

# IEEECOMCAS2019

#### 4-6 November 2019 - Tel Aviv, Israel

Gaussian Diamond Primitive Relay with Oblivious Processing Asif Katz

## GAUSSIAN DIAMOND PRIMITIVE RELAY WITH OBLIVIOUS PROCESSING

ASIF KATZ<sup>(1)</sup>, MICHAEL PELEG<sup>(1),(2)</sup> AND SHLOMO SHAMAI<sup>(1)</sup>

TECHNION-ISRAEL INSTITUTE OF TECHNOLOGY<sup>(1)</sup>, RAFAEL LTD<sup>(2)</sup>

IEEE COMCAS 2019, 4-6 NOVEMBER 2019, TEL AVIV, ISRAEL







### Outline

- Relaying
- Diamond primitive relay channel
- Information bottleneck for one relay channel communication system
- Relaying over frequency dependent channels -Extending the water pouring approach
- One relay channel communication system
- Two relay channels communication system
- Conclusions



#### Relaying

- Relaying is used in order to improve the performance of a communication system by using intermediate nodes. In this work there is a radio channel from a transmitter to the relays and reliable bit-pipes from the relays to the destination.
- Examples are Cloud Radio Access Network (CRAN) and Remote Radio Heads (RRH) with fronthaul Common Public Radio Interface (CPRI).
- The fronthaul importance is shown in [Camps-Mur et al, 2019].
- We can distinguish between two cases: oblivious relay (such as CPRI) and non-oblivious relay.
- Oblivious relay there is no a priori knowledge of the modulation or the coding at the relay, thus the relaying system is universal and can serve many diverse users and operators.

IEEECOMCAS 2019



#### Diamond primitive relay channel

- We investigate the uplink using the case of Gaussian channel with identical frequency response of the channels from X to Y and Z with limited relay to destination bitrate.
- The oblivious compression and forward (CF) is used, using joint decompression/decoding (equivalent to optimized Wyner-Ziv compression).
- We use Gaussian-distributed transmission symbols which are optimal at high Jy, Jz bitrates.



Information bottleneck for one relay channel communication system

- The optimal performance of the oblivious system with no interference, is governed by the information bottleneck method [Tishby, Pereira and Bialek, 1999] and the Gaussian Information Bottleneck (GIB).
- For the one channel case:

MEELIFFECOMCAS 2019

$$I(C) = \max_{P(z|y)} I(X;Z)$$
  
s.t  $I(Y:Z) \le C$ 



 The solution for that optimization problem, was presented in [Winkelbauer and Matz, 2014]:

$$I(\rho, C) = \frac{1}{2} \log_e \left( \frac{1+\rho}{1+\rho e^{-2C}} \right)$$

#### Relaying over frequency dependent channels -Extending the water pouring approach

- Our work is about extending the known optimization over frequency-flat relay channels to more realistic frequency-dependent ones.
- For frequency dependent channel we use the water pouring approach: split the channel into separate bands, each with bandwidth of *df*. In the Gaussian model the different bands are independent.
- By Nyquist, for a channel with bandwidth df and no interference, the maximal symbol rate equals 2df.
- C(f) is the frequency dependent rate allocation, S(f) is the frequency dependent power allocation and H(f) is the filter frequency response between the source and the relay.
- For each band we assign rate of 0.5C(f) bits per channel use. Then the rate in this band equals C(f)df.
- The SNR equals  $S(f)|H(f)|^2$ .

IEEECÔMCAS2019

#### One relay channel communication system

• Therefore, the frequency dependent rate is:  $I(f, S(f), C(f)) = \log_e \left( \frac{1 + S(f) |H(f)|^2}{1 + S(f) |H(f)|^2 e^{-C(f)}} \right)$ 

IEEECÔMCAS2019

- The optimization problem becomes:  $\max_{S(f),C(f)} \int_{0}^{W} I(f,S(f),C(f)) df \quad \text{s.t.} \int_{0}^{W} S(f) df \leq P, \int_{0}^{W} C(f) df \leq C$
- The LaGrangian for each frequency is:  $L(f, \hat{S}, \hat{C}, \lambda_c, \lambda_s) = I(f, \hat{S}, \hat{C}) \lambda_s \cdot \hat{S} \lambda_c \cdot \hat{C}$
- In the region where the function is concave, find the optimal solution using the equations (Euler-Lagrange):  $\nabla L = \left(\frac{dL}{dS}, \frac{dL}{dC}\right) = (0,0)$
- The LaGrange coefficients have bounded region, so we can use grid search in order to find the optimal value.

#### One relay channel communication system (cont.)

- This problem was solved in [Homri, Peleg, Shamai, 2016 and 2018].
- For each frequency we get two solutions: one in the concave region and the other in the non concave region. Choose the solution that is in the concave region, because it is the optimal one.
- The optimal solution allocates zero power and rate for certain frequencies.

LEEECOMCAS 2019



#### Two relay channels communication system



• Optimal solution to this problem for the discrete-time real signal case, is shown in [Sanderovich, Shamai, Steinberg and Kramer, 2008]:  $I(\rho, C) = \frac{1}{2} \log_2 \left( 1 + 2 \cdot \rho \cdot 2^{-4C} \cdot \left( 2^{4C} + \rho - \sqrt{\rho^2 + (1 + 2 \cdot \rho) \cdot 2^{4C}} \right) \right)$ 



#### Two relay channels communication system (cont.)

• Using the same water-pouring approach we get:

 $I(f, S(f), C(f)) = \log_{2} \left( 1 + 2 \cdot B(f) \cdot 2^{-2C(f)} \cdot \left( 2^{2C(f)} + B(f) - \sqrt{A(f)} \right) \right)$   $A(f) \triangleq \left( B(f) \right)^{2} + (1 + 2 \cdot B(f)) \cdot 2^{2C(f)}$   $B(f) \triangleq S(f) \left| H(f) \right|^{2}$ Concave

• And the problem we solve in our paper is:

$$\max_{S(f),C(f)} \int_{0}^{W} I(f,S(f),C(f)) df \quad s.t. \int_{0}^{W} S(f) df \leq P, \int_{0}^{W} C(f) df \leq C$$

For the above function.

MEEE IEEECOMCAS 2019



#### Two relay channels communication system (cont.)

- Using the same grid search method, we were able to find the optimal solution.
- Similarly, we get two solutions and choose the optimal one which is in the concave region.
- The optimal solution allocates zero power and rate for certain frequencies.







#### Two relay channels communication system (cont.)

- We compare the optimal solutions results for a lower and upper bounds of the capacity.
- Upper bound: cooperative encoding, the encoders can share information and operate jointly.
- Lower bound: each relay operates independently.
- The system rate results are summarized in the following table:

| Case                          | Our optimal<br>scheme | Collaborative<br>encoding -<br>upper bound | Independently<br>encoding -<br>lower bound | $I(X;Z)$ $C = \infty$ |
|-------------------------------|-----------------------|--------------------------------------------|--------------------------------------------|-----------------------|
| Frequency flat<br>filter      | 15.31                 | 16.44                                      | 12.97                                      | 43.92                 |
| Frequency<br>dependent filter | 6.45                  | 7.51                                       | 5.85                                       | 9.55                  |

#### Conclusions

- We extended known optimized relaying results over frequency flat channels to frequency-varying channels.
- We showed the advantage of applying the Joint Decompression-Decoding (optimized) Wyner-Ziv technique and investigated the loss incurred by lack of cooperation between the relays which would necessitate an additional communication link between them.
- As in [Homri, Peleg, Shamai, 2016], the optimal allocation is zero for some frequencies even over the frequency-flat channel due to the need to concentrate power and bitrate resources.



#### Thank you!



#### References

LEEECOMCAS2019

- S.H. Park, O. Simeone, O. Sahin, and S. Shamai, "Fronthaul compression for cloud radio access networks: Signal processing advances inspired by network information theory," *IEEE Signal Processing Magazine*, vol. 31, no. 6, pp. 69–79, November 2014.
- D. Camps-Mur et al., "5G-XHaul: A Novel Wireless-Optical SDN Transport Network to Support Joint 5G Backhaul and Fronthaul Services," in IEEE Communications Magazine, vol. 57, no. 7, pp. 99-105, July 2019.
- N. Tishby, F. C. Pereira, and W. Bialek, "The information bottleneck method", in Proc. 37th Annual Allerton Conf. on Comm., Control, and Computing, , pp. 368-377, 1999.
- A. Winkelbauer and G. Matz, Rate information optimal gaussian channel output compression, compression," 48 th Annual Conference on Information Sciences and Systems (CISS), no. 1-5, August 2014
- A. Homri, M. Peleg, and S. Shamai (Shitz), "Oblivious processing in a fronthaul constrained Gaussian channel," in Proc. IEEE Int. Conf. Sci. Elect. Eng. (ICSEE), Nov. 2016, pp. 1–5.
- A. Homri, M. Peleg and S. Shamai (Shitz), "Oblivious Fronthaul-Constrained Relay for a Gaussian Channel", IEEE Trans. on Communications, vol. 66, no. 11, November 2018, pp. 5112-5123.
- A. Sanderovich, S. Shamai (Shitz), Y. Steinberg and G. Kramer, "Communication via decentralized processing", IEEE Trans. Information Theory, vol. 54, no. 7, pp. 3008-3023, July 2008.