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Information Bottleneck

Efficiency of a given representation U = f(Y ) measured by the pair

Rate (or Complexity): I(U ;Y ) and Information (or Relevance): I(U ;X)

Information I(X;U) can be achieved by OBLIVIOUS coding Y while with
the logarithmic distortion with respect to X

Single letter-wise, U is not necessarily a deterministic function of Y

The non-oblivious bottleneck problem is immediate as the min(I(X;Y ), R)
is achievable by having the relay decoding the message transmitted by X

The bottleneck problem connects to many timely aspects, such as ’deep
learning’ [Tishby-Zaslavsky, ITW’15].
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Digression: Learning via the Information Bottleneck
Method

Preserving all the information about X that is contained in Y , i.e., I(X;Y ),
requires high complexity (in terms of minimum description coding length).

Other measures of complexity may be (Vapnik-Chervonenkis) VC-dimension,
covering numbers, ..

Efficiency of a given representation U = f(Y) measured by the pair

Complexity: I(U ;Y ) and Relevance: I(U ;X)

Example:

max
p(u|x)

I(U ;X) s.t. I(U ;Y ) ≤ R, for 0 ≤ R ≤ H(Y )

min
p(u|x)

I(U ;Y ) s.t. I(U ;X) ≥ ∆, for 0 ≤ ∆ ≤ I(X;Y )
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Basically, a Remote Source Coding Problem !

Reconstruction at decoder is under log-loss measure,

R(∆) = min
p(u|y)

I(U ;Y )

where the minimization is over all conditional pmfs p(u|y) such that

E[`log(X,U)] ≤ H(X)−H(X|U) = H(X)−∆

- R. L. Dobrushin and B. S. Tsybakov, “Information transmission with additional noise”, IRE Tran. Info.
Theory, Vol. IT-8, pp. 293-304, 1962.

- H. Witsenhausen, A. Wyner, “A conditional entropy bound for a pair of discrete random variables”,

IEEE Trans. on Info. Theory, Vol. 21, pp. 493-501, 1975.

Solution also coined as the Information Bottleneck Method [Tishby’99]

LIB(β, PX,Y ) = min
p(u|y)

I(Y ;U)− βI(X;U)
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Other Connections

The Efficiency of Investment Information

- X - Stock Market Data.

Y - Correlated Information about X.

∆(R) the maximum increase in growth rate when Y is described to the
investor at rate R (a logarithmic distortion that relates to the
Wyner-Ahlswede-Korner Problem).

- Solution of the bottleneck for: (X,Y ) are binary and (X,Y ) Gaussian
(horse race examples).

- E. Erkip and T. M. Cover, “The Efficiency of Investment Information”,
IEEE Trans. on Info. Theory, Vol. 44, May 1998.
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Other Connections (Cont.)

Common Reconstruction. Because X −
− Y −
− U , we have

I(U ;X) = I(U ;Y )− I(U ;Y |X)

≤ R− I(U ;Y |X)

- Y. Steinberg, “Coding and common reconstruction”, IEEE Trans. on Info.
Theory, vol. 55, no. 11, pp. 4995–5010, Nov. 2009 (X – side information is
not used for the ‘source’ Y common reconstruction).

∗ Heegard-Berger Problem with Common Reconstruction: Y -source, to be
commonly reconstructed (with logarithmic distortion), with and without side
information (X), as to maximize I(U ;X).

- M. Benammar, A. Zaidi, “Rate-Distortion of a Heegard-Berger Problem with
Common Reconstruction Constraint,” IZS, March 2–4, 2016.
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Other Connections (Cont.)

Information Combining

I(Y ;U,X) = I(U ;Y ) + I(X;Y )− I(U ;X) (since X −
− Y −
− U)

Since I(X;Y ) is given and I(Y ;U) = R, maximizing I(U ;X) is equivalent
to minimizing I(Y ;U,X).

- I. Sutskover, S. Shamai and J. Ziv, “Extremes of Information Combining”,
IEEE Trans. Inform. Theory, vol. 51, no. 4, pp. 1313–1325, April 2005.

- I. Land and J. Huber, ”Information combining,” Foundations and trends in
Commun. and Inform. Theory, vol. 3, pp. 227–330, Nov. 2006.
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Other Connections (Cont.)

Elegant Proofs of Classical Bottleneck Results

- X,Y binary symmetric connected through a Binary Symmetric Channel
(error probability e): U -Y , also a BSC, I(U ;X) = {1− h(e∗v)} where
e∗v = e(1− v) + v(1− e), R = 1− h(v).

Directly extends to X − Y symmetric, where Y is symmetric binary (one bit
output quantization).

- X standard Gaussian, and Y =
√

snrX +N (N standard Gaussian).
Elegant proof via I-MMSE [Guo-Shamai-Verdu, FnT’13].

I(U ;X) =
1

2
log(1 + snr)− 1

2
log
(

1 + snr exp(−2R)
)
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Other Connections (Cont.)

Proof:
min I(Y ;X,U) subject to: I(Y ;U) = R .

Let

X̃ =
√

1 + snrX =
√
βY +M ,

M ∼ N(0, 1)
M ⊥⊥ Y

β = snr/(1 + snr)

I(Y ;X,U) = I(Y ; X̃, U) = I(Y ;U) + I(Y ; X̃|U)

I(Y ;X|U) = I(Y ; X̃|U) =
1

2

∫ β

0

mmse (Y : γ, U) dγ

mmse (Y : γ, U) = E
(
Y − E(Y |√γ Y +M,U)

)2
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Other Connections (Cont.)

I-MMSE + Single Crossing Property
[Guo-Shamai-Verdú, FnT’13] ⇒

1

2

∫ β

0

mmse (Y : γ, U) dγ =
1

2

∫ β

0

ρσ2
Y |U

1 + γρσ2
Y |U

dγ

=
1

2
log
(

1 + βρσ2
Y |U

)

0 ≤ ρ ≤ 1 , σ2
Y |U = E

(
Y − E(Y |U)

)2
= mmse (Y : 0, U)
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Other Connections (Cont.)

R = I(Y ;U) = h(Y )− h(Y |U)

h(Y ) =
1

2
log
(

2π exp (snr + 1)
)

h(Y |U) =
1

2

∫ ∞
0

(
mmse (Y : γ, U)− 1

2πρ+ γ

)
dγ

≤
single crossing point

1

2

∫ ∞
0

(
ρσ2

Y |U

1 + γρσ2
Y |U
− 1

2πe+ γ

)
dγ
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Other Connections (Cont.)

⇒ ρσ2
Y |U ≥ exp(−2R) (1 + snr)

⇒
information
combining

I(Y ;X,U) = I(Y ; X̃, U) ≥ R+
1

2
log
(

1 + snr exp(−2R)
)

⇒
bottleneck I(X;U) ≤ 1

2
log(1 + snr)− 1

2
log
(

1 + snr exp(−2R)
)

Directly extends to the Gaussian vector case, where the vector version of the
single crossing point [Bustin-Payaro-Palomar-Shamai, IT13] is used.
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Other Connections (Cont.)

Wyner-Ahlswede-Körner Problem

If X and Y are encoded at rates RX and RY , respectively. For given
RY = R, the minimum rate RX that is needed to recover X losslessly is

R?X(R) = min
p(u|y) : I(U ;Y )≤ R

H(X|U)

So, we get
max

p(u|y) : I(U ;Y )≤R
I(U ;X) = H(X)−R?X(R)

- R. F. Ahlswede and J. Korner, “Source coding with side information and a converse for
degraded broadcast channels”, IEEE Trans. on Info. Theory, Vol. 21, pp. 629-637, 1975.

- A. D. Wyner, “On source coding with side information at the decoder”,

IEEE Trans. on Info. Theory, Vol. 21, pp. 294-300, 1975.
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Vector Gaussian Information Bottleneck

(X,Y) jointly Gaussian, X ∈ RN and Y ∈ RM

Optimal encoding PU|Y is a noisy linear projection to a subspace whose dimensionality is
determined by the bottleneck Lagrangian multiplier β
[Chechik-Globerson-Tushby-Weiss, ’05]

U = AY + Z, Z ∼ N(0, I)

where

A =


[0T ; . . . ; 0T ], if 0 ≤ β ≤ βc

1

[α1vT
1 ; 0T ; . . . ; 0T ], if βc

1 ≤ β ≤ βc
2

[α1vT
1 ;α2vT

2 ; 0T ; . . . ; 0T ], if βc
2 ≤ β ≤ βc

3

...

and {vT
1 , . . . ,v

T
N} are the left eigenvectors of Σy|xΣ−1

y , sorted by their ascending

eigenvalues {λ1, . . . , λN}; βc
i = 1/(1− λi) are critical β values; ri = vT

i Σyvi and

αi =

√
β(1− λi)− 1

λiri

Rate-Information Trade-off Gaussian Vector Channel [Winkelbauer-Matz, ISIT’14].
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CEO Source Coding Problem under Log-Loss

CEO source coding problem under log-loss distortion:

dlog(x, x̂) := log

(
1

x̂(x)

)
where x̂ ∈ P(X) is a probability distribution on X.

Characterization of rate-distortion region in [Courtade-Weissman’14]

Key step: log-loss admits a lower bound in the form of conditional entropy of
the source conditioned on the compression indices:

nD ≥ E[dlog(Xn; X̂n)] ≥ H(Xn|JK) = H(Xn)− I(Xn; JK)
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CEO Source Coding Problem under Log-Loss (Cont.)

Converse of Theorem 1 for Oblivious CRAN leverages on this relation applied
to multiple channel inputs, which can be designed.

Multiple description CEO problem-logloss distortion
[Pichler-Piantanida-Matz, ISIT’17].

Vector Gaussian CEO Problem Under Logarithmic Loss and Applications
[Ugur-Aguerri-Zaidi, arxiv:1811.03933]: Accounts also for Gaussian side
information about the source at the decoder.

- Full characterization
(not the case for MMSE Distortion, [Ekrem-Ulukos, IT0214]).

Implications [Ugur-Aguerri-Zaidi, arxiv:1811.03933] Solutions of:

- Vector Gaussian distributed hypothesis testing against conditional
independence [Rahman-Wagner, IT2012].

- A quadratic vector Gaussian CEO problem with determinant constraint.

- Vector Gaussian distributed Information Bottleneck Problem.
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Distributed Information Bottleneck

Information Bottleneck introduced by [Tishby’99] and [Witsenhausen’80]

“Indirect Rate Distortion Problems”, IT–26, no. 5, pp. 518–521, Sept. 1980.

It is a CEO source-coding problem under log-loss!

Theorem (Distributed Information Bottleneck [ Estella-Zaidi, IZS’18 ] )

The D-IB region is the set of all tuples (∆, R1, . . . , RK) which satisfy

∆ ≤
∑
k∈S

[Rk−I(Yk;Uk|X,Q)] + I(X;USc |Q), for all S ⊆ K

for some joint pmf p(q)p(x)
∏K
k=1 p(yk|x)

∏K
k=1 p(uk|yk, q).
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Vector Gaussian Distributed Information Bottleneck

(Y1, · · · ,YK ,X) jointly Gaussian, Yk ∈ RN and X ∈ RM ,

Yk = HkX + Nk, Nk ∼ N(0,Σnk
)

Optimal encoding P ∗Uk|Yk
is Gaussian and Q = ∅ [Estella-Zaidi’17]

Theorem ([Estella-Zaidi, IZS’18], [Ugur-Aguerri-Zaidi, arxiv:1811.03933] )

If (X,Y1, . . . ,YK) are jointly Gaussian, the D-IB region is given by the set of all
tuples (∆, R1, . . . , RL) satisfying that for all S ⊆ K

∆ ≤
∑
k∈S

[Rk + log |I−Bk|] + log

∣∣∣∣∣∑
k∈Sc

H̄H
k BkH̄k + I

∣∣∣∣∣
for some 0 � Bk � I, where H̄k = Σ

−1/2
nk HkΣ

1/2
x , and achievable with

p∗(uk|yk, q) = CN(yk,Σ
1/2
nk

(Bk − I)Σ1/2
nk

)

Reminiscent of the sum-capacity in Gaussian Oblivious CRAN with Constant
Gaussian Input constraint.
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Example
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Optimal information (relevance):

∆∗(R, snr) =
1

2
log

(
1 + 2 snr exp(−4R)

(
exp(4R) + snr−

√
snr2 + (1 + 2 snr) exp(4R)

))
Collaborative encoding upper bound: (Y1, Y2) encoded at rate 2R

∆ub(R, sr) =
1

2
log (1 + 2 snr)−

1

2
log
(

1 + 2 snr exp(−4R)
)

Lower bound: Y1 and Y2 independently encoded

∆lb(R, snr) =
1

2
log
(

1 + 2 snr− snr exp(−2R)
)
−

1

2
log
(

1 + snr exp(−2R)
)
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The Cost of Oblivious Processing: an Example
Cut-Set Bound∑

(R, snr) = min

{
2R,

1

2
log (1 + 2snr) , R+

1

2
log (1 + snr)

}
Improved Upper Bound: geometric analysis of typical sets
[Wu-Ozgur-Peleg-Shamai, ITW’19 ]

There exists: θ ∈ E[arcsin(2−R), π/2] such that:∑
(R, snr) ≤ 1

2
log (1 + snr) +R+ log sin θ ,∑

(R, snr) ≤ 1

2
log (1 + snr) + min, h(ω; θ)

ω∈
[π

2
− θ, π

2

]
∑

(R, snr) ≤ 2R+ 2 log sin θ

where

h(ω; θ) =
1

2
log

(
[2snr + sin2 ω − 2snr cosω] sin2 θ

(snr + 1)(sin2 θ − cos2 θ)

)
.
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The Cost of Oblivious Processing: an Example
Cut-Set Bound (Cont).

Achievable Scheme

∗ Optimization (optimized time sharing)

→ Fully decode & forward (both relays decode) & rate splitting over the
fronthaul links.

→ Optimal obvlivious processing (disributed source coding under logarithmic
loss).

→ Capacity achieving for: 2R ≤ 1

2
log (1 + snr).
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Oblivious Relay Processing-CRAN System

Resource-sharing random variable Qn available at all terminals [Simeone et al’11].

Qn way easier to share, (e.g., on/off activity ).

Memoryless Channel: PY1,...,YK |X1,...,X1

User l ∈ {1, . . . , L}: φnl : [1, |Xl|n2nRl ]× [1, 2nRl ]× Qn → Xn
l

Relay k ∈ {1, . . . ,K}: gnk : Yk
n × Qn → [1, 2nCk ]

Decoder:

ψn : [1, |X1|n2nR1
]× · · · × [1, 2nCK ]× Qn → [1, 2nR1 ]× . . .× [1, 2nRL ]
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Capacity Region of a Class of CRAN Channels

Theorem (Aguerri-Zaidi-Caire-Shamai ’IT19)

For the class of discrete memoryless channels satisfying

Yk −
−XL −
− YK\k

with oblivious relay processing and enabled resource-sharing, a rate tuple
(R1, . . . , RL) is achievable if and only if for all T ⊆ L and for all S ⊆ K,∑

t∈T

Rt ≤
∑
s∈S

[Cs − I(Ys;Us|XL, Q)] + I(XT;USc |XTc , Q),

for some joint measure of the form

PQ

L∏
l=1

PXl|Q

K∏
k=1

PYk|XL

K∏
k=1

PUk|Yk,Q,

with the cardinality of Q bounded as |Q| ≤ K + 2.

⇒ Equivalent to Noisy Network Coding [Lim-Kim-El Gamal-Chung, IT ’11].
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Numerical Example

Three-cell SISO circular Wyner model
• Three-cell SISO circular Wyner model 
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CU 
- Each cell contains a single-antenna and 

a single-antenna RU. 

- Inter-cell interference takes place only 

between adjacent cells. 

- The intra-cell and inter-cell channel gains 

are given by 1 and     , respectively. 

- All RUs have a fronthaul capacity of     . 
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C

- Each cell contains a single-antenna and a single-antenna RU.
- Inter-cell interference takes place only between adjacent cells.
- The intra-cell and inter-cell channel gains are given by 1 and α, respectively.
- All RUs have a fronthaul capacity of C.
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Numerical Example (Cont.)

Compare the following schemes [Park-Simeone-Sahin-Shamai ’14]
- Single-cell processing

Each RU decodes the signal of the in-cell MS by treating all other MSs’ signals
as noise.

Point-to-point fronthaul compression

Each RU compresses the received baseband signal and the quantized signals are
decompressed in parallel at the control unit.

Distributed fronthaul compression [dCoso-Simoens ’09]

Each RU performs Wyner-Ziv conding on the received baseband signal and the
quantized signals are successively recovered at the control unit.
Joint Decompression and Decoding (noisy network coding
[Sanderovich-Shamai-Steinberg-Kramer’08])

Compute-and-forward [Hong-Caire ’11]

Each RU performs structured coding.

Oblivious processing upper bound

RUs cooperate and optimal compression is done over 3C fronthaul link.

Cutset upper bound
[Simeone-Levy-Sanderovich-Somekh-Zaidel-Poor-Shamai ’12]
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Numerical Example (Cont.)

α = 1/
√

2 and C = 3 bit/s/Hz

the received signals at RUs 

becomes more pronounced. 

- Compute-and-Forward

- At low SNR, its performance

coincides with single-cell 

processing. 

- RUs tend to decode trivial

combinations. 

- At high SNR, the fronthaul

capacity is the main performance 

bottleneck, so CoF shows the 

best performance. 

16 of 71 pages 

- The performance advantage of

distributed compression over

point-to-point compression increases

as SNR grows larger.

- At high SNR, the correlation of

the received signals at RUs

becomes more pronounced.

- Compute-and-Forward

- At low SNR, its performance
coincides with single-cell
processing.

- RUs tend to decode trivial
combinations.

- At high SNR, the fronthaul

capacity is the main

performance bottleneck, so CoF

shows the best performance.
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Numerical Example (Cont.)

α = 1/
√

2 and C = 3 bit/s/Hz

the received signals at RUs 

becomes more pronounced. 

- Compute-and-Forward

- At low SNR, its performance

coincides with single-cell 

processing. 

- RUs tend to decode trivial

combinations. 

- At high SNR, the fronthaul

capacity is the main performance 

bottleneck, so CoF shows the 
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- Distributed compression

- Joint decompression and

decoding does not provide much

gain compared to separate

decompression and decoding.

- Optimality of joint

decompression and decoding in

symmetric case

[Zaidi-Aguerri-Caire-Shamai’19].
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Numerical Example (Cont.)

α = 1/
√

2 and C = 5 log10 P bit/s/Hz

Numerical Example 
105lo=1/ 2  and  bit/ / zg s HC P 

- When      increases as log(snr), CoF 

is not the best for high SNR. 

- i.e., if      does not limit the  

performance, the oblivious 

compression technique will be 

advantageous than CoF. 
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C

C

- When C increases as log (snr),
CoF is not the best for high SNR.

- i.e., if C does not limit the
performance, the oblivious
compression technique will be
advantageous than CoF.
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The Distributed Information Bottleneck for Learning

For simplicity, we look at the D-IB under sum-rate [Aguerri-Zaidi’18]

P ∗Uk|Yk
= arg min

PUk|Yk

I(X;UK) + β

K∑
k=1

[I(Yk;Uk)− I(X;Uk)]

The optimal encoders-decoder of the D-IB under sum-rate constraint satisfy
the following self consistent equations,

p(uk|yk) =
p(uk)

Z(β, uk)
exp (−ψs(uk, yk)) ,

p(x|uk) =
∑

yk∈Yk

p(yk|uk)p(x|yk)

p(x|u1, . . . , uK) =
∑

yK∈YK

p(yK)p(uK|yK)p(x|yK)/p(uK)

where

ψs(uk, yk) :=DKL(PX|yk ||QX|uk
) +

1

s
EUK\k|yk [DKL(PX|UK\k,yk

||QX|UK\k,uk
))].

Alternating iterations of these equations converge to a a solution for any
initial p(uk|xk), similarly to a Blahut-Arimoto algorithm.
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D-IB for Vector Gaussian Sources: Iterative Optimization

(Y1, · · · ,YK ,X) jointly Gaussian, Yk ∈ RN and X ∈ RM ,

Yk = HkX + Nk, Nk ∼ N(0, I)

Optimal encoding P ∗Uk|Yk
is Gaussian [Aguerri-Zaidi’17] and given by

Uk = AkYk + Zk, Zk ∼ N(0,Σz,k)

For this class of distributions, the updates in the Blahut-Arimoto type
algorithm simplify to:

Σ
zt+1
k

=

((
1 +

1

β

)
Σ−1

ut
k
|x −

1

s
Σ−1

ut
k
|ut

K\k

)−1

,

At+1
k =Σ−1

zt+1
k

((
1 +

1

β

)
Σ−1

ut
k
|xAt

k(I−Σyk|xΣ−1
yk

)

− 1

β
Σ−1

ut
k
|ut

K\k
At

k(I−Σyk|ut
K\k

Σ−1
yk

)

)
.
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Some Perspectives
Optimal input distributions for the input power constrained Gaussian bottleneck.

Discrete signaling is already known to sometimes outperform Gaussian
signaling for single-user Gaussian CRAN
[Sanderovich-Shamai-Steinberg-Kramer ’08].

It is conjectured that the optimal input distribution is discrete.

Improved upper bounds (over cut-set) for non-oblivious relay based schemes,
to better evaluate the cost of oblivious processing (á la: Vu-Barnes-Ozgur,
arXiv:1701.02043 (IT’19) Gaussian primitive relay,
[Wu-Ozgur-Peleg-Shamai, ITW’19]).

Up/Down link CRAN duality aspects [Patil-Yu, IT’19], [Ganguly-Kim, ISIT’17].

Connections between classical bottleneck problems and Common Information
[Wyner’75] : For given (X,U) find Y : X − Y − U minimizing I(Y ;X,U), and
Gacs-Korner-Witsenhausen Common Information [Gacs-Korner ’73].

Lossy common information [Viswanatha-Akyol-Rose, IT2014].

Network source-coding [Gray-Wyner’74], viewed as a general common
information characterization [El Gamal-Kim, Cambridge’15].

Gray-Wyner models with side information [Bennamar-Zaidi, Entropy’17].

Information Decomposition, Common Information and Bottleneck
[Banerjee, arXiv: 1503.00709].
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Some Perspectives cont.’

Robust Information Bottleneck

Robustness is an important feature in bottleneck applications to deep learning.

Measuring robustness in terms of Fisher Information
[Pensia-Jog-Loh, arXiv: 1910.068993].
(Y,U) joint random variables Φ(U |Y )-statistical Fisher information

= EY,U

∣∣∣∣ ∂∂Y logP (U |Y )

∣∣∣∣2.

Robust bottleneck X → Y → U (given P (X,Y ))

max
P (U|Y )

{
I(X;U)− βI(Y ;U)− γΦ(U |Y )

}
direct extensions to vector (X,Y, U) spaces.

(X,Y ) jointly Gaussians ⇒ Y → U Gaussian.

General (X,Y ) – stochastic gradient based algorithms.

MMSE based features: minimizing MMSE (X|U) replaces maximizing I(X;U).
⇒ Connections: I-MMSE, De Bruijnis indentity, Cramer-Rao Inequality,
Fano Inequality.
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Some Perspectives cont.’

Bounds on general information bottleneck problems [Painsky-Tishby,
arXiv:1711.02421], [Eswaran-Gastpar, arXiv:1805.06515].

A variety of related C-RAN & Distributed bottleneck problems:

Impact of block length n [R may not scale linearly with n ⇒ Courtade
conjecture (R = 1)] relates to [Courtade-Kumar, IT’14],
[Yang-Wesel, arXiv:1807.11289, July’19], [Ordentlich-Shayevitz-Weinstein,
ISIT’16].
The R = n− 1 relates to [Huleihel-Ordentlich, arXiv:1701.03119v2, ISIT ’17].

Bandlimited time-continuous models [Homri-Peleg-Shamai, TCOM, Nov.’18],
[Katz-Peleg-Shamai, Nov. ’19].

Broadcast Approach (oblivious and general) for the Information Bottleneck
Channel [Steiner-Shamai ’19].

- Channel State Information (CSI) availability and cost (fronthaul usage).

Multi-layer Information Bottleneck Problem [Yang-Piantanida-Gündüz,
arXiv:1711.05102].

Gaussian version ⇒ half space indicator [Kindler-O’Donnell-Witmer,
arXiv July 2016].
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Some Pespectives cont.’

Distributed Information-Theoretic Clustering (Pichler-Piantanida-Matz,
arXiv:1602.04605, Dictator Functions, arXiv:1604.02109).

- Two sided Information Bottleneck: For: V −X − Y − U , find:

max I(U ;V ) subjected to: I(V ;X) ≤ R1, I(U ;Y ) ≤ R2 .

Entropy constraint bottleneck:

X − Y − U
max I(X;U) under the constraint H(U) ≤ R practical applications:
LZ distortionless compression.

⇒ U = f(Y ) a deterministic function [Homri-Peleg-Shamai, TCOM, Nov.’18]

– With resource sharing Q⇒ max I(X;U |Q) subjected to: H(U |Q) ≤ R.

The deterministic bottleneck: advantages in complexity as compared to a
classical bottleneck: [Strouse-Schwab, Neural Comp.’17].
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Privacy Funnel, dual of bottleneck: X − Y − U , minimize: I(X;U), under
the constraint: I(Y ;U) = R. [Calmon-Makhdoumi-Medard-Varia-Christiansen-Duffy IT2017].

Direct connection to Information combining, maximize:
I(Y ;U,X) = I(X;Y ) + I(U ;Y )− I(U ;X), under the constraint:
I(U ;Y ) = R.

Example: (X,Y ) binary symmetric connected via a BSC, X − Y .
The channel Y − U is an Erasure Channel.

Example (Ordentlich-Shamai): For the Gaussian model: Y =
√

(snr)X +N ,
where (X,N) are unit norm independent Gaussians: Take U to be a
deterministic function of Y , say describes the m last digits of a b long
(b→∞) binary description of Y , such that I(U ;Y ) = H(U) = R (m is R
dependent). Evidently I(U ;X)→ 0, as I(Y ;U,X)→ R+ I(X;Y ).

Helper problem [Bross-Lapidoth, ITW2019]:Y = X +N,X, N independent
finite differential entropy. Noise helper: I(N ;U) = R. Direct solution via
information combining (Ordentlich-Shamai): We have: Y −N − U , and
(example above): I(N ;Y,U) = I(N ;Y ) +R⇒ I(X;Y,U) = I(X;Y ) +R.
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“Distributed Compression, the Information Bottleneck and Cloud Radio Access Networks:

A Unified Information Theoretic View”

Abstract:

This talk focuses on connections between relatively recent notions and variants of the Information Bottleneck
and classical information theoretic frameworks such as: Remote Source-Coding; Information Combining; Com-
mon Reconstruction; The Wyner-Ahlswede-Korner Problem; The Efficiency of Investment Information; CEO
Source Coding under Log-Loss and others. We overview the upink Cloud Radio Access Networks (CRAN) with
oblivious processing, which is an attractive model for future wireless systems and highlight the basic connections
to distributed Gaussian information bottleneck framework. For this setting, the optimal trade-offs between rates
(i.e. complexity) and information (i.e. accuracy) in the discrete and vector Gaussian schemes is determined,
taking an information-estimation viewpoint. Further, the performance cost of the simple ’oblivious’ universal
processing in CRAN systems is exemplified via novel bounding techniques.
The concluding overview and outlook addresses in a unified way the dual problem of the privacy funnel and
recent observations on the additive noise channels with a helper. Further, connections to the finite block length
bottleneck features (related to the Courtade-Kumar conjecture) and entropy complexity measures (rather than
mutual-information) are shortly discussed. Some challenging problems are mentioned such as the characteri-
zation of the optimal power limited inputs (‘features’) maximizing the ‘accuracy’ for the Gaussian information
bottleneck, under ‘complexity’ constraints.

The talk is based mainly on joint work with A. Zaidi, I.E. Auguerri, G. Caire, O. Simeone and S-H. Park.
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