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• Base Stations (BSs), macro/pico,
operate as radio units (RUs) 
[Alcatel-Lucent][China][Rost et al ‘14][Agiwal et al ‘16].

• Baseband processing takes place in the “cloud”. 
– Baseband processing includes

encoding/decoding of
the messages of
Mobile Stations (MSs),
(i.e., User Equipment (UEs)).

• Fronthaul links carry 
complex (IQ) baseband 
signals.

• Network utilization of low
data traffic instances for
caching.

Cloud/Fog Radio Access Networks
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Cloud Radio Access Networks

Advantages:

•Low-cost deployment of BSs

•Effective interference mitigation via joint baseband 
processing

Key challenge: Effective transfer of the IQ signals on the 
fronthaul links [Andrews et al JSAC’14]
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Cloud Radio Access Networks
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• Common public radio interface (CPRI) standard based on 
analog-to-digital (ADC)/digital-to-analog converter (DAC) 
[CPRI][IDC]

… Need for fronthaul compression

• “Death by Starvation?: backhaul and 5G,” [Lundqvist, CTN-Sep. 2015]
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Basic Settings

• Assuming flat-fading channel, the received signal at RU    is given by

where

• The fronthaul capacity     is normalized to the bandwidth of the 
uplink channel.

– For any coding block of    symbols,       bits can be transmitted on the   
th fronthaul link.
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Point-to-Point Compression

• A standard way of modeling the compression at RU    is to adopt 
the Gaussian direct “test channel” [ElGamal-Kim ’11, Ch. 3]

where                         represents the quantization noise.

• If the fronthaul capacity      satisfies

it is possible to design a compression strategy that realizes the given 
quantization error covariance      .
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denotes a permutation of RUs’ indexes where                           .: R R N N {1, , }R RNN
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• Using Wyner-Ziv compression, a given quantization error matrix
is attainable if the fronthaul capacity        satisfies

• After the quantized IQ signals                 are recovered, the CU 
then performs joint decoding of the signal      sent by all MSs. 

– The uplink sum-rate is given by

Distributed Fronthaul Compression
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• Joint decompression and decoding 
[Sanderovich et al ‘09][Lim et al ‘11][Yassaee-Aref ‘11]

– Potentially larger rates can be achieved with joint decompression 
and decoding (JDD) at the central unit [Sanderovich et al ‘08] 
[Sanderovich et al ‘09].

• Now often seen as an instance of noisy network coding     
[Lim et al ‘11], insights and connections, see [Ganguly et al ‘19].

• Directly related to quantize-map-forward (QMF) [Avestimehr-
Diggavi-Tian-Tse, FnT'15, and references therein].

• Optimal oblivious processing [Aguerri et al ‘19].

Distributed Fronthaul Compression
[Sanderovich et al ’09] [dCoso-Simoens ’09] [Zhou-Yu ’11] 

8 of 71 pages



Distributed Fronthaul Compression
[Sanderovich et al ’09] [dCoso-Simoens ’09] [Zhou-Yu ’11] 
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• Sum-rate maximization problem with fronthaul capacity constraints is 
generally challenging.

• In [Park et al TVT’13], a block-coordinate optimization approach was 
proposed for successive WZ decompression case.

– One optimizes the covariance matrices                      following the 
same order    employed for decompression.

– At the   th step, for fixed (already optimized) covariances , 
the covariance         is obtained by solving

Distributed Fronthaul Compression
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• Optimal WZ compressor [dCoso-Simoens ’09]

– Unitary transform          decorrelates the received signal streams when 
conditioned on the side information signals                             .

– Stream-wise multiplication by                        represents the 
compression rate allocation among the streams.

– Statistical independence among quantization noises                  
implies that the signals are compressed separately.
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• Compute-and-forward (CoF) [Nazer et al ‘09]

– The same codebook is used both for channel encoding at all MSs and 
for quantization at RUs.

– Each RU decodes an appropriate (modulo-)sum, with integer weights, of 
the codewords transmitted by MSs.

• And then sends a bit stream on the fronthaul link that identifies the decoded 
codeword within the lattice code.

– Upon receiving a sufficient number of linear combinations, the CU can 
invert the resulting linear system and recover the transmitted codewords.

– Integer forcing strategy (no CSI @ transmitters) [Bakoury-Nazer ‘20].

– For single-antenna uplink system with            and                     , 
achievable rate per MS is given by
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• Three-cell SISO circular Wyner model

 



Numerical Example



CU
- Each cell contains a single-antenna and

a single-antenna RU.

- Inter-cell interference takes place only

between adjacent cells.

- The intra-cell and inter-cell channel gains

are given by 1 and     , respectively.

- All RUs have a fronthaul capacity of     .


C
C

C
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• Compare the following schemes
– Single-cell processing

• Each RU decodes the signal of the in-cell MS by treating all other MSs’ 
signals as noise.

– Point-to-point fronthaul compression

• Each RU compresses the received baseband signal and the quantized 
signals are decompressed in parallel at the control unit.

– Distributed fronthaul compression [dCoso-Simoens ‘09]

• Each RU performs Wyner-Ziv coding on the received baseband signal 
and the quantized signals are successively recovered at the control unit.

• Joint Decompression and Decoding (noisy network coding [Sanderovich et al ‘08])

– Compute-and-forward [Hong-Caire ‘11]

• Each RU performs structured coding.

– Oblivious processing upper bound
• RUs cooperate and optimal compression is done over      fronthaul link.

– Cutset upper bound [Simeone et al ‘12]

Numerical Example
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Numerical Example
=1/ 2 and  b H3 it/s/ zC 

- The performance advantage of

distributed compression over

point-to-point compression 

increases as SNR grows larger.

- At high SNR, the correlation of

the received signals at RUs

becomes more pronounced.

- Compute-and-Forward

- At low SNR, its performance 

coincides with single-cell

processing.

- RUs tend to decode trivial

combinations.

- At high SNR, the fronthaul

capacity is the main performance

bottleneck, so CoF shows the

best performance.
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Numerical Example
=1/ 2 and  b H3 it/s/ zC 

- Distributed compression

- Joint decompression and

decoding does not provide much

gain compared to separate

decompression and decoding.

- Optimality of joint decompression

and decoding in symmetric

case [Aguerri et al ‘19].
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Numerical Example
105lo=1/ 2 and  bit/ / zg s HC P 

- When      increases as log(snr), CoF

is not the best for high SNR.

- i.e., if      does not limit the 

performance, the oblivious

compression technique will be

advantageous than CoF.
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• In multihop fronthaul networks,
each RU may have multiple incoming
and outgoing fronthaul links.

• For example, RU 6 in the figure
has two incoming and single 
outgoing links.

• Two different operations,
routing and in-network
processing, were compared
in [Park et al TVT’15].

Cloud Radio Access Networks
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Directed Acyclic Graph

• Multihop fronthaul network modeled as a 
directed acyclic graph (DAG) [Koetter-Medard ‘03]
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Compression
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in next layers

Routing

• The bits received on the incoming links are simply forwarded on the
outgoing links without any addition processing.

• This approach requires the optimization of standard flow variables that 
define the allocation of fronthaul capacity to different bit streams.

– In [Park et al TVT‘15], the problem was addressed via the Majorization
Minimization (MM) algorithm [Beck-Teboulle ‘11].
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In-Network Processing

• In a dense deployment of RUs, an RU may be connected to a large number 
of nearby RUs, all of which receive correlated baseband signals.

• It is possible to combine the correlated baseband signals at the RU in order 
to reduce redundancy.

[Park et al TVT‘15]
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In-Network Processing
[Park et al TVT‘15]

• In in-network processing, the RU must first decompress the received 
bit streams.

• The decompressed baseband signals are linearly processed, along 
with the IQ signal received locally by the RU.

• The in-network processed signal must be recompressed before 
being sent on the outgoing fronthaul links.

– The effect of the resulting quantization noise must be counterbalanced 
by the advantage of in-network processing.

• The optimization of both routing and in-network processing 
was addressed in [Park et al TVT’15].
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4 MSs,  average received per-antenna SNR of 20 dB
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Numerical Results

- The performance gain of in-network

processing over routing becomes

more pronounced as the number

of RUs in the first layer increases.

- As the density of the RUs’ 

deployment increases, it is desirable

for each RU in layer 2 perform

in-network processing.

- In-network processing is more

advantageous when the fronthaul

links have larger capacity, as the

distortion introduced by the

recompression step becomes 

smaller.

N
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Variable Backhaul Connectivity

• Wireless uplink channel is subject to fading.

• Fronthaul links’ capacity are subject to random fluctuations, i.e.,

• Only receiver-side CSI, i.e., 

– Fading channel gains are known only to BSs and cloud.

– Fronthaul connectivity is known only to cloud.

26 of 71 pages
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Variable Backhaul Connectivity

• To enable variable-rate transmission from users to cloud, an achievable 
scheme is proposed that levereages

– Broadcast coding approach (at users, as in, e.g., [Shamai-Steiner TIT’03]
[Verdu-Shamai TIT’10] )

– Layered distributed compression (at BSs, as in, e.g., [Ng et al TIT’12]
[Park et al TVT’14])

27 of 71 pages

[Karasik et al TWC‘13]

- For small    , there is no gain in

using multi-layer, i.e.,
- Compression noise dominates the

performance.

- As     increases, BC outperforms

the single-layer strategy.
- Due to its robust operation with respect

to the uncertainty over fading channels.

Two-layer

One-layer

C

C
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Multiple Description Coding

• In modern implementations of C-RAN (e.g., eCPRI [eCPRI]), the fronthaul 
transport network will often be packet-based and it will have a multi-hop
architecture.

– With general-purpose switches using network function virtualization (NFV) and 
Software-Defined Networking (SDN)

– It can leverage the wide deployment of Ethernet infrastructure.
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Multiple Description Coding

• Packet-based multi-hop networks are subject to congestion and packet 
losses.

• Traditional path diveristy can successfully reduce the packet loss probability.

– However, the performance remains the same regardless of the number of timely 
reception of packets.

• To better use the multiple routes in packet-based fronthaul networks, 
variable-rate transmission is proposed in [Park et al Entropy ‘19] based on

– Multiple Description Coding (MDC) directly on the level of baseband signals 
[Alastic et al TIT ‘01]

– Broadcast Coding (BC) at users [Shamai-Steiner TIT’03][Verdu-Shamai TIT’10]
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Multiple Description Coding
31 of 71 pages

[Park et al Entropy‘19]

- The MDC scheme shows a 

larger gain over the path diversty

(PD) scheme at high SNR.
- As the SNR increases, the overall

performance becomes limited by

the quantization noise distortion

which is smaller for MDC than

for PD.
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C-RAN with inter-connected RUs, Wyner-type example

pairs of RU-UE (                       )

Fronthaul connections

bit/symbol between RU-CU

bit/symbol between RU-RU

Uplink channel

CU

RU 1 RU 3RU 2

UE 1

B

BB

C
C

C

UE 2 UE 3

1
1

1


 

N

C

[ 1] ,i i i iY X X Z   

3N 

B

where

2

: Rx signal RU ,

: Tx signal of UE ,

: Noise at RU with ~ (0, ),

: Inter-cell channel gain with  [0,1].

i

i

i i

Y i

X i

Z i Z N 

   <Example for           >

1M 2M 3M

1 2 3
ˆ ˆ ˆ, ,M M M

{1,2, , }NN

System Model
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Oblivious Processing at RUs

In-network processing (INP) at RU

Oblivious/Nomadic: no structure information (code-books) of UE's is 

available at the RUs

iY

C

B

RU [ 1]i RU [ 1]iRU i

CU

B

input

input

output

output

C
o
m

p
re

ssio
n

,
ˆ
B iYC

o
m

p
re

ssio
n

iS

D
e
co

m
p
re

ssio
n

i

, ,
ˆ
C i i C iY S Q 

Compression

,
ˆ
C iY

, ,~ (0, )C i C iQ N with  

,[ 1]
ˆ

i i B i iS Y Y  

,[ 1]
ˆ
B iY 

D
e
co

m
p
re

ssio
n

,
ˆ
B iY

i

(Linear is optimal.)

, ,
ˆ ,B i i B iY Y Q 

, ,~ (0, )B i B iQ N with quantization noise

Without 
side information

With WZ-like
side information
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Decoding at CU

CU

Decompression

C C C

RU 1 RU 2 RU N

,1 ,2 ,
ˆ ˆ ˆ, , ,C C C NY Y Y

Joint Decoding

1 2
ˆ ˆ ˆ, , , NM M M

 
sum

,
ˆ{ } ; { }

ii

i i C i i

R R

I X Y



 





 N

N N

Decompression and decoding at CU

CU recovers the quantized INP output signals                         .

Then, it jointly decodes the messages                     .

,1 ,2 ,
ˆ ˆ ˆ, , ,C C C NY Y Y

1 2
ˆ ˆ ˆ, , , NM M M

With WZ-like
side information

Without
side information
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• Joint decompression and decoding (JDD)
[Sanderovich et al ‘09][Lim et al ‘11][Yassaee-Aref ‘11]

– JDD at CU can potentially improve the performance 
[Sanderovich et al ‘08][Sanderovich et al ‘09].

• Optimal oblivious processing [Aguerri et al ‘19].

Joint Decompression and Decoding

CU

C C
C

RU 1 RU 2 RU N

Joint Decompression
and Decoding

1 2

,1 ,2 ,

ˆ ˆ ˆ, , , ,

ˆ ˆ ˆ, , ,

N

C C C N

M M M

Y Y Y
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Upper Bounds

Cut-Set upper bound

where         is the sum-rate achievable when full 

cooperation among RUs is possible.

cut-setR

 cut-set fullmin , ,R NC R

fullR

Oblivious upper bound

is the rate achievable when the RUs are 

colocated and connected to the CU with capacity       .

oblv-UBR

NC
oblv-UBR
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Per-UE rate versus RU-RU capacity

Numerical Example

3, SNR 20 dB, 0.7N   

B

- With INP, the performance 
approaches upper bound as    
increases.

- Leveraging SI for RU-RU link provides
a slight sum-rate gain.

- Leveraging SI for RU-CU link leads to
a significant sum-rate gain especially
for small    .

- JDD further improves the sum-rate
performance.

- Its performance is very close to 
oblivious upper bound.

B

B
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Per-UE rate versus SNR

Numerical Example
2/P 

3, 0.7, {1,2}N C B   

- JDD shows slightly improved
performance, but the gap to upper
bound is still large.

- This calls for the development of
- Improved scheme based on

- Non-oblivious RU processing

- Improved upper bound
- Extending the idea as

[Wu et al ‘17]
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System Model

Central

ENC

1, ,
MNM M

RU

1

,1Rn antennas

dl

1x
1C

RU

RN

, RR Nn antennas

dl

RNx

RNC

MS

1DEC
1M̂

1

,1Mn antennas

1y

MS

DEC
MN

ˆ
MNM

MN

, MM Nn antennas

MNy

dl

1H

dl

MNH
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System Model

• The signal     received by MS in the downlink

• Per-RU power constraint:

dl

ky k

dl dl dl dl ,H

k k k y H x z

dl

dl dl dl

1

dl

dl

[ ] : vector of symbols transmitted by all RUs;

~ ( , ) : noise and interference arising from the other clusters;

: channel vector from all RUs toward MS .

R

i

T

N

k

k k



z

x x x

z 0 Ω

H

CN

where

2
dl

1 , , {1, , }.R i RE P i N x
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Point-to-Point Compression

1C
1M

Channel

encoder 1

Precoding

RU 1

Control unit

MNM
Channel

encoder NM

1s

MNs

Compression

1

dl

1x

dl

RNx
RNC





dl

1x

RU   




dl

RNx
RN

RN

Compression

Baseband signals for different RUs are separately compressed.

[Simeone et al ‘09]

- For precoding, both linear precoding [Huh et al ‘10] and 

non-linear dirty-paper coding [Costa ‘83] can be considered.
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Quantization is performed at the central

unit using the forward test channel

where

• Compressed dirty-paper coding (CDPC) [Simeone et al ‘09]

Asymmetric Wyner model Downlink: 
Independent Compression

2 2 2 2 2

per-cell

1 (1 ) 1 2(1 ) (1 )
log

2

P P P
R

         
 
 
 

,m m mX X Q 

System model

- With constrained backhaul links, we obtain

a modified broadcast channel (BC) with 

the added quantization noises.

- Per-cell sum-rate

where      is the effective SNR at the MSs

decreased from      toP
P

 2
.

1 (1 ) / (2 1) 1C

P
P

P


   

: DPC precoding output,

: quantization noise with ~ (0, / 2 ),

: cell-index, thus is independent over the index .

m

C

m m

m

X

Q Q P

m Q m

CN

44 of 71 pages



Multivariate Compression

1C
1M

Channel

encoder 1

Precoding

RU 1

Control unit

MNM
Channel

encoder NM

1s

MNs

dl

1x

dl

RNx
RNC





dl

1x

RU   




dl

RNx
RN

Multivariate

compression

[Park et al TSP‘13]

Baseband signals for different RUs are jointly compressed.
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Multivariate Compression
• Multivariate compression produces compressed signals with 

correlated quantization noises

• Noise correlation enables finer control of effect quantization at the 
MSs

dl

dl dl 1

dl

dl

dl 1

dl

22

H Hx
y z

q

x q

 
   

 

 
 
 

h h

can be reduced by 

controlling
1,2

1,1dl dl

1,1

1,2

*

1,2

0, H








  
   

  

h hCN

1C

RU 1

Control

Unit

2C

RU 2

dl dl

1 1

dl

1x x q 

MS

dl
h

Joint compression

Correlated

Variance

controlled!!

dl dl

2 2

dl

2x x q 
dl dl*

1 2 1,2[ ]E q q 
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Multivariate Compression 
Lemma

   | , for all {1, , }i i

i i

h X h X X C M
 

   S
S S

S

1, , MC C

1 1( , , , ) ( ) ( , , | )M Mp x x x p x p x x x

i.i.d.

joint typicality wrt 

[ElGamal-Kim ’11, Ch. 9]

1C

MC
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• Linear precoding (DPC treated in a similar way)

• Gaussian test channel:

• The compressed signal                       is given as

with                                      and

(Independent compression is a special case with                       .)

Multivariate Compression

dl dl dl dl dl

,, ~ ( , ),i i i i i i Ri  x x q q 0 ΩCN N

dl dl , x As q

dl dl dl

1 , ,
R

H
H H

N
   x x x

dl dl dl dl

1 , , ~ ( , )
R

H
H H

N
   q q q 0 ΩCN

dl dl dl

1,1 1,2 1,

dl dl dl

2,1 2,2 2,dl

dl dl dl

,1 ,2 ,

R

R

R R R R

N

N

N N N N

 
 
 

  
 
 
 

Ω Ω Ω

Ω Ω Ω
Ω

Ω Ω Ω

dl

, ,i j Ri j  Ω 0 N
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• Weighted sum-rate maximization

where

• Difference-of-convex (DC) problem: Local optimum via MM algorithm

Optimization

 

 

 

dl

dl

,
1

dl

dl

,

maximize ,

s.t. , , for all ,

tr , for all .

MN

k k
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i R

i
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i i i i i R
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S
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   

 
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,

, ;

log det ( ) log det ,

, |
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k k k

H H H H

k k k l l k
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[Beck-Teboulle ‘11]

(1 )

(1 )

(1 )

a

b

c
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• Reverse compute-and-forward (RCoF) [Hong-Caire ‘13]

Structured Coding

1C
1M

Channel

encoder 1

Integer

precoding

BS 1

Central encoder

MNM
Channel

encoder NM

1s

MNs

dl

1x

dl

RNx BNC





dl

1x

BS   




dl

RNx
BN
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• Reverse compute-and-forward (RCoF) [Hong-Caire ‘13]

– Downlink counterpart of the compute-and-forward (CoF) scheme 
proposed for the uplink in [Nazer et al ‘09].

• Exchange the role of BSs and MSs and use CoF in reverse direction.

– System model

• , for all {1, , }.B M iN N L C C i L    L

Central

encoder

BS 1

BS L

C

C

MS 1

MS L

1h

Lh

1z

Lz

52 of 71 pages

Structured Coding



• Reverse compute-and-forward (RCoF) [Hong-Caire ‘13] (ctd’)

– The same lattice code is used by each BS.

– Each MS   estimates a function                   by decoding on the lattice 
code.

– Achievable rate per MS is given by

  per-MS min ,min , ,SNRl l
l

R C R


 h a
L

 
 

1
1

SNR
, ,SNR max log ,0

SNRH H
R




  
    

    

h a
a I hh a

,1
ˆ

L

k k j jj
a


w wk

where

Central encoder

BS 1

BS L

C

C

MS 1

MS L

1h

Lh

1z

Lz

1 1

1

L L



   
   


   
      

w w

Q

w w

1w

Lw

1 eff 1 1 1( , , ) mod  t z h a Λ

eff ( , , ) modL L L L  t z h a Λ

Point-to-point channels

Precoding over

finite field

Integer penalty
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• Three-cell SISO circular Wyner model

 



Numerical Example



CU
- Each cell contains one single-antenna RU

and one single-antenna MS.

- Inter-cell interference takes place only

between adjacent cells.

- The intra-cell and inter-cell channel gains

are given by 1 and     , respectively.

- All RUs have a fronthaul capacity of     .


C C
C

C
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Numerical Example
20 dB and =0.5P 
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Cut-set upper bound

Multivariate compression

Point-to-point compression

DPC precoding

Compute-and-forward

Linear precoding

Single-cell processing

- Multivariate compression is significantly

advantageous for both linear and DPC

precoding.

- RCoF remains the most effective 

approach in the regime of moderate 

fronthaul capacity    , although

multivariate compression allows to

compensate for most of the rate loss of

standard DPC precoding in the low-

fronthaul regime.

- The curve of RCoF flattens before the

others do, since it is limited by the 

integer approximation penalty when the 

fronthaul capacity is large enough.

C
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• An illustration of the downlink of multi-cluster cloud radio 
access network

Inter-Cluster Multivariate Fronthaul Design

56 of 71 pages

[Park et al WCL‘14]

CU 1

1,1C

CU 2

RU

(1,1)

RU

(1,2)
1,2C

2,1C RU
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MS

(1,1)

MS

(1,2)

MS

(2,1)

MS

(2,2)

1,1 1,2,M M

2,1 2,2,M M

Inter-cluster interference

1,1M̂
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• Problem of maximizing weighted sum-rate across multiple 
clusters is a DC problem.

– The MM approach can be applied to obtain a stationary point [Park et al WCL‘14].

Inter-Cluster Multivariate Fronthaul Design

57 of 71 pages

[Park et al WCL‘14]

- Baseline schemes:

- Inter-cluster TDMA

: Activate only a single cluster

- Intra-cluster design

: Each cluster is designed 

assuming there is no incoming

and outgoing inter-cluster

interference signals.

- Inter-cluster design provides

significant gains compared to

inter-cluster TDMA and intra-cluster

design.

- Advantage of multivariate 

compression is most pronounced

for inter-cluster design.
Two clusters, two RUs and UEs per cluster,

single-antenna at RUs and UEs and fronthaul capacity of 2 bps/Hz
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Multi-Tenant C-RAN

• Spectrum pooling among multiple network operators

– Energing technique for meeting the rapidly increasing traffic demands over the 
available scarce spectrum resources [Khan et al CM’11][Boccardi et al CM’16].

• In [Park et al  TVT’18], centralized joint optimization of multi-tenant C-RAN 
was addressed.

– Specifically, inter-operator privacy constraints were imposed.

59 of 71 pages

[Park et al TVT‘18]

<Downlink of multi-tenant C-RAN>

<Band splitting for downlink trans.>

<Operation of CP 1 on shared subband>



Multi-Tenant C-RAN
60 of 71 pages

[Park et al TVT‘18]

- Proposed optimized multi-tenant

C-RAN achieves a significantly

improved rate-privacy trade-off.

- The gain from inter-operator 

cooperation becomes more

significant at lower SNR levels.

- Ex) To guarantee per-UE secrecy

rate of 20 Mbps, the proposed 

multi-tenant C-RAN achieves a

gain of 47% at 10 dB SNR with

respect to traditional C-RAN.

<Advantages of optimized spectrum pooling>



Multi-Tenant C-RAN
61 of 71 pages

[Park et al TVT‘18]

- As the SNR decreases, more

spectrum resources are allocated

to the shared subband to leverage

the opportunity of inter-operator

cooperation.
- This coincides with the above

observation, i.e., the impact of

inter-operator cooperation is

more pronounced in lower SNR

regime.

<Optimized bandwidth allocation>



Multi-Tenant C-RAN
62 of 71 pages

[Park et al TVT‘18]

- The figure shows that multivariate 

compression is instrumental in 

improving the trade-off between 

inter-operator cooperation and 

privacy.
- The accrued performance gain 

increases with the SNR, since the 

performance degradation due to 

quantization is masked by the 

additive noise when the SNR is 

small.

<Advantages of multivariate compression>
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• C-RAN downlink with confidential messages

– Each message      for UE    needs kept secret from the other UEs.

– In [Park et al SPAWC ‘17], it was proposed to leverage fronthaul 
quantization noise as artificial noise.

• Specifically, multivariate compression is useuful to effectively shape 
the quantization noise signals of different RUs.

Fronthaul Quantization as Artificial Noise

64 of 71 pages

[Park et al SPAWC‘17]
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Fronthaul Quantization as Artificial Noise

65 of 71 pages

[Park et al SPAWC‘17]

- The performance of the non-secure 

design is degraded in the high-SNR 

regime.
- due to the enhanced decodability 

of the messages of the 

unintended UEs.

- Multivariate compression yields a 

significant performance gain that 

is increasing with SNR.
- This is because the impact of the 

quantization noise is more significant 

when the SNR is large at the UE side.

(Non-secure design: Precoding and fronthaul quantization strategies are designed

without considering the secrecy among the UEs.)



C-RAN Uplink With Confidential Messages

66 of 71 pages

[Zeide et al ICSEE‘18]

• Wyner-type   -cell C-RAN uplink with confidential messagesK

• Each user    wishes to send message

to CU guaranteeing secrecy with

respect to all RUs.

• Each RU    receives interference only

from adjacent RUs, i.e.,

- Two transmission strategies:

- Orthogonal transmission: Each user

transmits for a fraction        of the time with

power      , while the other users are silent.

- Non-orthogonal transmission: All users

simultaneously transmit with power    .

- Achievable secrecy rates

Orthogonal transmission:

Non-orthogonal transmission (         ):
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• Wyner-type   -cell C-RAN uplink with confidential messagesK

k

- For sufficienty large     ,

non-orthogonal transmission

achieves the same DoF as that

achieved under no secrecy 

constraints.
- This is due to the limited inter-

cell interference span in ensuring

confidential communication.

- * C-RAN uplink with confidential 

messages and finite fronhaul 

capacities

<Secrecy rate versus SNR for             >30K 

K
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• Some pioneering works

– Receiver-end caching [MAli-Niesen ‘14][MAli-Niesen ‘15]

– Edge-caching (a.k.a. femto-caching) [Golrezaei et al ‘13]

• Information-theoretic analysis
– DoF analysis of cache-aided IA [Naderializadeh et al ‘16]

– Latency trade-offs in cache-aided wireless networks [Sengupta et al ‘16]

• Pre-fecthing policy design
– Coded caching [Ugur et al ‘15]

– Fronthaul-aware caching [Xpeng et al ‘15], mobility-aware caching 
[Wang et al ‘16]

• Delivery transmission design
– Joint design of beamfomring and BSs clustering [Tao et al ‘16]

– Hybrid hard-/soft-transfer fronthauling strategy [Park et al ‘16]

Fog-RAN w/ Edge Caching
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• Cloud may have a worse CSI quality than the distributed RUs.

• Impact of CSI quality

– Deterministic worst-case design for uplink [Park et al TVT’13][Park et al TVT’14] and 
downink [Park et al TSP’13]

– Broadcast coding and layered compression for fading and unreliable fronthaul links 
[Karasik et al ‘13], [Steiner-Shamai ’19], [Steiner-Shamai ’20].

– Joint transfer of CSI and baseband signals for uplink C-RAN [Kang et al TWC’14]

– Stochastic optimization of precoding and fronthaul compression for the downlink of 
C-RAN with time-varying channels [Kang et al TVT’16]

– Integer-Forcing CRAN Approach, CSI just at RUs [Bakoury-Nazer '20].

• Uplink/Downlink duality aspects [Liu-Patil-Yu ‘16], [Ganguly et al ‘19].

CSI Accuracy, Impact
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Cloud based wireless networks referred also as Cloud Radio Access Networks (C-RANs) 
emerge as appealing architectures for next-generation wireless/cellular systems 
whereby the processing/decoding is migrated from the local base-stations/radio units 
(RUs) to a control/central units (CU) in the "cloud". The network operates via fronthaul 
digital links connecting the CU and the RUs (operating as relays). In this talk, we will 
address basic information theoretic aspects of such networks, with emphasis of simple 
oblivious processing at the RUs, which is attractive from the practical point of view. The 
uplink and downlink are examined from a network information theoretic perspective. 
The analytic approach, as applied to simple wireless/cellular models illustrates the 
considerable performance gains to be expected by advanced network information 
theoretically inspired techniques, carrying also practical implications. An outlook, 
pointing out interesting theoretical directions, referring also to Fog radio access 
networks (F-RAN), concludes the presentation.

Wireless Networks via the Cloud:  An Information Theoretic View

Abstract

The overview is based on joint studies with I.E. Augerri, G. Caire, S.-H. Park, O. Sahin, 

O. Simeone and , A. Zaidi.  
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