

log
(P + α2Q)(P +Q+ σ2

1)
(P + α2Q)(P +Q+ σ2

1) − (P + αQ)2

−1
2

log
(P + α2Q)(P +Q+ σ2

1 + σ2
2)

(P + α2Q)(P +Q+ σ2
1 + σ2

2) − (P + αQ)2

}
.

(3.2)

Next, we present two upper bounds on Csg . The first upper
bound Cupper−1

sg (see [19]) is obtained by letting the interfer-
ence S be part of the channel input, i.e., the channel input
has power constraint P + Q and the main channel has no
interference. Hence, following from the secrecy capacity of
the Gaussian wiretap channel [20], we have

Csg ≤ Cupper−1
sg

= min
{

1
2

log
(

1 +
P

σ2
1

)
,

1
2

log
(

1 +
P +Q

σ2
1

)
− 1

2
log
(

1 +
P +Q

σ2
1 + σ2

2

)}
.

(3.3)

The second upper bound Cupper−2
sg has been obtained in [15],

and is given by

Csg ≤ Cupper−2
sg

= min
{

1
2

log
(
1+

P

σ2
1

)
,
1
2

log
(
1+

P +Q+ 2
√
PQ

σ2
1

)

− 1
2

log
(

1 +
P +Q+ 2

√
PQ

σ2
1 + σ2

2

)}
. (3.4)

Since f(x) = log
(
1 + x

σ2
1

)
− log

(
1 + x

(σ2
1+σ2

2)

)
(x ≥ 0) is

monotonically increasing in x, the first upper bound is always
tighter than the second one.

In the remainder of this paper, the capacity results on
the GWTC-N-CSIT will be compared with those results on
the GWTC-N-CSIT with feedback and the action-dependent
GWTC-N-CSIT with or without feedback.
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Fig. 6. The dirty paper channel with noiseless feedback.

B. Capacity Achieving Scheme for the Dirty Paper Channel
With Noiseless Feedback

For the dirty paper channel with noiseless feedback (see
Figure 6), the i-th channel input and output satisfy

Yi = Xi + Si + ηi, (3.5)

where Xi is the channel input subject to an average power
constraint P , and Si ∼ N (0, Q), ηi ∼ N (0, σ2) are indepen-
dent Gaussian state interference and noise and are i.i.d. across
the time index i (1 ≤ i ≤ N ). Moreover, due to the channel
feedback, the channel input Xi at time i is a function of the
transmitted message M , the noncausal interference SN and
the channel feedback Y i−1. It has already been shown that the
feedback does not increase the capacity of the channel with
noncausal state information at the transmitter [42], and hence
the capacity Cf

dpc of the dirty paper channel with noiseless
feedback equals the capacity Cdpc of the dirty paper channel,
i.e.,

Cf
dpc = Cdpc =

1
2

log
(

1 +
P

σ2

)
. (3.6)

In this subsection, we introduce a feedback scheme [6] achiev-
ing the capacity (3.6) of the dirty paper channel with noiseless
feedback, which can be viewed as a variation of the SK
scheme [40]. The scheme is described below.

Without loss of generality, assume that the number of
channel uses N equals K + 1 and the time instant k ∈
{0, 1, . . . ,K}. At time k, the encoder of the proposed
scheme [6] is shown in Figure 7, and the output Xk of the
encoder is given by

Xk = aXk−1 − L(Yk−1 − Sk−1), (3.7)

where

a =

√
1 +

P

σ2
, (3.8)

and

L = a− 1
a
. (3.9)

Moreover, from Figure 7, we see that the k-th channel output
Yk is given by

Yk = Xk + Sk + ηk, (3.10)

and at time k, the output X̂0,k of the decoder is given by

X̂0,k = X̂0,k−1 + a−k−1LYk. (3.11)

Fig. 7. The capacity achieving scheme for the dirty paper channel with
noiseless feedback.

The transmitted message M is uniformly drawn from the
alphabet set

M = {1, 2, . . . , a(K+1)(1−ε)}, (3.12)

where ε is an arbitrarily small positive number. Similarly to
the definition of the transmitted message in the SK scheme,
we equally divide the overall interval

[−
√
P (1 +

1
aK+1 − 1

),
√
P (1 +

1
aK+1 − 1

)], (3.13)

into a(K+1)(1−ε) sub-intervals, and the center of
each sub-interval corresponds to a specific value in
{1, 2, . . . , a(K+1)(1−ε)}.

To start the encoding procedure, define s−1 = y−1 =
x̂0,−1 = 0 (where s−1, y−1 and x̂0,−1 are the values of
S−1, Y−1 and X̂0,−1, respectively), and define x−1 = M+M∗

a ,
where M∗ is given by

M∗ = −
∑K

j=0 a
−j−1Lsj

1 − a−K−2
, (3.14)

and sj is the value of Sj . For the decoder, at the end of time
K , an estimation M̄K defined by

M̄K =
X̂0,K

1 − a−2K−2
(3.15)

is obtained, and then the receiver finds the closest sub-interval
center to M̄K and obtains the decoded message M̂ . The
decoding error is defined as Pr{M̂ �= M}.

Let WM be the center of the sub-interval w.r.t. the choosing
message M . The above definitions imply that the k-th channel
input Xk can be expressed as

Xk = a−k(WM +M∗) −
k−1∑
j=0

a−k+1+jLηj, (3.16)

and the K-th output of the decoder X̂0,K can be expressed as

X̂0,K = (1 − a−2K−2)M + a−2K−2
K∑

j=0

aj+1Lηj . (3.17)

Finally, by combining (3.16), (3.17) and the above defini-
tions, [6] proves that the average channel input power of
Xk tends to P as k tends to infinity, the transmission rate
R = log |M|

K+1 tends to Cf = 1
2 log(1 + P

σ2 ) as ε tends to zero,
and the decoding error Pr{M̂ �= M} doubly exponentially
decays to zero as K tends to infinity.
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In the next subsection, we will show that the modified SK
scheme introduced in this subsection also achieves the secrecy
capacity of the GWTC-N-CSIT with feedback.

C. The Secrecy Capacity of the GWTC-N-CSIT With
Noiseless Feedback

In this subsection, we show that the secrecy capacity Cf
sg

of the GWTC-N-CSIT with noiseless feedback (see Subsec-
tion II-A) equals the capacity Cf

dpc of the same channel without
secrecy constraints.

Theorem 1: The secrecy capacity Cf
sg of the

GWTC-N-CSIT with noiseless feedback is given by

Cf
sg = Cf

dpc =
1
2

log
(

1 +
P

σ2
1

)
. (3.18)

Remark 1: From (3.16), we see that the original message
is sent over all time instants, so that the information leakage
occurs in all transmission steps. Hence the major step of
the proof lies in showing that such an information leakage
vanishes as the number of channel uses tends to infinity, which
finally leads to the fact that the secrecy requirement does not
reduce the channel capacity.

Proof: First, note that the secrecy capacity Cf
sg can-

not exceed the capacity of the model of Figure 1 without
the eavesdropper. Hence, we have Csf ≤ Cf

dpc = 1
2 log(1 +

P
σ2
1
). Next, we show that the secrecy rate 1

2 log(1 + P
σ2
1
)

can be achieved by the previously proposed feedback cod-
ing scheme for the dirty paper channel with feedback (see
Subsection III-B), and the detail is given below.

In Subsection III-B, we have shown that the proposed
feedback scheme achieves the rate 1

2 log(1+ P
σ2
1
) with decoding

error probability doubly exponentially decaying to zero while
codeword length tending to infinity. Now it remains to show
that the eavesdropper’s equivocation rate Δ = 1

NH(M |ZN) ≥
1
2 log(1 + P

σ2
1
) − ε

′
, where ε

′
is an arbitrary small positive

number. Since

Δ =
1
N
H(M |ZN)

(1)
=

1
K + 1

H(WM |Z0, . . . , ZK)

(2)
=

1
K + 1

H(WM |WM +M∗ + S0 + η1,0 + η2,0,

a−1(WM +M∗) − Lη1,0 + S1 + η1,1 + η2,1,

. . . , a−K(WM +M∗)

−
K−1∑
j=0

(a−K+1+jLη1,j) + SK + η1,K + η2,K)

(3)

≥ 1
K + 1

H(WM |WM +M∗ + S0 + η1,0 + η2,0,

a−1(WM +M∗) − Lη1,0 + S1 + η1,1 + η2,1,

. . . , a−K(WM +M∗) −
K−1∑
j=0

(a−K+1+jLη1,j)

+SK + η1,K + η2,K , S0, . . . , SK , η1,0, . . . , η1,K)
(4)
=

1
K + 1

H(WM |WM + η2,0, a
−1WM + η2,1, . . . ,

a−KWM + η2,K , S0, . . . , SK , η1,0, . . . , η1,K)
(5)
=

1
K + 1

H(WM |WM + η2,0, a
−1WM + η2,1, . . . ,

a−KWM + η2,K)
(6)
=

1
K + 1

(H(WM )

−I(WM ;WM +η2,0, a
−1WM +η2,1, . . . ,a

−KWM +η2,K))
(7)
=

1
K + 1

(H(WM )

− h(WM +η2,0, a
−1WM +η2,1, . . . , a

−KWM +η2,K)
+h(WM +η2,0,a

−1WM +η2,1, . . . ,a
−KWM +η2,K|WM))

=
1

K + 1
(H(WM )

− h(WM +η2,0, a
−1WM +η2,1, . . . , a

−KWM +η2,K)
+ h(η2,0, η2,1, . . . , η2,K |WM ))

(8)
=

1
K + 1

(H(WM )

− h(WM +η2,0, a
−1WM +η2,1, . . . , a

−KWM +η2,K)
+ h(η2,0, η2,1, . . . , η2,K))

(9)
=

1
K + 1

(H(WM ) +
K∑

i=0

h(η2,i)

− h(WM +η2,0, a
−1WM +η2,1, . . . , a

−KWM +η2,K))

≥ 1
K+1

(H(WM )+
K∑

i=0

h(η2,i)−
K∑

i=0

h(a−iWM +η2,i))

(10)
= (1 − ε) log(a) +

1
2(K + 1)

log(2πeσ2
2)

K+1

− 1
K + 1

K∑
i=0

h(a−iWM + η2,i)

(11)

≥ (1 − ε) log(a) +
1

2(K + 1)
log(2πeσ2

2)
K+1

− 1
2(K + 1)

K∑
i=0

log
(

2πe(
P

3
a−2i + σ2

2)
)

= (1 − ε) log(a) +
1

2(K + 1)
log(2πeσ2

2)
K+1

− 1
2(K + 1)

log

(
(2πe)K+1

K∏
i=0

(
P

3
a−2i + σ2

2)

)

= (1−ε) log(a)+
1

2(K+1)
log

(
(σ2

2)K+1∏K
i=0(

P
3 a

−2i+σ2
2)

)

= (1−ε) log(a)+
1

2(K+1)
log

⎛
⎝ 1∏K

i=0(1+ P
3

a−2i

σ2
2

)

⎞
⎠

= (1 − ε) log(a) − 1
2(K + 1)

K∑
i=0

log
(

1 +
P

3
a−2i

σ2
2

)

(12)

≥ (1 − ε) log(a) − 1
2(K + 1)

1
ln 2

K∑
i=0

P

3
a−2i

σ2
2

= (1 − ε) log(a) − 1
2(K + 1) ln 2

P

3σ2
2

1 − a−2K−2

1 − a−2
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(13)
= (1−ε)1

2
log
(
1+

P

σ2
1

)
− 1

2(K+1) ln2
P

3σ2
2

1−a−2K−2

1−a−2
,

(3.19)

where (1) follows from the fact that M can be denoted by
WM , and the definition ZN = (Z0, . . . , ZK), (2) follows
from (2.1), (3.16) and (3.14), (3) and (4) follow from con-
ditions reduce entropy and the fact that M∗ is determined by
(S0, . . . , SK) (see (3.14)), (5) follows from the fact that S0,
…, SK , η1,0,…,η1,K are independent of WM , WM + η2,0,
a−1WM + η2,1,…,a−KWM + η2,K , (6) follows from the fact
that for a discrete RV A and a continuous RV B, H(A|B) =
H(A) − I(A;B) (see Definition 10.28 in [48]), (7) follows
from the fact that for a discrete RV A and a continuous RV
B, I(A;B) = h(B)−h(B|A) (see Proposition 10.29 in [48]),
(8) follows from the fact that WM is independent of η2,0,
η2,1,…,η2,K , (9) follows from the fact that η2,0, η2,1,…,η2,K

are i.i.d. random variables, (10) follows from (3.12) and η2,i ∼
N (0, σ2

2), (11) follows from the fact that the variance of WM

equals P
3 as K tends to infinity, and the fact that WM is

independent of η2,i, hence we have

h(a−iWM + η2,i) ≤ 1
2

log
(

2πe(
P

3
a−2i + σ2

2)
)
, (3.20)

(12) follows from the inequality ln(1+x) ≤ x for x ≥ 0, and
(13) follows from (3.8).

Finally, note that when K tends to infinity,
1

2(K+1) ln 2
P

3σ2
2

1−a−2K−2

1−a−2 in (3.19) satisfies

lim
K→∞

1
2(K + 1) ln 2

P

3σ2
2

1 − a−2K−2

1 − a−2
= 0. (3.21)

Hence choosing sufficiently large K , we have

Δ ≥ 1
2

log(1 +
P

σ2
1

) − ε
′
. (3.22)

The proof of Theorem 1 is completed.
The following Corollary 1 provides an already existing

secret key based lower bound Rf∗
sg on Cf

sg .
Corollary 1: A lower bound Rf∗

sg on the secrecy capacity
Cf

sg of the GWTC-N-CSIT with noiseless feedback is given
by

Rf∗
sg

= min
{

1
2

log
(

1 +
P

σ2
1

)
,
1
2

log
(

2πeσ2
2(P + σ2

1)
P + σ2

1 + σ2
2

)}
.

(3.23)

Proof: In [38], the WTC-N-CSIT with noiseless feedback,
i.e., the physically degraded state-dependent wiretap channel
with channel feedback and noncausal state information at the
transmitter, was studied. It has been shown that the secrecy
capacity of this discrete memoryless model can be achieved by
using the secret key based feedback strategy, and the secrecy
capacity Cf

s is given by

Cf
s = max

P (x|u,s),P (u|s)
min{I(U ;Y ) − I(U ;S), H(Y |Z)},

(3.24)

Fig. 8. The capacity results on the GWTC-N-CSIT with feedback for Q = 2,
σ2
1 = 3, σ2

2 = 10 and P taking values in [0, 2000].

where the joint distribution satisfies

P (u, s, x, y, z) = P (z|y)P (y|x, s)P (x|u, s)P (u|s)P (s).
(3.25)

However, we should note that the capacity formula in (3.24)
is only an achievable secrecy rate for the GWTC-N-CSIT
with noiseless feedback, and this is because the converse of
H(Y |Z) in (3.24) does not hold for the Gaussian case. To be
specific, first, note that the term H(Y |Z) in (3.24) follows
from

R − ε ≤ 1
N
H(M |ZN)

≤ 1
N

(I(M ;Y N |ZN ) + δ(ε))

(a)

≤ 1
N

(H(Y N |ZN ) + δ(ε))

≤ 1
N

(
N∑

i=1

H(Yi|Zi) + δ(ε))

(b)
= H(YJ |ZJ , J) +

1
N
δ(ε)

(c)

≤ H(Y |Z) +
1
N
δ(ε), (3.26)

and letting ε → 0, where (a) follows from I(M ;Y N |ZN ) ≤
H(Y N |ZN ), (b) follows from J is uniformly distributed over
{1, 2, . . . , N} and it is independent of Y N and ZN , and (c)
follows from the definitions Y � YJ and Z � ZJ . Next,
from (3.26), we can check that for the Gaussian case, step
(a) of (3.26) does not hold due to the fact that the differential
conditional entropy h(Y N |ZN ,M) may be a negative number.
Finally, substituting U = X + αS, X ∼ N (0, P ) and (2.1)
into (3.24), and maximizing α, the lower bound Rf∗

sg on the
secrecy capacity Cf

sg is obtained. The proof of Corollary 1 is
completed.

The following Figure 8 shows the gap between the lower
bound Rf∗

sg and the secrecy capacity Cf
sg for Q = 2, σ2

1 = 3,
σ2

2 = 10 and P taking values in [0, 2000]. It is easy to see
that the gap is increasing while the power P is increasing.

The following Figure 9 compares the capacity results on the
GWTC-N-CSIT with or without feedback for Q = 2, σ2

1 = 3,
σ2

2 = 10 and P taking values in [0, 20]. From this figure,
we see that the feedback enhances the secrecy capacity of the
GWTC-N-CSIT.
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Fig. 9. The comparison of the capacity results on the GWTC-N-CSIT
with or without feedback for Q = 2, σ2

1 = 3, σ2
2 = 10 and P taking

values in [0, 20].

IV. THE ACTION-DEPENDENT GWTC-N-CSIT

In this section, first, we introduce the capacity results on the
action-dependent dirty paper channel, see Subsection IV-A.
Next, we derive lower and upper bounds on the secrecy
capacity of the discrete memoryless action-dependent wiretap
channel with noncausal state information at the transmit-
ter, see Subsection IV-B. Finally, we derive bounds on the
secrecy capacity of the action-dependent GWTC-N-CSIT by
using the bounds shown in the preceding subsections, see
Subsection IV-C.

A. Capacity Results on the Action-Dependent Dirty Paper
Channel

In this subsection, we review the capacity results on the
action-dependent dirty paper channel (see Figure 10). At time
i (i ∈ {1, 2, . . . , N}), the inputs and output satisfy

Si = Ai +Wi, Yi = Xi + Si + η1,i, (4.1)

where Xi is the channel input subject to an average power
constraint P , Ai is the output of the action encoder subject to
an average power constraint PA, Yi is the channel output at the
receiver, and Wi, η1,i are independent Gaussian noises and are
i.i.d. across the time index i. Here note that Wi ∼ N (0, σ2

w)
and η1,i ∼ N (0, σ2

1). The capacity of the action-dependent
dirty paper channel is denoted by Cag.

A lower bound on Cag has been obtained in [10], and is
given by

Cag ≥ R∗
ag

= max
(α,γ):α2PA+γ2σ2

w≤P

(
1
2

log
(

1 +
D(α, γ)
σ2

1

)

+
1
2

log
(

1 +
PA(α+ 1)2

D(α, γ) + σ2
w(γ + 1)2 + σ2

1

))
,

(4.2)

where D(α, γ) = P − α2PA − γ2σ2
w.

Proof sketch of R∗
ag:

First, note that in [10], the capacity of the discrete memo-
ryless action-dependent channel with noncausal state informa-
tion at the transmitter has been obtained and is given by

Ca = max
P (a),P (u|a,s),P (x|u,s)

(I(U ;Y ) − I(U ;S|A)), (4.3)

Fig. 10. The action-dependent dirty paper channel.

where the maximization is over all joint distribution

P (u, a, s, x, y) = P (a)P (s|a)P (u|a, s)P (x|u, s)P (y|x, s).
(4.4)

Then, letting G ∼ N (0, P − α2PA − γ2σ2
w), and α2PA +

γ2σ2
w ≤ P , where G, A, W , η1 are independent of each other.

Substituting

A ∼ N (0, PA), X = αA+ γW +G, U = δX +A+ βW,

(4.5)

into the term I(U ;Y ) − I(U ;S|A) of (4.3) and maximizing
it, the lower bound R∗

ag is obtained. The details of the proof
is in [10].

However, we should notice that in general, R∗
ag is not tight.

Recently, it has been shown in [11] that the capacity Cag is
given by

Cag = max
(ρ1,ρ2):ρ2

1+ρ2
2≤1

1
2

log
(

1 +
P (1 − ρ2

1 − ρ2
2)

σ2
1

)

+
1
2

log

(
1+

(
√
PA+ρ2

√
P )2

P (1−ρ2
1−ρ2

2)+(σw+ρ1

√
P )2+σ2

1

)
,

(4.6)

where −1 ≤ ρ1 ≤ 0 and 0 ≤ ρ2 ≤ 1.
Proof sketch of Cag:

• The converse part consists of the following three key
steps: First, note that the term I(U ;Y ) − I(U ;S|A)
of (4.3) can be further upper bounded by

I(U ;Y ) − I(U ;S|A) ≤ I(A;Y ) + I(X ;Y |A,W ).
(4.7)

Second, it has been shown that (4.7) is maximized by
taking (X,A,W,Z, Y ) to be jointly Gaussian. Third,
define ρ1 = E[XW ]√

Pσ2
w

, ρ2 = E[XA]√
P
√

PA
, and note that the

power constraints of X and A respectively indicate that
E[X2] = σ2

X ≤ P and E[A2] = σ2
A ≤ PA. Then it has

been shown that respectively replacing σ2
X and σ2

A by P
and PA further increases the upper bound to Cag . Finally,
note that the constraints of ρ1 and ρ2 follow from the
fact the covariance matrix of (X,A,W ) should satisfy
the nonnegative-definiteness condition.

• For the direct part, Cag is achieved by substituting
A ∼ N (0, PA), X ∼ N (0, P ), U = X + βS and (4.1)
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Fig. 11. Comparison of the already existing capacity results on the action-
dependent dirty paper channel.

into I(U ;Y ) − I(U ;S|A) and using linear MMSE esti-
mation to re-write the corresponding equality. The details
of the converse and direct proof are in [11].

The following Figure 11 shows the gap between the lower
bound R∗

ag and the capacity Cag for PA = 1, σ2
w = 1, σ2

1 =
300 and P taking values in [0, 50].

In the remainder of this paper, the capacity results of this
subsection will play a role to derive lower and upper bounds on
the secrecy capacities of the action-dependent GWTC-N-CSIT
with or without feedback.

B. The Discrete Memoryless Action-Dependent Wiretap
Channel With Noncausal State Information at the Transmitter

In this subsection, we propose one lower and two upper
bounds on the secrecy capacity Csa of the discrete memo-
ryless action-dependent wiretap channel with noncausal state
information at the transmitter (see Subsection II-B).

Theorem 2 (Lower Bound): Csa ≥ R∗
sa, where

R∗
sa = max

P (a),P (u|a,s),P (x|u,s)
min{I(U ;Y ) − I(U ;S|A),

I(U ;Y ) − I(U ;Z)}, (4.8)

and the maximization is over all joint distributions taking the
following form

P (u, a, s, x, y, z)
= P (a)P (s|a)P (u|a, s)P (x|u, s)P (y|x, s)P (z|y).

(4.9)

Proof: The lower bound R∗
sa is achieved by combin-

ing the coding scheme in [10] with the random binning
scheme in [12]. The full detail of the proof is provided in
Appendix A.

Remark 2: Note that [43] also proposes a lower bound
on the secrecy capacity of the discrete memoryless action-
dependent wiretap channel with noncausal state information
at the transmitter. However, we should point out that the
model studied in [43] assumes that the action encoder is a
deterministic encoder, i.e., if the eavesdropper knows AN ,
the message M is also known. Hence the lower bound R∗

sa

generalizes that in [43] due to the reason that the deterministic
action encoder is a special case of the stochastic one studied
in this paper.

Besides the above lower bound on Csa, the following
theorems provide two upper bounds on Csa.

Theorem 3 (Upper bound 1): Csa ≤ Cupper−1
sa , where

Cupper−1
sa = max

P (a),P (u|a,s),P (x|u,s)
min{I(U ;Y )−I(U;S|A),

I(X,S;Y ) − I(X,S;Z)}, (4.10)

and the maximization is over the joint distributions described
by (4.9).

Proof: See Appendix B.
Theorem 4: (Upper Bound 2): Csa ≤ Cupper−2

sa , where

Cupper−2
sa = max

P (u,k|a,s),P (x|u,k,s),P (a)
min{I(U,K;Y )

−I(U,K;S|A), I(U,K;Y ) − I(U,K;S|A) − I(U ;Z)
+I(U ;S|A)}, (4.11)

and the maximization is over the joint distributions given
by

P (u, k, a, s, x, y, z)
= P (a)P (s|a)P (u, k|a, s)P (x|u, k, s)P (y|x, s)P (z|y).

(4.12)

Proof: See Appendix C.
In the next subsection, we further specialize the above pro-
posed lower bound R∗

sa and the first upper bound Cupper−1
sa

by the Gaussian channel, 1 which is also referred to as the
action-dependent GWTC-N-CSIT.

C. The Action-Dependent GWTC-N-CSIT

In Subsection IV-A, it has been shown that for the action-
dependent dirty paper channel, different ways of choosing
distributions of (U,A,X) lead to different lower bounds on
the capacity Cag . To be specific, [10] provides a lower bound
R∗

ag on Cag by the definition in (4.5), i.e.,

A ∼ N (0, PA), X = αA + γW +G,

U = δX +A+ βW, (4.13)

where α2PA + γ2σ2
w ≤ P , G ∼ N (0, P − α2PA − γ2σ2

w)
and G, A, W , η1 are independent of each other. Here note
that in general, R∗

ag is not tight. Moreover, [11] provides a
tight lower bound (i.e., achieving Cag) by the definition U =
X + β(A +W ). It is easy to see that for the channel model
without secrecy constraints, the definition U = X+β(A+W )
is better than that in (4.5).

In this subsection, we provide two lower and one upper
bounds on the secrecy capacity Csag of the action-dependent
GWTC-N-CSIT (see Subsection II-B), where the two lower
bounds are respectively obtained by the above definitions (4.5)
and U = X+β(A+W ), and the upper bound is obtained by
applying entropy power inequality to Cupper−1

sa . Somewhat sur-
prisingly, numerical results indicate that the definition in (4.5)
may achieve a tighter lower bound than U = X + β(A+W )
does. The detail about these bounds is given in the remainder
of this subsection.

1Here note that further specializing the second upper bound Cupper−2
sa by

the Gaussian channel is difficult and it remains open.
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First, we provide the following two lower bounds on Csag.
Theorem 5 (Lower Bound 1): Csag ≥ R∗

sag , as shown in
(4.14)–(4.19), at the bottom of the next page.

Proof: The lower bound R∗
sag is obtained by substi-

tuting (4.13) and (2.6) into (4.8), and the detail about the
calculation is omitted.

Theorem 6 (Lower Bound 2): Csag ≥ R∗∗
sag , where

R∗∗
sag = max

(ρ1,ρ2):ρ2
1+ρ2

2≤1

(
1
2

log
(

1 +
P (1 − ρ2

1 − ρ2
2)

σ2
1

)

−1
2

log
(

1 +
P (1 − ρ2

1 − ρ2
2)

σ2
1 + σ2

2

)

+
1
2

log

(
1 +

(
√
PA + ρ2

√
P )2

P (1 − ρ2
1 − ρ2

2) + (σw + ρ1

√
P )2 + σ2

1

)

−1
2

log (1+

(
√
PA + ρ2

√
P )2

P (1 − ρ2
1 − ρ2

2) + (σw + ρ1

√
P )2 + σ2

1 + σ2
2

))
,

(4.20)

−1 ≤ ρ1 ≤ 0 and 0 ≤ ρ2 ≤ 1.
Proof: First, define ρ1 = E[XW ]√

Pσ2
w

, ρ2 = E[XA]√
P
√

PA
, and ρ1,

ρ2 satisfy the constraints that −1 ≤ ρ1 ≤ 0, 0 ≤ ρ2 ≤ 1 and
ρ2
1 + ρ2

2 ≤ 1. Then it has been shown in [11] that substituting
A ∼ N (0, PA), X ∼ N (0, P ), U = X + β(A + W ), S =
A + W and Y = X + S + η1 (see (2.6)) into I(U ;Y ) −
I(U ;S|A) and using linear MMSE estimation to re-write the
corresponding equality, we have

I(U ;Y ) − I(U ;S|A)

=
1
2

log
(

1 +
P (1 − ρ2

1 − ρ2
2)

σ2
1

)

+
1
2

log

(
1 +

(
√
PA + ρ2

√
P )2

P (1 − ρ2
1 − ρ2

2) + (σw + ρ1

√
P )2 + σ2

1

)
.

(4.21)

Analogously, substituting A ∼ N (0, PA), X ∼ N (0, P ), U =
X+β(A+W ), S = A+W and Z = X+S+η1+η2 (see (2.6))
into I(U ;Z)− I(U ;S|A) and using linear MMSE estimation
to re-write the corresponding equality, we have

I(U ;Z) − I(U ;S|A)

=
1
2

log
(

1 +
P (1 − ρ2

1 − ρ2
2)

σ2
1 + σ2

2

)

+
1
2

log

(
1+

(
√
PA+ρ2

√
P )2

P (1−ρ2
1−ρ2

2)+(σw+ρ1

√
P )2+σ2

1+σ2
2

)
.

(4.22)

From (4.22), we know that I(U ;Z) − I(U ;S|A) ≥ 0, which
indicates that

I(U ;Y ) − I(U ;Z)
= I(U ;Y ) − I(U ;S|A) − (I(U ;Z) − I(U ;S|A))
≤ I(U ;Y ) − I(U ;S|A). (4.23)

Finally, substituting (4.21) and (4.22) into Theorem 2 and
using the inequality (4.23), Theorem 6 is proved.

Next, we derive the following upper bound on Csag .
Theorem 7: Csag ≤ Cupper

sag = min{L1, L2}, where

L1 = max
(ρ1,ρ2):ρ2

1+ρ2
2≤1

1
2

log
(

1 +
P (1 − ρ2

1 − ρ2
2)

σ2
1

)

+
1
2

log

(
1+

(
√
PA+ρ2

√
P )2

P (1−ρ2
1−ρ2

2)+(σw+ρ1

√
P )2+σ2

1

)
,

(4.24)

−1 ≤ ρ1 ≤ 0, 0 ≤ ρ2 ≤ 1 and

L2 =
1
2

log

(
1 +

(
√
P +

√
PA + σ2

w)2

σ2
1

)

−1
2

log

(
1 +

(
√
P +

√
PA + σ2

w)2

σ2
1 + σ2

2

)
. (4.25)

Proof: From (4.10), we have

Csag ≤ max min{I(U ;Y ) − I(U ;S|A),
I(X,S;Y ) − I(X,S;Z)}
≤ min{max(I(U ;Y ) − I(U ;S|A)),
max(I(X,S;Y ) − I(X,S;Z))}. (4.26)

Next, from [11], we know that

max(I(U ;Y ) − I(U ;S|A)) = L1. (4.27)

Now it remains to further upper bound max(I(X,S;Y ) −
I(X,S;Z)) in (4.26).

I(X,S;Y ) − I(X,S;Z)
= h(Y ) − h(Y |X,S) − h(Z) + h(Z|X,S)
(a)
= h(X + S + η1) − h(η1) − h(X + S + η1 + η2)
+h(η1 + η2)
(b)

≤ h(X + S + η1) − h(η1)

−1
2

log(22h(X+S+η1) + 22h(η2)) + h(η1 + η2), (4.28)

where (a) follows from (2.6), and (b) follows from the entropy
power inequality. The differential entropy h(X + S + η1)
in (4.28) can be further bounded by

h(X + S + η1) (c)

≤ 1
2

log(2πe(V ar(X + S) + σ2
1))

(d)

≤ 1
2

log(2πe((
√
P +

√
PA + σ2

w)2 + σ2
1)),

(4.29)

where (c) follows from the fact that η1 is independent of X+S,
and (d) follows because

V ar(X + S)

≤ V ar(X) + V ar(S) + 2
√
V ar(X)

√
V ar(S)

= (
√
P +

√
PA + σ2

w)2. (4.30)
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Fig. 12. Bounds on the secrecy capacity of the action-dependent
GWTC-N-CSIT for PA = 1, σ2

w = 1, σ2
1 = 3, σ2

2 = 10 and P taking
values in [0, 5].

Since h(X + S + η1) − h(η1) − 1
2 log(22h(X+S+η1) +

22h(η2)) + h(η1 + η2) in (4.28) is increasing while h(X +
S + η1) is increasing, substituting (4.29) into (4.28),
we obtain max(I(X,S;Y )− I(X,S;Z)) = L2. The proof is
completed.

The following Figures 12 and 13 plot the bounds on
Csag for PA = 1, σ2

w = 1, σ2
1 = 3 and σ2

2 = 10.
It is easy to see that the first lower bound is tighter than
the second one. Moreover, from Figure 13, we see that the
lower bounds on Csag meet the corresponding upper bound
when the power P is sufficiently large, and this is because
the upper and lower bounds on Csag approaches the same

limit 1
2 log σ2

1+σ2
2

σ2
1

when the power P goes to infinity, see
Corollary 2.

In addition, the following Figure 14 plots the bounds on
Csag for PA = 5, σ2

w = 0, σ2
1 = 3, σ2

2 = 3 and P taking
values in [0, 0.1]. For this case, it is easy to see that the second
lower bound is tighter than the first one.

The following Corollaries 2-4 show that for some special
cases, the gap between the above lower and upper bounds on
Csag can be eliminated or be bounded by a constant value.

Fig. 13. Bounds on the secrecy capacity of the action-dependent
GWTC-N-CSIT for PA = 1, σ2

w = 1, σ2
1 = 3, σ2

2 = 10 and P taking
values in [10, 10000].

Corollary 2: For P → ∞, we have

lim
P→∞

R∗
sag = lim

P→∞
R∗∗

sag = lim
P→∞

Cupper
sag

=
1
2

log
σ2

1 + σ2
2

σ2
1

, (4.31)

which indicates that the secrecy capacity Csag tends to
1
2 log σ2

1+σ2
2

σ2
1

as P → ∞.

Proof: This result follows by calculating the boundsR∗
sag ,

R∗∗
sag and Cupper

sag for P → ∞.

Corollary 3: For P = 0, the first lower bound R∗
sag is

invalid since it equals −∞, and the gap between the second
lower bound R∗∗

sag and the upper bound Cupper
sag is a constant

value and it is given by

Cupper
sag −R∗∗

sag

=

⎧⎨
⎩

1
2 log

(
1 + PA

σ2
w+σ2

1+σ2
2

)
, 0 ≤ PA ≤ σ2

2σ2
w

σ2
1
,

1
2 log

(
1 + σ2

2σ2
w

σ2
1(σ2

w+σ2
1+σ2

2)

)
, PA ≥ σ2

2σ2
w

σ2
1
.

(4.32)

R∗
sag = max

α,γ,δ,β
min

{
1
2

log
PAδ

2(P − α2PA − γ2σ2
w)

LA|Y LU|A,Y
,
1
2

log
LA|ZLU|A,Z

LA|Y LU|A,Y

}
, (4.14)

LA|Y = PA − (1 + α)2(PA)2

(1 + 2α)PA + (1 + 2γ)σ2
w + P + σ2

1

,

(4.15)

LA|Z = PA − (1 + α)2(PA)2

(1 + 2α)PA + (1 + 2γ)σ2
w + P + σ2

1 + σ2
2

,

(4.16)

LU|A,Y = (1 + αδ)2PA + (γδ + β)2σ2
w + δ2(P − α2PA − γ2σ2

w)

− (1 + αδ)2PA((1 + 2α)PA + (1 + 2γ)σ2
w + P + σ2

1) +B2 − 2(1 + α)(1 + αδ)PAB

P − α2PA + (1 + 2γ)σ2
w + σ2

1

, (4.17)

LU|A,Z = (1 + αδ)2PA + (γδ + β)2σ2
w + δ2(P − α2PA − γ2σ2

w)

− (1 + αδ)2PA((1 + 2α)PA + (1 + 2γ)σ2
w + P + σ2

1 + σ2
2) +B2 − 2(1 + α)(1 + αδ)PAB

P − α2PA + (1 + 2γ)σ2
w + σ2

1 + σ2
2

, (4.18)

B = (1 + α)(1 + αδ)PA + (1 + γ)(β + γδ)σ2
w + δ(P − α2PA − γ2σ2

w). (4.19)
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Fig. 14. Bounds on the secrecy capacity of the action-dependent
GWTC-N-CSIT for PA = 5, σ2

w = 0, σ2
1 = 3, σ2

2 = 3 and P taking
values in [0, 0.1].

Fig. 15. The gap between the second lower bound R∗∗
sag and the upper

bound Cupper
sag for P = 0, σ2

w = 1, σ2
1 = 3, σ2

2 = 12 and PA taking values
in [0, 10].

Proof: Substituting P = 0 into R∗∗
sag and Cupper

sag ,
we obtain

R∗∗
sag =

1
2

log
(

1 +
PA

σ2
w + σ2

1

)

−1
2

log
(

1 +
PA

σ2
w + σ2

1 + σ2
2

)
, (4.33)

From (4.33) and (4.34), shown at the bottom of the next
page, we obtain the gap shown in (4.32), and the proof is
completed.
The following Figure 15 plots the gap shown in Corollary 3
for P = 0, σ2

w = 1, σ2
1 = 3, σ2

2 = 12 and several values of
PA. It is easy to see that the gap increases as PA increases.
However, if PA is larger than σ2

2σ2
w

σ2
1

, the gap is bounded by a

constant value 1
2 log

(
1 + σ2

2σ2
w

σ2
1(σ2

w+σ2
1+σ2

2)

)
.

Corollary 4: For σ2
w = 0, the second lower bound R∗∗

sag

meets the upper bound Cupper
sag , i.e., the secrecy capacity Csag

is determined and it is given by

Csag =
1
2

log

(
1 +

(
√
P +

√
PA)2

σ2
1

)

−1
2

log

(
1 +

(
√
P +

√
PA)2

σ2
1 + σ2

2

)
. (4.35)

Proof: First, substituting σ2
w = 0 into the upper bound

Cupper
sag , we have Cupper

sag = min{L1, L2}, where

L1 = max
(ρ1,ρ2):ρ2

1+ρ2
2≤1

1
2

log
(

1 +
P (1 − ρ2

1 − ρ2
2)

σ2
1

)

Fig. 16. The secrecy capacity Csag for σ2
w = 0, PA = 2, σ2

1 = 3, σ2
2 = 12

and P taking values in [0, 10].

+
1
2

log

(
1 +

(
√
PA + ρ2

√
P )2

P (1 − ρ2
1 − ρ2

2) + ρ2
1P + σ2

1

)
,

= max
(ρ1,ρ2):ρ2

1+ρ2
2≤1

1
2

log
(
P (1 − ρ2

1 − ρ2
2) + σ2

1

σ2
1

·

PA + 2
√
PA

√
Pρ2 + P + σ2

1

P (1 − ρ2
2) + σ2

1

)
, (4.36)

for −1 ≤ ρ1 ≤ 0, 0 ≤ ρ2 ≤ 1, and

L2 =
1
2

log

(
1 +

(
√
P +

√
PA)2

σ2
1

)

−1
2

log

(
1 +

(
√
P +

√
PA)2

σ2
1 + σ2

2

)
. (4.37)

It is easy to see that L1 in (4.36) achieves its maximum when
ρ1 = 0 and ρ2 = 1, and hence we have

L1 =
1
2

log

(
1 +

(
√
P +

√
PA)2

σ2
1

)
. (4.38)

Comparing L1 with L2, we can conclude that for σ2
w = 0, and

we have

Cupper
sag =

1
2

log

(
1 +

(
√
P +

√
PA)2

σ2
1

)

−1
2

log

(
1 +

(
√
P +

√
PA)2

σ2
1 + σ2

2

)
. (4.39)

Next, substituting σ2
w = 0 into the second lower bound

R∗∗
sag , we have It is easy to see that R∗∗

sag in (4.40),
shown at the bottom of the next page, achieves its max-
imum when ρ1 = 0, and hence (4.40) can be re-written
as (4.41), shown at the bottom of the next page, where
(a) follows from the fact that R∗∗

sag achieves its maximum when
ρ2 = 1. Finally, comparing (4.41) with (4.39), we conclude
that the secrecy capacity Csag is determined, and the proof of
Corollary 4 is completed.

The following Figure 16 plots the secrecy capacity Csag

shown in Corollary 4 for σ2
w = 0, PA = 2, σ2

1 = 3, σ2
2 = 12

and several values of P . It is easy to see that Csag increases as
the power P increases. However, we also note that as shown
in Corollary 2, Csag tends to 1

2 log σ2
1+σ2

2
σ2
1

as P approaches
infinity.
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V. THE ACTION-DEPENDENT GWTC-N-CSIT WITH

NOISELESS FEEDBACK

In this section, first, we introduce the classical SK feedback
scheme [40] for the Gaussian channel, see Subsection V-A.
Next, we show that the classical SK feedback scheme intro-
duced in the preceding subsection may also achieve the
secrecy capacity of the action-dependent GWTC-N-CSIT with
noiseless feedback, see Subsection V-B.

A. The SK Scheme for the Gaussian Wiretap Channel With
Noiseless Feedback

In this subsection, we first introduce the classical SK feed-
back scheme [40] for the Gaussian channel. Then, we show
that such a feedback scheme also achieves the secrecy capacity
of the Gaussian wiretap channel with noiseless feedback.

For the Gaussian channel with noiseless feedback, the i-th
(i ∈ {1, 2, . . . , N}) channel input and output satisfy

Yi = Xi + ηi, (5.1)

where Xi is the channel input subject to an average power
constraint P , and ηi ∼ N (0, σ2) is the channel noise and is
i.i.d. across the time index i. The i-th channel input Xi is a
function of the message M and the channel feedback Y i−1.
It is well known that the capacity Cf

g of the Gaussian channel
with feedback equals the capacity of the Gaussian channel Cg,
i.e.,

Cf
g = Cg =

1
2

log
(

1 +
P

σ2

)
. (5.2)

It has been shown that the classical SK scheme [40] achieves
Cf

g , which is described below.
The message M takes values in the set M =

{1, 2, . . . , 2NR}. Divide the overall interval [−0.5, 0.5] into
2NR equally spaced sub-intervals, and the center of each sub-
interval is mapped to a message value in M. Let θ be the
center of the sub-interval with respect to (w.r.t.) the choosing
message M . At time 1,

X1 = θα (5.3)

is sent by the transmitter, where α =
√

P+σ2

σ2 . Upon receiving
the output Y1 = X1 + η1, the receiver computes

θ̂1 =
Y1

α
= θ +

η1
α

(5.4)

as an estimation of θ at time 1. At time i (i ∈ {2, 3, . . . , N}),

Xi = αi(θ − θ̂i−1) = −αi

∑i−1
j=1 αjηj∑i−1
j=1 α

2
j

(5.5)

is sent by the transmitter, where αi =
√

P
σ2α

i−1 for i ∈
{2, 3, . . . , N}. Upon receiving the output Yi = Xi + ηi, the
receiver computes

X̂i = θ̂i−1 +
Yi

αi
, (5.6)

θ̂i =

∑i
j=1 α

2
j X̂j∑i

j=1 α
2
j

= θ +

∑i
j=1 αjηj∑i
j=1 α

2
j

(5.7)

Cupper
sag =

⎧⎨
⎩

1
2 log

(
1 + PA

σ2
w+σ2

1

)
, 0 ≤ PA ≤ σ2

2σ2
w

σ2
1
,

1
2 log

(
1 + PA+σ2

w

σ2
1

)
− 1

2 log
(
1 + (PA+σ2

w

σ2
1+σ2

2

)
, PA ≥ σ2

2σ2
w

σ2
1
.

(4.34)

R∗∗
sag = max

(ρ1,ρ2):ρ2
1+ρ2

2≤1

1
2

log
(
P (1 − ρ2

1 − ρ2
2) + σ2

1

σ2
1

· σ2
1 + σ2

2

P (1 − ρ2
1 − ρ2

2) + σ2
1 + σ2

2

)

+
1
2

log

(
P + PA + 2ρ2

√
P
√
PA + σ2

1

P (1 − ρ2
2) + σ2

1

· P (1 − ρ2
2) + σ2

1 + σ2
2

P + PA + 2ρ2

√
P
√
PA + σ2

1 + σ2
2

)
. (4.40)

R∗∗
sag = max

0≤ρ2≤1

1
2

log
(
P (1 − ρ2

2) + σ2
1

σ2
1

· σ2
1 + σ2

2

P (1 − ρ2
2) + σ2

1 + σ2
2

)

+
1
2

log

(
P + PA + 2ρ2

√
P
√
PA + σ2

1

P (1 − ρ2
2) + σ2

1

· P (1 − ρ2
2) + σ2

1 + σ2
2

P + PA + 2ρ2

√
P
√
PA + σ2

1 + σ2
2

)

= max
0≤ρ2≤1

1
2

log

(
σ2

1 + σ2
2

σ2
1

· P + PA + 2ρ2

√
P
√
PA + σ2

1

P + PA + 2ρ2

√
P
√
PA + σ2

1 + σ2
2

)

(a)
=

1
2

log

(
σ2

1 + σ2
2

σ2
1

· P + PA + 2
√
P
√
PA + σ2

1

P + PA + 2
√
P
√
PA + σ2

1 + σ2
2

)

=
1
2

log

(
1 +

(
√
P +

√
PA)2

σ2
1

)
− 1

2
log

(
1 +

(
√
P +

√
PA)2

σ2
1 + σ2

2

)
, (4.41)
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Fig. 17. The Gaussian wiretap channel with noiseless feedback.

as an estimation of θ at time i. In [40], it has been shown that
the decoding error probability Pe (i.e., the probability that θ̂N

does not belong to the sub-interval of the choosing message
M ) of this proposed scheme doubly exponentially decays to
zero for sufficiently large N and R ≤ 1

2 log(1 + P
σ2 ).

The Gaussian wiretap channel with noiseless feedback is
shown in Figure 17. At time i (i ∈ {1, 2, . . . , N}), the channel
input and outputs satisfy

Yi = Xi + η1,i, Zi = Xi + η1,i + η2,i, (5.8)

where Xi is the channel input with the power constraint
P , Yi and Zi are the channel outputs respectively at the
legitimate receiver and the eavesdropper, and η1,i ∼ N (0, σ2

1),
η2,i ∼ N (0, σ2

2) are independent channel noises and are
i.i.d. across the time index i. The i-th channel input Xi

is a stochastic function of the message M and the channel
feedback Y i−1. The following Theorem 8 [39] shows that
the above proposed scheme also achieves the secrecy capac-
ity Cf

g−wtc of the Gaussian wiretap channel with noiseless
feedback.

Theorem 8 ( [39]): The secrecy capacity Cf
g−wtc of the

Gaussian wiretap channel with noiseless feedback is given by

Cf
g−wtc =

1
2

log
(

1 +
P

σ2
1

)
. (5.9)

The converse is obvious since Cf
g−wtc can not exceed the

capacity Cf
g of the Gaussian channel with feedback. For the

direct part, it has been shown that the above proposed SK
scheme achieves Cf

g−wtc, and this is because the informa-
tion leakage occurs only in the first transmission (see (5.3)
and (5.5)), which leads to the leakage rate vanishes as the
codeword length tends to infinity.

In the next subsection, we show that the SK scheme
introduced in this subsection may also achieve the secrecy
capacity of the action-dependent GWTC-N-CSIT with noise-
less feedback.

B. Capacity Results on the Action-Dependent GWTC-N-CSIT
With Noiseless Feedback

In this subsection, we derive lower and upper bounds on
the secrecy capacity Cf

sag of the action-dependent GWTC-N-
CSIT with noiseless feedback (see Subsection II-B), and show
that the corresponding upper bound is capacity-achieving for
a special case. The detail about these capacity results is given
in the remainder of this subsection.

First, recall that in Subsection IV-A, it has been shown that
the capacity Cag of the action-dependent dirty paper channel

is given by

Cag = max
(ρ1,ρ2):ρ2

1+ρ2
2≤1

1
2

log
(

1 +
P (1 − ρ2

1 − ρ2
2)

σ2
1

)

+
1
2

log

(
1+

(
√
PA+ρ2

√
P )2

P (1−ρ2
1−ρ2

2)+(σw+ρ1

√
P )2+σ2

1

)
,

(5.10)

where −1 ≤ ρ1 ≤ 0 and 0 ≤ ρ2 ≤ 1. The following
Theorem 9 characterizes the secrecy capacity Cf

sag for one
regime and the bounds on Cf

sag for the remaining parameter
regime based on (5.10).

Theorem 9: Suppose that the pair (ρ∗1, ρ
∗
2) achieves Cag, and

define

L =
1
2

log

(
1 +

(
√
PA + ρ∗2

√
P )2

P (1 − ρ∗21 − ρ∗22 ) + (σw + ρ∗1
√
P )2 + σ2

1

)
.

(5.11)

If ρ∗21 + ρ∗22 = 1, then

Cf
sag = Cag = L =

1
2

log

(
1 +

(
√
PA + ρ∗2

√
P )2

(σw + ρ∗1
√
P )2 + σ2

1

)
.

(5.12)

Otherwise, if ρ∗21 + ρ∗22 < 1, then

L ≤ Cf
sag ≤ Cag = L+

1
2

log
(

1 +
P (1 − ρ∗21 − ρ∗22 )

σ2
1

)
.

(5.13)

Remark 3: From Theorem 9, we conclude that if
Cag is achieved at the boundary of the constraint
condition, i.e., ρ∗21 + ρ∗22 = 1, then Cf

sag equals

Cag = 1
2 log

(
1 + (

√
PA+ρ∗

2

√
P )2

(σw+ρ∗
1

√
P )2+σ2

1

)
, and this implies

that the secrecy constraint does not reduce the
capacity if the feedback channel model has action-
dependent state. Otherwise, if Cag is achieved with

ρ∗21 + ρ∗22 < 1, then Cag = 1
2 log

(
1 + P (1−ρ∗2

1 −ρ∗2
2 )

σ2
1

)
+

1
2 log

(
1 + (

√
PA+ρ∗

2

√
P )2

P (1−ρ∗2
1 −ρ∗2

2 )+(σw+ρ∗
1

√
P )2+σ2

1

)
serves

as an upper bound on Cf
sag, and part of Cag

(i.e., 12 log
(
1 + (

√
PA+ρ∗

2

√
P )2

P (1−ρ∗2
1 −ρ∗2

2 )+(σw+ρ∗
1

√
P )2+σ2

1

)
) serves

as a lower bound on Cf
sag.

Proof: Since feedback does not increase the capacity Cag

of the action-dependent dirty paper channel [10], and Cf
sag

cannot exceed the capacity of the action-dependent dirty paper
channel with feedback, we have Cf

sag ≤ Cag. Next, for the case
that ρ∗21 + ρ∗22 = 1, construct

X =
ρ∗2
√
P√

PA

A+
ρ∗1
√
P

σw
W. (5.14)

Substituting (5.14) and S = A+W into Y = X+S+ η1 and
Z = X + S + η1 + η2, we have

Y = X + S + η1

= (1 +
ρ∗2
√
P√

PA

)A+ (1 +
ρ∗1
√
P

σw
)W + η1, (5.15)
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and

Z = (1 +
ρ∗2
√
P√

PA

)A+ (1 +
ρ∗1
√
P

σw
)W + η1 + η2. (5.16)

The equations (5.15) and (5.16) indicate that the action-
dependent GWTC-N-CSIT with feedback is equivalent to the
Gaussian wiretap channel with feedback shown in Subsec-
tion V-A. To be specific, the equivalent model has input X

′
=

(1+ ρ∗
2

√
P√

PA
)A with power constraint P

′
= (1+ ρ∗

2

√
P√

PA
)2PA, has

legitimate receiver’s channel noise η
′
1 = (1 + ρ∗

1

√
P

σw
)W + η1

satisfying η
′
1 ∼ N (0, σ

′2
1 = (1 + ρ∗

1

√
P

σw
)2σ2

w + σ2
1), and

has eavesdropper’s channel noise η
′
2 = η2 satisfying η

′
2 ∼

N (0, σ2
2). Defining α =

√
P ′+σ

′2
1

σ
′2
1

and αi =
√

P ′

σ
′2
1
αi−1 for

i ∈ {2, 3, . . . , N}, and along the lines of the SK scheme
introduced in Subsection V-A, the rate

R =
1
2

log

(
1 +

P
′

σ
′2
1

)

=
1
2

log

(
1 +

(
√
PA + ρ∗2

√
P )2

(σw + ρ∗1
√
P )2 + σ2

1

)

= Cag (5.17)

is achievable with weak perfect secrecy.
On the other hand, if Cag is achieved with ρ∗21 + ρ∗22 < 1,

construct X = ρ∗
2

√
P√

PA
A+ ρ∗

1

√
P

σw
W +G, where G is randomly

generated according to G ∼ N (0, P (1 − ρ∗21 − ρ∗22 )) and it

is independent of A and W . Substituting X = ρ∗
2

√
P√

PA
A +

ρ∗
1

√
P

σw
W + G and S = A + W into Y = X + S + η1 and

Z = X + S + η1 + η2, we have

Y = (1 +
ρ∗2
√
P√

PA

)A+ (1 +
ρ∗1
√
P

σw
)W +G+ η1, (5.18)

and

Z = (1 +
ρ∗2
√
P√

PA

)A+ (1 +
ρ∗1
√
P

σw
)W +G+ η1 + η2.

(5.19)

Similarly, (5.18) and (5.19) imply that the action-dependent
GWTC-N-CSIT with feedback is equivalent to the Gaussian
wiretap channel with feedback. The equivalent model has
input X

′′
= (1 + ρ∗

2

√
P√

PA
)A with power constraint P

′′
=

(1 + ρ∗
2

√
P√

PA
)2PA, has legitimate receiver’s channel noise η

′′
1 =

(1 + ρ∗
1

√
P

σw
)W + G + η1 satisfying η

′′
1 ∼ N (0, σ

′′2
1 = (1 +

ρ∗
1

√
P

σw
)2σ2

w +P (1− ρ∗21 − ρ∗22 ) + σ2
1), and has eavesdropper’s

channel noise η
′′
2 = η2 satisfying η

′′
2 ∼ N (0, σ2

2). Defining

α =
√

P ′′+σ
′′2
1

σ
′′2
1

and αi =
√

P ′′

σ
′′2
1
αi−1 for i ∈ {2, 3, . . . , N},

and along the lines of the SK scheme introduced in

Fig. 18. Bounds on Cf
sag for PA = 1, σ2

w = 1, σ2
1 = 3, σ2

2 = 2 and P
taking values in [0, 100].

Subsection V-A, the rate

R =
1
2

log(1 +
P

′′

σ
′′2
1

)

=
1
2

log

(
1+

(
√
PA + ρ∗2

√
P )2

P (1−ρ∗21 −ρ∗22 )+(σw+ρ∗1
√
P )2+σ2

1

)

(5.20)

is achievable with weak perfect secrecy. The proof is com-
pleted.

The following Corollary 5 provides an already existing
secret key based lower bound R∗f

sag on Cf
sag .

Corollary 5: A lower bound R∗f
sag on the secrecy capacity

Cf
sag of the action-dependent GWTC-N-CSIT with noiseless

feedback is given by

R∗f
sag = min

{
Cag,

1
2

log
(

2πeσ2
2(P + PA + σ2

w + σ2
1)

P + PA + σ2
w + σ2

1 + σ2
2

)}
.

(5.21)

Proof: In [33], [37], the discrete memoryless case of
the action-dependent GWTC-N-CSIT with noiseless feedback,
i.e., the physically degraded action-dependent wiretap channel
with channel feedback and noncausal state information at the
transmitter, was studied. It has been shown that the secrecy
capacity of this discrete memoryless model can be achieved by
using the secret key based feedback strategy, and the secrecy
capacity Cf

sa is given by

Cf
sa

= max
P (x|u,s),P (u|a,s),P (a)

min{I(U;Y )−I(U;S|A), H(Y |Z)},
(5.22)

where the joint distribution satisfies

P (u, a, s, x, y, z)
= P (z|y)P (y|x, s)P (x|u, s)P (u|a, s)P (s|a)P (a).

(5.23)

However, we should note that the capacity formula in (5.22)
is only an achievable secrecy rate for the action-dependent
GWTC-N-CSIT with noiseless feedback, and the reason is
exactly the same as that in the proof of Corollary 1. Now
substituting A ∼ N (0, PA), X ∼ N (0, P ), U = X + β(A +
W ), S = A+W , Y = X+S+ η1 and Z = X+S+ η1 + η2
(see (2.6)) into (5.22) and maximizing β, the lower bound
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Fig. 19. Bounds on Cf
sag for PA = 1, σ2

w = 1, σ2
1 = 3, σ2

2 = 0.1 and P
taking values in [0, 100].

Fig. 20. Comparison of the lower bounds on the secrecy capacities of the
GWTC-N-CSIT with or without action-dependent state and channel feedback
for PA = 1, σ2

w = 1, Q = PA + σ2
w = 2, σ2

1 = 3, σ2
2 = 7 and P taking

values in [0, 400].

R∗f
sag on the secrecy capacity Cf

sag is obtained. The proof of
Corollary 5 is completed.

For PA = 1, σ2
w = 1, σ2

1 = 3 and P taking values in
[0, 100], the following Figures 18 and 19 plot the lower and
upper bounds on Cf

sag with σ2
2 = 2 and σ2

2 = 0.1, respectively.
It is easy to see that our new lower bound is tighter than
the secret key based lower bound when σ2

2 is sufficiently
small.

Figure 20 plots the lower bounds on Cf
sag , lower bounds on

the secrecy capacity of the action-dependent GWTC-N-CSIT,
the secrecy capacity of the GWTC-N-CSIT with noiseless
feedback and the upper bound on the secrecy capacity of the
GWTC-N-CSIT for PA = 1, σ2

w = 1, Q = PA + σ2
w = 2,

σ2
1 = 3, σ2

2 = 7 and P taking values in [0, 400]. From
Figure 20, we see that the secrecy capacity of the GWTC-
N-CSIT is enhanced by all three strategies, i.e., action on the
state, channel feedback and a combination of the two. Note
that a combination of action on the state and channel feedback
(with more resources available to the encoder) should perform
always better than either of them. However, from Figure 20,
we see that the lower bounds on Cf

sag are not always larger
than the lower bounds on the secrecy capacity of the action-
dependent GWTC-N-CSIT and the secrecy capacity of the
GWTC-N-CSIT with noiseless feedback, which indicates that
the lower bounds on Cf

sag are not tight. Moreover, note that
when P is sufficiently large, the lower bounds on the secrecy
capacity of the action-dependent GWTC-N-CSIT meets the
upper bound on the secrecy capacity of the GWTC-N-CSIT,
and this is because all of them tend to 1

2 log σ2
1+σ2

2
σ2
1

when the
power P tends to infinity.

VI. CONCLUSION

This paper focuses on studying the impact of action-
dependent state and channel feedback on the GWTC-N-CSIT.
Three strategies including action on the state, channel feedback
and a combination of the two are shown to be useful in enhanc-
ing the secrecy capacity of the GWTC-N-CSIT. The highlight
of this work includes two aspects: First, we determine the
secrecy capacity of the GWTC-N-CSIT with noiseless feed-
back. Second, we propose a capacity-achieving scheme for
a special case of the action-dependent GWTC-N-CSIT with
noiseless feedback. However, we should notice that all the
capacity results given in this paper only work well under the
perfect weak secrecy condition, and how to design the corre-
sponding encoding-decoding schemes under the strong perfect
secrecy condition is of further interest to us. Another possible
future work of this paper is to investigate the impact of fading
on the GWTC-N-CSIT with or without action-dependent state
and channel feedback. To be specific, [46], [47] studied the
fading dirty paper channel with fading process perfectly known
at the receiver, but either partially or completely not known at
the transmitter. Using Costa’s dirty paper coding (DPC) [5],
[46], [47] determined the channel capacities for some special
cases. However, we note that for the GWTC-N-CSIT (the dirty
paper channel with an eavesdropper), [19] showed that the
DPC is not optimal. Hence directly applying the DPC to fading
cases of GWTC-N-CSIT with or without action-dependent
state may not be optimal, and exploiting the optimal coding
schemes is a challenging future work. Moreover, for the fading
cases of GWTC-N-CSIT with channel feedback, it is worth
exploring whether the modified SK scheme proposed in [6]
is still optimal. If not, how to design the optimal feedback
scheme involved with fading process is another challenging
future work.

APPENDIX A
PROOF OF THEOREM 2

The achievability of R∗
sa is proved by combining the binning

scheme for the action-dependent channel [10] and the classical
random binning scheme for the wiretap channel [12], and the
detail of the proof is given below.

• The message M takes values in {1, 2, . . . , 2NR}.
• Randomly generate 2N(R+R

′′
) i.i.d. action sequences AN

w.r.t. P (a), and index them as aN (m,m
′′
), where m ∈

{1, 2, . . . , 2NR} and m
′′ ∈ {1, 2, . . . , 2NR

′′ }.

• Randomly generate 2N(R+R∗+R
′
) i.i.d. codewords UN

w.r.t. P (u|a, s), and index them as uN(m,m∗,m
′
),

where m ∈ {1, 2, . . . , 2NR}, m∗ ∈ {1, 2, . . . , 2NR∗} and

m
′ ∈ {1, 2, . . . , 2NR

′}.
• Encoding procedure:

– Suppose that the message m is intended for transmis-
sion. Randomly choose an index m

′′
in its alphabet

set {1, 2, . . . , 2NR
′′ } and select aN (m,m

′′
) as the

corresponding action sequence.
– Let sN be the state sequence produced by the DMC
AN → SN with channel input aN (m,m

′′
).
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– Uniformly choose an index m
′
, and for given

aN (m,m
′′
) and sN , select an index m∗ such that

(uN (m,m∗,m
′
), aN (m,m

′′
), sN ) are jointly typi-

cal. If no such m∗ exists, declare an encoding error.
If multiple m∗ exist, randomly pick out one. Based
on the Covering Lemma [45], the encoding error
tends to zero if

R∗ > I(U ;S|A). (A1)

– For given uN and sN , the channel input xN is i.i.d.
generated w.r.t. P (x|u, s).

• Decoding procedure: once the legitimate receiver receives
yN , he seeks unique aN (m̂, m̂

′′
) and uN(m̂, m̂∗, m̂

′
)

jointly typical with yN . If there is more than one or no
such aN and uN , a decoding error occurs. Based on the
Packing Lemma [45] and a similar argument in [10],
the decoding error tends to zero if

R+ R∗ +R
′
+R

′′
< I(U ;Y ). (A2)

Equivocation analysis:

Δ =
1
N
H(M |ZN ) =

1
N

(H(M,ZN ) −H(ZN))

=
1
N

(H(M,ZN , UN ) −H(UN |M,ZN ) −H(ZN ))

(1)
=

1
N

(H(ZN |UN ) +H(UN )

−H(UN |M,ZN ) −H(ZN ))
(2)

≥ R+R∗ +R
′ − ε1 − I(U ;Z) − ε2

− 1
N
H(UN |M,ZN)

(3)

≥ R+R∗ +R
′ − I(U ;Z) − ε1 − ε2 − ε3, (A3)

where (1) follows from the Markov chain M → UN → ZN ,
(2) follows from a similar argument in [13, equations (16)
and (23)], i.e., 1

NH(UN ) ≥ R + R∗ + R
′ − ε1 (ε1 → 0

as N → ∞) and follows from a similar argument in [49,
Lemma 3], i.e., 1

N I(U
N ;ZN) ≤ I(U ;Z) + ε2 (ε2 → 0

as N → ∞), and (3) follows from the fact that given M
and ZN , the eavesdropper seeks a unique UN jointly typical
with ZN , and from Packing Lemma [45], we know that the
eavesdropper’s decoding error tends to zero if

R∗ +R
′ ≤ I(U ;Z), (A4)

then applying Fano’s inequality, 1
NH(UN |M,ZN ) ≤ ε3 is

obtained, where ε3 → 0 as N → ∞. Here note that (A3)
indicates that if

R∗ +R
′ ≥ I(U ;Z), (A5)

choosing sufficiently large N such that ε1 + ε2 + ε3 ≤ ε,
Δ ≥ R− ε is proved.

Finally using Fourier-Motzkin elimination to remove R∗,
R

′
and R

′′
from (A1), (A2), (A4) and (A5), Theorem 2 is

proved. The proof of Theorem 2 is completed.

APPENDIX B
PROOF OF THEOREM 3

For all achievable secrecy rate R, the proof of R ≤
I(U ;Y ) − I(U ;S|A) follows directly from [10]. Now it
remains to show that R ≤ I(X,S;Y ) − I(X,S;Z), and the
proof is given below.

R− ε
(1)

≤ Δ =
1
N
H(M |ZN )

≤ 1
N

(I(M ;Y N |ZN) +H(M |Y N , ZN))

(2)

≤ 1
N

(I(M ;Y N |ZN ) + δ(Pe))

(3)

≤ 1
N

(I(XN , SN ;Y N |ZN ) + δ(Pe))

(4)
=

1
N

(I(XN , SN ;Y N) − I(XN , SN ;ZN ) + δ(Pe))

(5)
=

1
N

N∑
i=1

(H(Yi|Y i−1) −H(Yi|Xi, Si) −H(Zi|Zi−1)

+H(Zi|Xi, Si)) +
δ(Pe)
N

(6)

≤ 1
N

N∑
i=1

(H(Yi) −H(Yi|Xi, Si) −H(Zi)

+H(Zi|Xi, Si)) +
δ(Pe)
N

(7)
=

1
N

N∑
i=1

(H(Yi|J = i) −H(Yi|Xi, Si, J = i)

−H(Zi|J = i) +H(Zi|Xi, Si, J = i)) +
δ(Pe)
N

(8)
= H(YJ |J) −H(YJ |XJ , SJ , J) −H(ZJ |J)

+H(ZJ |XJ , SJ , J) +
δ(Pe)
N

(9)

≤ H(YJ) −H(YJ |XJ , SJ) −H(ZJ)

+H(ZJ |XJ , SJ) +
δ(ε)
N

(10)
= I(X,S;Y ) − I(X,S;Z) +

δ(ε)
N

, (A6)

where (1) follows from (2.4), (2) follows from the Fano’s
inequality, (3) follows from the fact that H(M |XN) = 0,
(4) follows from the Markov chain (XN , SN ) → Y N →
ZN , (5) follows from the fact that the channels are discrete
memoryless, (6) follows from the Markov chain Zi−1 →
Y i−1 → Yi → Zi, which implies that H(Yi|Y i−1) −
H(Zi|Zi−1) ≤ H(Yi) − H(Zi), (7) and (8) are from the
fact that J is uniformly distributed over {1, 2, . . . , N} and it
is independent of XN , SN , Y N and ZN , (9) follows from
Pe ≤ ε, the Markov chain J → (XJ , SJ) → (YJ , ZJ),
and the Markov chain J → YJ → ZJ indicating that
H(YJ |J) − H(ZJ |J) ≤ H(YJ) − H(ZJ ), and (10) follows
from the definitions X � XJ , S � SJ , Y � YJ and Z � ZJ .
Letting ε → 0, R ≤ I(X,S;Y ) − I(X,S;Z) is proved.
Finally, note that the joint distribution (4.9) can be directly
checked by the definitions U � (M,Y J−1, SN

J+1, A
N , J) and

A � AJ (see [10]). The proof of Theorem 3 is completed.
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APPENDIX C
PROOF OF THEOREM 4

For all achievable secrecy rate R, the proof of R ≤
I(U,K;Y ) − I(U,K;S|A) and R ≤ I(U,K;Y ) −
I(U,K;S|A) − I(U ;Z) + I(U ;S|A) is given below. First,
note that

R− ε
(1)

≤ 1
N
H(M) ≤ 1

N
(I(M ;Y N ) + δ(ε)), (A7)

and

R− ε
(2)

≤ Δ =
1
N
H(M |ZN )≤ 1

N
(I(M ;Y N |ZN )+δ(ε))

(3)
=

1
N

(I(M ;Y N ) − I(M ;ZN) + δ(ε)), (A8)

where (1) and (2) are from (2.4), and (3) follows from the
Markov chain M → Y N → ZN .

The term I(M ;Y N ) in (A7) and (A8) can be further
bounded by

1
N
I(M ;Y N )

(4)
=

1
N

(I(M ;Y N ) − I(M ;SN |AN ))

=
1
N

N∑
i=1

(I(M ;Yi|Y i−1) − I(M ;Si|SN
i+1, A

N ))

=
1
N

N∑
i=1

(I(M,SN
i+1, A

N ;Yi|Y i−1)

−I(SN
i+1, A

N ;Yi|M,Y i−1) − I(M,Y i−1;Si|SN
i+1, A

N )
+I(Y i−1;Si, A

N |M,SN
i+1, A

N ))

(5)
=

1
N

N∑
i=1

(I(M,SN
i+1, A

N ;Yi|Y i−1)

−I(M,Y i−1;Si|SN
i+1, A

N ))

(6)
=

1
N

N∑
i=1

(H(Yi|Y i−1)

−H(Yi|M,SN
i+1, A

N , Y i−1, Zi−1)
−H(Si|Ai) +H(Si|SN

i+1, A
N ,M, Y i−1, Zi−1))

(7)
= H(YJ |Y J−1, J)
−H(YJ |M,SN

J+1, A
N , Y J−1, ZJ−1, J)

−H(SJ |AJ , J) +H(SJ |SN
J+1, A

N ,M, Y J−1, ZJ−1, J),
(A9)

where (4) follows from the Markov chain M → AN → SN ,
(5) follows from the Csiszár’s equality

N∑
i=1

I(SN
i+1, A

N ;Yi|M,Y i−1)

=
N∑

i=1

I(Y i−1;Si, A
N |M,SN

i+1, A
N ), (A10)

(6) follows from the Markov chains Zi−1 →
(M,SN

i+1, A
N , Y i−1) → Yi, Si → Ai → (Ai−1, AN

i+1, S
N
i+1)

and Zi−1 → (SN
i+1, A

N ,M, Y i−1) → Si, and (7) follows
from the fact that J is uniformly distributed over {1, 2, . . . , N}
and it is independent of M , AN , SN , Y N and ZN .

Analogously, the term 1
N I(M ;ZN) in (A8) can be further

bounded by
1
N
I(M ;ZN) =

1
N

(I(M ;ZN) − I(M ;SN |AN ))

=
1
N

N∑
i=1

(I(M ;Zi|Zi−1) − I(M ;Si|SN
i+1, A

N ))

=
1
N

N∑
i=1

(I(M,SN
i+1, A

N ;Zi|Zi−1)

−I(SN
i+1, A

N ;Zi|M,Zi−1)
−I(M,Zi−1;Si|SN

i+1, A
N )+I(Zi−1;Si, A

N|M,SN
i+1,A

N))

=
1
N

N∑
i=1

(I(M,SN
i+1, A

N ;Zi|Zi−1)

−I(M,Zi−1;Si|SN
i+1, A

N ))

=
1
N

N∑
i=1

(H(Zi|Zi−1) −H(Zi|M,SN
i+1, A

N , Zi−1)

−H(Si|Ai) +H(Si|SN
i+1, A

N ,M,Zi−1))
= H(ZJ |ZJ−1, J) −H(ZJ |M,SN

J+1, A
N , ZJ−1, J)

−H(SJ |AJ , J) +H(SJ |SN
J+1, A

N ,M,ZJ−1, J). (A11)

Substituting (A9) into (A7), we get

R− ε ≤ H(YJ |Y J−1, J)
−H(YJ |M,SN

J+1, A
N , Y J−1, ZJ−1, J) −H(SJ |AJ , J)

+H(SJ |SN
J+1, A

N ,M, Y J−1, ZJ−1, J) +
δ(ε)
N

≤ H(YJ) −H(YJ |M,SN
J+1, A

N , Y J−1, ZJ−1, J)

−H(SJ |AJ , J) +H(SJ |SN
J+1, A

N ,M, Y J−1, ZJ−1, J)

+
δ(ε)
N

(8)
= I(U,K;Y ) − I(U,K;S|A) +

δ(ε)
N

, (A12)

where (8) follows from the definitions U =
(M,SN

J+1, A
N , ZJ−1, J), K = Y J−1, A = (AJ , J),

and S = SJ . Letting ε→ 0, R ≤ I(U,K;Y ) − I(U,K;S|A)
is proved.

Next, substituting (A9) and (A11) into (A8), we get

R− ε ≤ H(YJ |Y J−1, J)
−H(YJ |M,SN

J+1, A
N , Y J−1, ZJ−1, J)

−H(SJ |AJ , J) +H(SJ |SN
J+1, A

N ,M, Y J−1, ZJ−1, J)
−H(ZJ |ZJ−1, J) +H(ZJ |M,SN

J+1, A
N , ZJ−1, J)

+H(SJ |AJ , J) −H(SJ |SN
J+1, A

N ,M,ZJ−1, J) +
δ(ε)
N

(9)

≤ H(YJ) −H(YJ |M,SN
J+1, A

N , Y J−1, ZJ−1, J)
−H(SJ |AJ , J) +H(SJ |SN

J+1, A
N ,M, Y J−1, ZJ−1, J)

−H(ZJ) +H(ZJ |M,SN
J+1, A

N , ZJ−1, J)

+H(SJ |AJ , J) −H(SJ |SN
J+1, A

N ,M,ZJ−1, J) +
δ(ε)
N

(10)
= I(U,K;Y ) − I(U,K;S|A) − I(U ;Z) + I(U ;S|A)

+
δ(ε)
N

, (A13)
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where (9) follows from the Markov chain (ZJ−1, J) →
(Y J−1, J) → YJ → ZJ , which indicates H(YJ |Y J−1, J) −
H(ZJ |ZJ−1, J) ≤ H(YJ) − H(ZJ), and (10) follows from
the definitions U = (M,SN

J+1, A
N , ZJ−1, J), K = Y J−1,

A = (AJ , J), and S = SJ . Letting ε→ 0, R ≤ I(U,K;Y )−
I(U,K;S|A)− I(U ;Z) + I(U ;S|A) is proved. Finally, note
that the joint distribution (4.12) can be directly checked by the
above definitions of U , K , A and S. The proof of Theorem 4
is completed.
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