X	Technion Israel Institute of Technology	1	European Research Counce Examined by the Cargoson Commons	1 •	
0 Paralle	n the Br el MIMO	oadcast Ap Two-state	proach ove Fading Ch	r annel	

Kfir M. Cohen, Avi Steiner, Shlomo Shamai (Shitz) Department of Electrical Engineering Technion - Israel Institute of Technology

IZS2020, Zurich. February 2020

Outline ●	Channel Model	Background 00	Main Contribution	Numerical Results 00000	SISO Model 00	Conclusion 000
Outl	ine					

- Channel Model
- Ø Background
- Main Contribution
- O Numerical Results
- SISO Block Fading
- Onclusions

< ∃ →

Outline 0	Channel Model ●000	Background 00	Main Contribution	Numerical Results 00000	SISO Model 00	Conclusion

Channel Model (1/3)

- Single User.
- MIMO. In our case:
 - 2 TX antennas.
 - 2 RX antennas.
- Complex Parallel Channel (no cross terms).
- Block Fading (channel is coherent for N samples).
- No CSI at TX.
- Full CSI at RX.

3/26

Outline 0	Channel Model 0●00	Background 00	Main Contribution	Numerical Results 00000	SISO Model	Conclusion

Channel Model (2/3)

- Symmetric Channel (same statistics).
- Independent channel, across antennas and time blocks.
- Two State Channel [Kazemi,2018] [Whiting,2006], each $P_H(h) = P_A \delta(h H_A) + P_B \delta(h H_B)$.
 - State A: "Bad" channel (low gain)
 - State B: "Good" channel (high gain)

$$|H_i|^2 = \begin{cases} \nu_a & \text{when } S_i = A \text{ w.p. } P_A \\ \nu_b & \text{when } S_i = B \text{ w.p. } P_B \\ P_B \text{ when } S_i = B \text{ w.p. } P_B \text{ when } S_i = 0.000 \text{ m} \\ P_B \text{ when } S_i = B \text{ w.p. } P_B \text{ when } S_i = 0.0000 \text{ m} \\ P_B \text{ when } S_i = B \text{ w.p. } P_B \text{ when } S_i = 0.0000 \text{ m} \\ P_B \text{ when } S_i = B \text{ w.p. } P_B \text{ when } S_i = 0.0000 \text{ m} \\ P_B \text{ when } S_i = B \text{ w.p. } P_B \text{ when } S_i = 0.0000 \text{ m} \\ P_B \text{ when } S_i = B \text{ when } S_i = 0.0000 \text{ m} \\ P_B \text{ when } S_i = 0.0000$$

Broadcast Approach over Parallel MIMO Fading Channel

Outline 0	Channel Model 00●0	Background 00	Main Contribution	Numerical Results 00000	SISO Model 00	Conclusion
Chan	nal Mada	1 (3/3)				
Chan	mer moue	ະ (ວ/ວ)				

• Channel Equations per block

$$\begin{aligned} \mathbf{Y}_1 &= & H_1 \mathbf{X}_1 + \mathbf{N}_1 \\ \mathbf{Y}_2 &= & H_2 \mathbf{X}_2 + \mathbf{N}_2 \end{aligned}$$

- Power Constrained $\mathbb{E}[|X_i|^2] \leq P$ on sub-channel $i \in 1, 2$.
- Shannon's Capacity considers the worst case.
- This may turn out too low.
- Variable-to-fix coding [Verdu,2010] allows to deliver high throughput.

伺 ト イヨト イヨト

Outline	Channel Model	Background	Main Contribution	Numerical Results	SISO Model	Conclusion
0	000●	00		00000	00	000
Moti	vation					

Goal of Work

Finding an encoding and decoding scheme that achieves the highest throughput.

Main Tools to Achieve

- Broadcast Approach for block fading [Shamai,1997] [Shamai,2003].
- Degraded Broadcast Product Channel [ElGamal, 1980].

- (同) - (同) - (同)

Outline	Channel Model	Background	Main Contribution	Numerical Results	SISO Model	Conclusion
		••				

Broadcast Approach for Fading Channels

- Layering coding and successive decoding for SISO channel.
- For two layers, use power of α^{bc}P to overcome the bad channel while treating second layer as noise, and (1 – α^{bc})P for the second layer.
- Average throughput (two layers) $\begin{aligned} R_{\text{avg}}^{\text{bc}}(\alpha^{\text{bc}}) &= P_A \log \left(1 + \frac{\nu_a \alpha^{\text{bc}} P}{1 + \nu_a (1 - \alpha^{\text{bc}}) P} \right) \\
 &+ P_B \left[\log \left(1 + \frac{\nu_a \alpha^{\text{bc}} P}{1 + \nu_a (1 - \alpha^{\text{bc}}) P} \right) + \log \left(1 + \nu_b (1 - \alpha^{\text{bc}}) P \right) \right] .
 \end{aligned}$
- Maximal average throughput by $\alpha^{\text{bc,opt}} = \max \left\{ 0, \min \left\{ 1, 1 - \frac{P_B \nu_b - (P_A + P_B) \nu_a}{P_A \nu_a \nu_b P} \right\} \right\}.$

7/26

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline	Channel Model	Background	Main Contribution	Numerical Results	SISO Model	Conclusion
		00				

El-Gamal 1980 Degraded Broadcast Product Channels

Kfir M. Cohen, Avi Steiner, Shlomo Shamai (Shitz) Broadcast Approach over Parallel MIMO Fading Channel

Outline	Channel Model	Background	Main Contribution	Numerical Results	SISO Model	Conclusion
			•0000000			

Main Contribution: Adding states AA and BB to El-Gamal

In red: El Gamal In Black: Additional states AA: bad-bad states BB: good-good states cr: bad-good or good-bad crossed

states

Kfir M. Cohen, Avi Steiner, Shlomo Shamai (Shitz) Broadcast Approach over Parallel MIMO Fading Channel

Outline	Channel Model	Background	Main Contribution	Numerical Results	SISO Model	Conclusion
			0000000			

Main Contribution: Applying on the channel model

10/26

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline	Channel Model	Background	Main Contribution	Numerical Results	SISO Model	Conclusion
			0000000			

Main Contribution: Encoding procedure

Stage no.	codewords	Power	Interference and Noise Power
1	WAA	$\alpha_{AA}P$	$ u_{a}^{-1} + (\alpha_{cr} + \alpha_{BB})P $
2	w_0, w_{AB}, w_{BA}	$\alpha_{cr}P$	$ u_{a}^{-1} + \alpha_{BB}P $; and $ u_{b}^{-1} + \alpha_{BB}P$
3	W _{BB}	$\alpha_{BB}P$	ν_b^{-1}

S	ŴAA	ŵ ₀	ŵ _{BA}	ŵΑΒ	ŵ _{BB}	Sum Rate	Probability
(A, A)	$\hat{w}_{AA}^{(AA)}$	-	-	-	-	R _{AA}	P_A^2
(A, B)	$\hat{w}_{AA}^{(AB)}$	$\hat{w}_0^{(AB)}$	-	$\hat{w}_{AB}^{(AB)}$	-	$R_{AA} + R_0 + R_{AB}$	$P_A P_B$
(<i>B</i> , <i>A</i>)	$\hat{w}_{AA}^{(BA)}$	$\hat{w}_0^{(BA)}$	$\hat{w}_{BA}^{(BA)}$	-	-	$R_{AA} + R_0 + R_{BA}$	$P_B P_A$
(<i>B</i> , <i>B</i>)	$\hat{w}_{AA}^{(BB)}$	$\hat{w}_0^{(BB)}$	$\hat{w}_{BA}^{(BB)}$	$\hat{w}_{AB}^{(BB)}$	$\hat{w}_{BB}^{(BB)}$	$R_{AA} + R_0 + R_{AB} + R_{BA} + R_{BB}$	P_B^2

11/26

Outline	Channel Model	Background	Main Contribution	Numerical Results	SISO Model	Conclusion
			0000000			

Main Contribution: Defining the sum rate

S_1/S_2	A	В
A	R _{AA}	$R_{AA} + R_0 + R_{AB}$
В	$R_{AA}+R_0+R_{BA}$	$R_{AA} + R_0 + R_{AB} + R_{BA} + R_{BB}$

$$R_{avg} = P_A^2 R_{AA} + P_A P_B (R_{AA} + R_0 + R_{AB}) + P_B P_A (R_{AA} + R_0 + R_{BA}) + P_B^2 (R_{AA} + R_0 + R_{BA} + R_{AB} + R_{BB})$$

12/26

・ 同 ト ・ ヨ ト ・ ヨ ト

o oooo oo ooooooo oo ooo ooo	Outline	Channel Model	Background	Main Contribution	Numerical Results	SISO Model	Conclusion
				0000000			

Main Contribution: Rates under Broadcast Approach

$$\begin{aligned} R_{AA} &\leq 2\log\left(1 + \frac{\alpha_{AA}P}{\nu_{s}^{-1} + \tilde{\alpha}_{AA}P}\right) \\ R_{AA} + R_{0} &\leq 2\log\left(1 + \frac{\alpha_{AA}P}{\nu_{s}^{-1} + \tilde{\alpha}_{AA}P}\right) + \log\left(1 + \frac{\alpha_{\alpha_{cr}}P}{\nu_{b}^{-1} + (\tilde{\alpha}\alpha_{cr} + \alpha_{BB})P}\right) \\ &\quad + \log\left(1 + \frac{\alpha_{\alpha_{cr}}P}{\nu_{s}^{-1} + (\tilde{\alpha}\alpha_{cr} + \alpha_{BB})P}\right) \\ R_{AA} + R_{0} + R_{BA} &= R_{AA} + R_{0} + R_{AB} \\ &\leq 2\log\left(1 + \frac{\alpha_{AA}P}{\nu_{s}^{-1} + \tilde{\alpha}_{AA}P}\right) + \log\left(1 + \frac{\alpha_{\alpha_{cr}}P}{\nu_{s}^{-1} + (\tilde{\alpha}\alpha_{cr} + \alpha_{BB})P}\right) \\ &\quad + \log\left(1 + \frac{\alpha_{\alpha_{cr}}P}{\nu_{b}^{-1} + \alpha_{BB}P}\right) \\ &\quad + \log\left(1 + \frac{\alpha_{\alpha_{cr}}P}{\nu_{s}^{-1} + \tilde{\alpha}_{AA}P}\right) + \log\left(1 + \frac{\tilde{\alpha}_{\alpha_{cr}}P}{\nu_{b}^{-1} + \alpha_{BB}P}\right) \\ &\quad + \log\left(1 + \frac{\alpha_{\alpha_{cr}}P}{\nu_{s}^{-1} + (\tilde{\alpha}\alpha_{cr} + \alpha_{BB})P}\right) + \log\left(1 + \frac{\tilde{\alpha}_{\alpha_{cr}}P}{\nu_{b}^{-1} + \alpha_{BB}P}\right) \\ &\quad R_{AA} + R_{0} + R_{BA} + R_{AB} \leq 2\log\left(1 + \frac{\alpha_{AA}P}{\nu_{s}^{-1} + (\tilde{\alpha}\alpha_{cr} + \alpha_{BB})P}\right) + \log\left(1 + \frac{\tilde{\alpha}_{\alpha_{cr}}P}{\nu_{b}^{-1} + \alpha_{BB}P}\right) \\ &\quad + \log\left(1 + \frac{\alpha_{\alpha_{cr}}P}{\nu_{s}^{-1} + (\tilde{\alpha}\alpha_{\alpha_{cr}} + \alpha_{BB})P}\right) + \log\left(1 + \frac{\tilde{\alpha}_{\alpha_{cr}}P}{\nu_{b}^{-1} + \alpha_{BB}P}\right) \\ &\quad + \log\left(1 + \frac{\alpha_{\alpha_{cr}}P}{\nu_{s}^{-1} + (\tilde{\alpha}\alpha_{\alpha_{cr}} + \alpha_{BB})P}\right) + \log\left(1 + \frac{\tilde{\alpha}_{\alpha_{cr}}P}{\nu_{b}^{-1} + \alpha_{BB}P}\right) \\ &\quad + \log\left(1 + \frac{\alpha_{BB}P}{\nu_{s}^{-1} + (\tilde{\alpha}\alpha_{\alpha_{cr}} + \alpha_{BB})P}\right) + \log\left(1 + \frac{\tilde{\alpha}_{\alpha_{cr}}P}{\nu_{b}^{-1} + \alpha_{BB}P}\right) \\ &\quad + \log\left(1 + \frac{\alpha_{BB}P}{\nu_{s}^{-1} + (\tilde{\alpha}\alpha_{\alpha_{cr}} + \alpha_{BB})P}\right) + \log\left(1 + \frac{\tilde{\alpha}\alpha_{cr}P}{\nu_{s}^{-1} + \alpha_{BB}P}\right) \\ &\quad + \log\left(1 + \frac{\alpha_{BB}P}{\nu_{s}^{-1} + (\tilde{\alpha}\alpha_{cr} + \alpha_{BB})P}\right) + \log\left(1 + \frac{\tilde{\alpha}\alpha_{cr}P}{\nu_{s}^{-1} + \alpha_{BB}P}\right) \\ &\quad + \log\left(1 + \frac{\alpha_{BB}P}{\nu_{s}^{-1} + (\tilde{\alpha}\alpha_{cr} + \alpha_{BB})P}\right) + \log\left(1 + \frac{\tilde{\alpha}\alpha_{cr}P}{\nu_{s}^{-1} + \alpha_{BB}P}\right) \\ &\quad + \log\left(1 + \frac{\alpha_{BB}P}{\nu_{s}^{-1} + (\tilde{\alpha}\alpha_{cr} + \alpha_{BB})P}\right) + \log\left(1 + \frac{\tilde{\alpha}\alpha_{cr}P}{\nu_{s}^{-1} + \alpha_{BB}P}\right) \\ &\quad + 2\log\left(1 + \frac{\alpha_{BB}P}{\nu_{s}^{-1} + (\tilde{\alpha}\alpha_{cr} + \alpha_{BB})P}\right) + \log\left(1 + \frac{\tilde{\alpha}\alpha_{cr}P}{\nu_{s}^{-1} + \alpha_{BB}P}\right) \\ &\quad + \log\left(1 + \frac{\alpha_{BB}P}{\nu_{s}^{-1} + (\tilde{\alpha}\alpha_{cr} + \alpha_{BB})P}\right) + \log\left(1 + \frac{\tilde{\alpha}\alpha_{cr}P}{\nu_{s}^{-1} + \alpha_{BB}P}\right) \\ &\quad + 2\log\left(1 + \frac{\alpha_{cr}P}{\nu_{s}^{-1} + (\tilde{\alpha}\alpha_{cr} + \alpha_{BB})P}\right) + \log\left(1 + \frac{\tilde{\alpha}\alpha_{cr}P}{\nu_{s}^{-1} + \alpha_{cr}P}\right) \\ \\ &\quad + 2\log\left(1 + \frac{\alpha_{cr}P}{\nu_{s}^{-1}$$

Kfir M. Cohen, Avi Steiner, Shlomo Shamai (Shitz) Broadcast Approach over Parallel MIMO Fading Channel

Outline	Channel Model	Background	Main Contribution	Numerical Results	SISO Model	Conclusion
			00000000			

Main Contribution: Optimization Formulation

$$\begin{split} R_{\text{avg}} &= P_A^2 \bigg[2 \log \bigg(1 + \frac{\alpha_{AA}P}{\nu_a^{-1} + \bar{\alpha}_{AA}P} \bigg) \bigg] + 2P_A P_B \bigg[2 \log \bigg(1 + \frac{\alpha_{AA}P}{\nu_a^{-1} + \bar{\alpha}_{AA}P} \bigg) \\ &+ \log \bigg(1 + \frac{\alpha \alpha_{cr}P}{\nu_a^{-1} + (\bar{\alpha}\alpha_{cr} + \alpha_{BB})P} \bigg) + \log \bigg(1 + \frac{\alpha_{cr}P}{\nu_b^{-1} + \alpha_{BB}P} \bigg) \bigg] \\ &+ P_B^2 \bigg[2 \log \bigg(1 + \frac{\alpha_{AA}P}{\nu_a^{-1} + \bar{\alpha}_{AA}P} \bigg) + \log \bigg(1 + \frac{\alpha_{cr}P}{\nu_b^{-1} + \alpha_{BB}P} \bigg) \\ &+ \log \bigg(1 + \frac{\alpha \alpha_{cr}P}{\nu_a^{-1} + (\bar{\alpha}\alpha_{cr} + \alpha_{BB})P} \bigg) + \log \bigg(1 + \frac{\bar{\alpha}\alpha_{cr}P}{\nu_b^{-1} + \alpha_{BB}P} \bigg) \\ &+ 2 \log \bigg(1 + \frac{\alpha_{BB}P}{\nu_b^{-1}} \bigg) \bigg]. \end{split}$$

should be optimized over the 4 dimensional power allocation vector

$$D' = \left\{ \alpha' = [\alpha, \alpha_{AA}, \alpha_{cr}, \alpha_{BB}]^T \in \mathbb{R}^4 \middle| \begin{array}{c} \alpha_{AA} \ge 0, \alpha_{cr} \ge 0, \alpha_{BB} \ge 0\\ 0 \le \alpha \le 1, \alpha_{AA} + \alpha_{cr} + \alpha_{BB} = 1 \end{array} \right\} \quad 14/26$$

伺 ト イヨト イヨト

Outline	Channel Model	Background	Main Contribution	Numerical Results	SISO Model	Conclusion
			00000000			

Main Contribution: Optimizing the sum rate

The optimization problem of R_{avg} over the 4 dimensional can be reduced to a single dimensional problem.

Main Theorem

The maximal sum rate of the symmetric two parallel two state channel over all power allocations $\boldsymbol{\alpha}' = [\alpha, \alpha_{AA}, \alpha_{cr}, \alpha_{BB}]^T \in D'$ is

$$\begin{array}{ll} R_{\text{avg}}^{\text{opt}} &=& 2(P_A+P_B)^2 \log(1+\nu_{\vartheta} P) \\ && + \max_{0 \leq \alpha_{AA} \leq 1} \left\{ R_0(1-\alpha_{AA}) + R_1((1-\alpha_{AA}) \cdot (1-\alpha^{\text{opt}}(\alpha_{AA}))) \right\} \end{array}$$

where

$$\alpha^{\text{opt}}(\alpha_{AA}) = \max\left\{0, \min\left\{1, 1 - \frac{P_B^2\nu_b - [(P_A + P_B)^2 - P_A^2]\nu_a}{2P_A \cdot P_B \cdot \nu_a \nu_b P(1 - \alpha_{AA})}\right\}\right\}.$$

$$\begin{aligned} R_0(\alpha_0) &= [(P_A + P_B)^2 - P_A^2] \log(1 + \nu_b \alpha_0 P) - [(P_A + P_B)^2 + P_A^2] \log(1 + \nu_a \alpha_0 P) \\ R_1(\alpha_1) &= P_B^2 \log(1 + \nu_b \alpha_1 P) - [(P_A + P_B)^2 - P_A^2] \log(1 + \nu_a \alpha_1 P). \end{aligned}$$

Outline	Channel Model	Background	Main Contribution	Numerical Results	SISO Model	Conclusion
			0000000			

Main Contribution: Corollaries

Corollary I

```
\label{eq:alphabeta} \begin{array}{l} \alpha_{BB}^{\rm opt} = 0. \\ \mbox{True for any set of parameters } \nu_a, \nu_b, P_A, P_B, \mbox{ even if } P_B \rightarrow 1 \mbox{ and } \\ \nu_b \gg \nu_a. \end{array}
```

Corollary II

Under the optimal power allocation, $\alpha^{\text{opt}}(\alpha_{AA}) = 1 - \alpha_1^{\text{opt}}(\alpha_{AA})/(1 - \alpha_{AA}).$

16/26

・ロト ・ 一 ト ・ 日 ト ・ 日 ト

Outline	Channel Model	Background	Main Contribution	Numerical Results	SISO Model	Conclusion
				00000		

Defining Sub-Optimal Schemes for Comparison

Independent Broadcasting

Disjointly encoding different messages into each single channel using the broadcast approach.

Privately Broadcasting

Allocating no power to the common stream of the crossed states (w_0). Special case by setting $\alpha = 0$.

Only Common Broadcasting

Allocating no power to the private streams of the crossed states (w_{AB} and w_{BA}). Special case by setting $\alpha = 1$.

イロト イポト イヨト イヨト

Outline 0	Channel Model	Background 00	Main Contribution	Numerical Results 0●000	SISO Model 00	Conclusion

Numerical Results 1/4

Numerical Results 2/4

Outline 0	Channel Model	Background	Main Contribution	Numerical Results 000●0	SISO Model 00	Conclusion
N I						

Numerical Results 3/4

Numerical Results 4/4

This model fits also the SISO block fading channel encoding jointly two consecutive blocks.

This channel and coding for the two state channel was introduced by [Whiting,2006].

< ∃⇒

 Outline
 Channel Model
 Background
 Main Contribution
 Numerical Results
 SISO Model
 Conclusion

 0
 0000
 00
 0000000
 000000
 0000000
 00000000

SISO Block Fading Channel 2/2

A comment on [Whiting,2006]

- It is a special case When $\alpha = 1$.
- Optimal α is not 1, analytically proven in this work.
- They consider α_{BB} = 0 without justification. In this work it has been analytically proven to be optimal.

Outline 0	Channel Model	Background 00	Main Contribution	Numerical Results 00000	SISO Model 00	Conclusion ●○○
Conc	lusion					

- Applied broadcast approach on the two state parallel channel.
- Used El-Gamal channel for the common and private messages for the crossed states.
- Optimization order reduced to single variable.
- This scheme is superior over the disjointly encoders.
- Applicable over the SISO fading as well.

伺下 イヨト イヨト

Outline 0	Channel Model 0000	Background 00	Main Contribution	Numerical Results 00000	SISO Model	Conclusion

Thank You!

25/26

< ∃⇒

Outline 0	Channel Model	Background 00	Main Contribution	Numerical Results 00000	SISO Model 00	Conclusion 00●
References						

- [Shamai,1997] S. Shamai (Shitz), A Broadcast Strategy for the Gaussian Slowly Fading Channel, IEEE Int. Symp. Inform. Theory (ISIT97), p. 150, Ulm, Germany, June 29-July 1, 1997.
- [ElGamal,1980] A. El Gamal, "Capacity of the product and sum of two unmatchedbroadcast channels," Prob. Pere. Inf., vol. 16, no. 1, pp. 1–16, Jan.-March 1980 (English Translation).
- [Shamai,2003] S. Shamai (Shitz) and A. Steiner, "A broadcast approach for a single user slowly fading MIMO channel," IEEE Trans. on Inf. The., vol. 49,no. 10, pp. 2617–2635, Oct. 2003.
- [Whiting,2006] . A. Whiting and E. M. Yeh, "Broadcasting over uncertain channelswith decoding delay constraints," IEEE Trans. Info. The., vol. 52, no. 3,pp. 904–921, March 2006.
- [Verdu,2010] S. Verdu and S. Shamai, "Variable-rate channel capacity," IEEE Trans.on Inf. The., vol. 56, no. 6, pp. 2651–2667, June 2010.
- [Kazemi,2018] S. Kazemi and A. Tajer, "Multiaccess communication via a broadcastapproach adapted to the multiuser channel," IEEE Trans. on. Comm.,vol. 66, no. 8, pp. 3341–3353, Aug 2018