Wireless Networks via the Cloud: An Information Theoretic View

Shlomo Shamai

The Andrew and Erna Viterbi Department of Electrical Engineering
Technion—Israel Institute of Technology

Supported by the European Union’s Horizon 2020, Research And Innovation Program: ERC 694630

NYU Tandon School of Engineering
February 13, 2020

Joint studies with I.E. Augerri, G. Caire, S.-H. Park, O. Sahin, O. Simeone and A. Zaidi
Outline

I. Introduction
II. Uplink
 A. Distributed fronthaul compression
 B. Structured coding
 C. Multi-hop fronthaul topology
 D. Latency sensitive: Variable-to-fixed coding structures
 A. Channels with variable backhaul connectivity
 B. Multiple description (Congestion in packet-based fronthaul networks)
 E. Inter-connected radio units
III. Downlink
 A. Multivariate fronthaul compression
 B. Structured coding
 C. Inter-cluster multivariate fronthaul compression
 D. Inter-tenant cooperation under privacy constraints
 E. Physical-layer secrecy
IV. Outlook
 I. Fog: Caching
 II. CSI accuracy, impact
V. Tutorial references
Outline

I. Introduction

II. Uplink
 A. Distributed fronthaul compression
 B. Structured coding
 C. Multi-hop fronthaul topology
 D. Latency sensitive: Variable-to-fixed coding structures
 A. Channels with variable backhaul connectivity
 B. Multiple description (Congestion in packet-based fronthaul networks)
 E. Inter-connected radio units

III. Downlink
 A. Multivariate fronthaul compression
 B. Structured coding
 C. Inter-cluster multivariate fronthaul compression
 D. Inter-tenant cooperation under privacy constraints
 E. Physical-layer secrecy

IV. Outlook
 I. Fog: Caching
 II. CSI accuracy, impact

V. Tutorial references
Cloud/Fog Radio Access Networks

• Base Stations (BSs), macro/pico, operate as radio units (RUs) [Alcatel-Lucent][China][Rost et al ‘14][Agiwal et al ‘16].

• Baseband processing takes place in the “cloud”.
 – Baseband processing includes encoding/decoding of the messages of Mobile Stations (MSs), (i.e., User Equipment (UEs)).

• Fronthaul links carry complex (IQ) baseband signals.

• Network utilization of low data traffic instances for caching.
Cloud Radio Access Networks

Advantages:
• Low-cost deployment of BSs
• Effective interference mitigation via joint baseband processing

Key challenge: Effective transfer of the IQ signals on the fronthaul links [Andrews et al JSAC’14]
Cloud Radio Access Networks

- Common public radio interface (CPRI) standard based on analog-to-digital (ADC)/digital-to-analog converter (DAC) [CPRI][IDC]

Table 1. An example link rate calculation for a 3 sector cell with LTE-Advanced.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Settings</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sectors</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>LTE Carriers</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Bandwidth</td>
<td>100</td>
<td>MHz</td>
</tr>
<tr>
<td>MIMO</td>
<td>2x2</td>
<td>Tx-Rx</td>
</tr>
<tr>
<td>Bits-per-I/Q</td>
<td>15</td>
<td>Bits</td>
</tr>
<tr>
<td>Protocol</td>
<td>LTE-A</td>
<td></td>
</tr>
<tr>
<td>Throughput</td>
<td>13.8</td>
<td>Gbps</td>
</tr>
</tbody>
</table>

... Need for fronthaul compression

- “Death by Starvation?: backhaul and 5G,” [Lundqvist, CTN-Sep. 2015]
Outline

I. Introduction

II. Uplink
 A. Distributed fronthaul compression
 B. Structured coding
 C. Multi-hop fronthaul topology
 D. Latency sensitive: Variable-to-fixed coding structures
 A. Channels with variable backhaul connectivity
 B. Multiple description (Congestion in packet-based fronthaul networks)
 E. Inter-connected radio units

III. Downlink
 A. Multivariate fronthaul compression
 B. Structured coding
 C. Inter-cluster multivariate fronthaul compression
 D. Inter-tenant cooperation under privacy constraints
 E. Physical-layer secrecy

IV. Outlook
 I. Fog: Caching
 II. CSI accuracy, impact

V. Tutorial references
Basic Settings

\[\begin{align*}
 n_{M,1} \text{ antennas} & \quad \rightarrow \quad \text{MS 1} \\
 \cdots & \quad \rightarrow \quad \cdots \\
 X^\text{ul} & \quad \rightarrow \quad H_1^\text{ul} \rightarrow \text{RU1} \\
 \text{MS } N_M & \quad \rightarrow \quad \cdots \\
 n_{M,N_M} \text{ antennas} & \quad \rightarrow \quad \cdots \\
 \cdots & \quad \rightarrow \quad \cdots \\
 \text{RU } i & \quad \rightarrow \quad C_i \text{ bits/s/Hz} \\
 \text{RU } N_R & \quad \rightarrow \quad C_{N_R} \text{ bits/s/Hz} \\
 n_{R,1} \text{ antennas} & \quad \rightarrow \quad \text{Control Unit} \\
 \cdots & \quad \rightarrow \quad \cdots \\
 y_1^\text{ul} & \quad \rightarrow \quad \hat{y}_1^\text{ul} \\
 \cdots & \quad \rightarrow \quad \cdots \\
 y_i^\text{ul} & \quad \rightarrow \quad \hat{y}_i^\text{ul} \\
 \cdots & \quad \rightarrow \quad \cdots \\
 y_{N_R}^\text{ul} & \quad \rightarrow \quad \hat{y}_{N_R}^\text{ul} \\
 H_{1}^\text{ul} & \quad \rightarrow \quad \cdots \\
 \cdots & \quad \rightarrow \quad \cdots \\
 H_i^\text{ul} & \quad \rightarrow \quad \cdots \\
 \cdots & \quad \rightarrow \quad \cdots \\
 H_{N_R}^\text{ul} & \quad \rightarrow \quad \cdots
\end{align*} \]
Basic Settings

• Assuming flat-fading channel, the received signal at RU i is given by

$$\mathbf{y}_{i}^{ul} = \mathbf{H}_{i}^{ul} \mathbf{x}^{ul} + \mathbf{z}_{i}^{ul}, \quad i \in \mathcal{N}_{R}$$

where $\mathbf{H}_{i}^{ul} = [\mathbf{H}_{i,1}^{ul}, \ldots, \mathbf{H}_{i,N_{M}}^{ul}]$: channel matrix toward to RU i;

$$\mathbf{x}^{ul} = \begin{bmatrix} \mathbf{x}_{1}^{ulH} \, & \cdots \, & \mathbf{x}_{N_{R}}^{ulH} \end{bmatrix}^{H}$$

: vector of symbols transmitted by all MSs;

$$\mathbf{z}_{i}^{ul} \sim \mathcal{CN}(0, \boldsymbol{\Omega}_{z_{i}^{ul}})$$

: noise vector at RU i.

• The fronthaul capacity C_{i} is normalized to the bandwidth of the uplink channel.
 – For any coding block of n symbols, nC_{i} bits can be transmitted on the i th fronthaul link.
Point-to-Point Compression

```
\begin{align*}
\text{RU 1} & : \quad C_1 \xrightarrow{\text{Fronthaul}} \text{Decompressor} \\
\text{RU 2} & : \quad C_2 \xrightarrow{\text{Fronthaul}} \text{Decompressor} \\
\vdots & \quad \vdots \\
\text{RU } N_R & : \quad C_{N_R} \xrightarrow{\text{Fronthaul}} \text{Decompressor} \\
\end{align*}
```

Control Unit

```
\begin{align*}
\hat{y}_1^{ul} \quad & \xrightarrow{\text{Decoder}} \quad \hat{y}_2^{ul} \\
\vdots & \quad \vdots \\
\hat{y}_{N_R}^{ul} & \xrightarrow{\text{Decoder}} \\
\end{align*}
```
Point-to-Point Compression

• A standard way of modeling the compression at RU i is to adopt the Gaussian direct “test channel” [ElGamal-Kim ’11, Ch. 3]

\[\hat{y}^\text{ul}_i = y^\text{ul}_i + q^\text{ul}_i, \]

where $q^\text{ul}_i \sim \mathcal{CN}(0, \Omega^\text{ul}_i)$ represents the quantization noise.

• If the fronthaul capacity C_i satisfies

\[I(y^\text{ul}_i; \hat{y}^\text{ul}_i) \leq C_i, \]

it is possible to design a compression strategy that realizes the given quantization error covariance Ω^ul_i.
\[\pi : \mathcal{N}_R \rightarrow \mathcal{N}_R \] denotes a permutation of RUs' indexes where \(\mathcal{N}_R \triangleq \{1, \ldots, N_R\} \).
Distributed Fronthaul Compression

[Sanderovich et al '09] [dCoso-Simoens '09] [Zhou-Yu '11]

- Using Wyner-Ziv compression, a given quantization error matrix $\Omega_{\pi(i)}^{ul}$ is attainable if the fronthaul capacity $C_{\pi(i)}$ satisfies

$$I(y_{\pi(i)}^{ul} ; \hat{y}_{\pi(i)}^{ul} | \hat{y}_{\pi(1)}^{ul}, \hat{y}_{\pi(2)}^{ul}, \ldots, \hat{y}_{\pi(i-1)}^{ul}) \leq C_{\pi(i)}.$$

- After the quantized IQ signals $\hat{y}_{1}^{ul}, \ldots, \hat{y}_{NR}^{ul}$ are recovered, the CU then performs joint decoding of the signal x^{ul} sent by all MSs.
 - The uplink sum-rate is given by

$$R_{sum}^{ul} = I(x^{ul} ; \hat{y}_{1}^{ul}, \ldots, \hat{y}_{NR}^{ul}).$$
Distributed Fronthaul Compression

[Sanderovich et al ‘09] [dCoso-Simoens ’09] [Zhou-Yu ’11]

• Joint decompression and decoding
 [Sanderovich et al ‘09][Lim et al ‘11][Yassaee-Aref ‘11]
 - Potentially larger rates can be achieved with joint decompression and decoding (JDD) at the central unit [Sanderovich et al ‘08] [Sanderovich et al ‘09].

• Now often seen as an instance of noisy network coding [Lim et al ‘11], insights and connections, see [Ganguly et al ‘19].

• Directly related to quantize-map-forward (QMF) [Avestimehr-Diggavi-Tian-Tse, FnT'15, and references therein].

• Optimal oblivious processing [Aguerri et al ‘19].
Distributed Fronthaul Compression

[Sanderovich et al '09] [dCoso-Simoens '09] [Zhou-Yu '11]

Achievable rate [Sanderovich et al '09][Hong-Caire '15]:

$$R_{\text{sum}} = \min_{S \subseteq \mathcal{S}} \left\{ \sum_{j \in S} \left(C_j - I(\mathbf{y}_j; \hat{\mathbf{y}}_j | \mathbf{x}) + I(\mathbf{x}; \hat{\mathbf{y}}_s) \right) \right\}.$$

Numerical results in 3-cell uplink [Park et al SPL '13]
(SDD: Separate decompression and decoding)
Sum-rate maximization problem with fronthaul capacity constraints is generally challenging.

In [Park et al TVT’13], a block-coordinate optimization approach was proposed for successive WZ decompression case.

- One optimizes the covariance matrices \(\Omega_{\pi(1)}, \ldots, \Omega_{\pi(N_R)} \) following the same order \(\pi \) employed for decompression.
- At the \(i \)th step, for fixed (already optimized) covariances \(\Omega_{\pi(1)}, \ldots, \Omega_{\pi(i-1)} \), the covariance \(\Omega_{\pi(i)} \) is obtained by solving

\[
\begin{align*}
\text{maximize} \quad & I(x^{ul}; \hat{y}^{ul} \mid \hat{y}^{ul}_{\pi(1)}, \hat{y}^{ul}_{\pi(2)}, \ldots, \hat{y}^{ul}_{\pi(i-1)}) \\
\text{s.t.} \quad & I(y^{ul}_{\pi(i)}; \hat{y}^{ul}_{\pi(i)} \mid \hat{y}^{ul}_{\pi(1)}, \hat{y}^{ul}_{\pi(2)}, \ldots, \hat{y}^{ul}_{\pi(i-1)}) \leq C_{\pi(i)}.
\end{align*}
\]
Distributed Fronthaul Compression

[Sanderovich et al '09] [dCosso-Simoens '09] [Zhou-Yu '11]

- Optimal WZ compressor [dCosso-Simoens '09]

\[Y_{\pi(i)}^{ul} \xrightarrow{\text{Conditional Karhunen-Loeve Transform (KLT)}} Y_{\pi(i)}^{ul} \]

\[Y_{\pi(i)}^{ul} \xrightarrow{U_{\pi(i)}^{ul} H} Y_{\pi(i),1}^{ul} \]

\[\sqrt{\alpha_{\pi(i),1}} \quad q_{\pi(i),1} \]

\[\hat{Y}_{\pi(i),1}^{ul} \]

\[Y_{\pi(i),n_{R,\pi(i)}}^{ul} \]

\[\sqrt{\alpha_{\pi(i),n_{R,\pi(i)}}} \quad q_{\pi(i),n_{R,\pi(i)}} \]

\[\hat{Y}_{\pi(i),n_{R,\pi(i)}}^{ul} \]

- Unitary transform \(U_{\pi(i)}^{ul} H \) decorrelates the received signal streams when conditioned on the side information signals \(\hat{Y}_{\pi(1)}^{ul}, \hat{Y}_{\pi(2)}^{ul}, \ldots, \hat{Y}_{\pi(i-1)}^{ul} \).

- Stream-wise multiplication by \(\sqrt{\alpha_{\pi(i),1}}, \ldots, \sqrt{\alpha_{\pi(i),n_{R,\pi(i)}}} \) represents the compression rate allocation among the streams.

- Statistical independence among quantization noises \(q_{\pi(i),1}, \ldots, q_{\pi(i),n_{R,\pi(i)}} \) implies that the signals are compressed separately.
I. Introduction

II. Uplink
 A. Distributed fronthaul compression
 B. Structured coding
 C. Multi-hop fronthaul topology
 D. Latency sensitive: Variable-to-fixed coding structures
 A. Channels with variable backhaul connectivity
 B. Multiple description (Congestion in packet-based fronthaul networks)
 E. Inter-connected radio units

III. Downlink
 A. Multivariate fronthaul compression
 B. Structured coding
 C. Inter-cluster multivariate fronthaul compression
 D. Inter-tenant cooperation under privacy constraints
 E. Physical-layer secrecy

IV. Outlook
 I. Fog: Caching
 II. CSI accuracy, impact

V. Tutorial references
Compute-and-Forward

[Nazer et al '09] [Hong and Caire '11]
Compute-and-Forward

[Nazer et al ’09] [Hong and Caire ’11]

- Compute-and-forward (CoF) [Nazer et al ’09]
 - The same codebook is used both for channel encoding at all MSs and for quantization at RUs.
 - Each RU decodes an appropriate (modulo-)sum, with integer weights, of the codewords transmitted by MSs.
 - And then sends a bit stream on the fronthaul link that identifies the decoded codeword within the lattice code.
 - Upon receiving a sufficient number of linear combinations, the CU can invert the resulting linear system and recover the transmitted codewords.
 - Integer forcing strategy (no CSI @ transmitters) [Bakoury-Nazer ’20].
 - For single-antenna uplink system with $N_M = N_R$ and $C_1 = ... = C_{N_R} = C$, achievable rate per MS is given by

$$R_{\text{per-MS}} = \min \left\{ C, \min_{l \in \mathcal{L}} R(h_l, a_l, \text{SNR}) \right\}$$

where

$$R(h, a, \text{SNR}) = \max \left\{ \log \left(\frac{\text{SNR}}{a^H (\text{SNR}^{-1}I + hh^H)^{-1} a} \right), 0 \right\};$$

Integer penalty: The signal received at each RU is sum with *non-integer weights* of the codewords transmitted by MSs.

- h_l: channel vector toward RU l;
- a_l: target integer vector for RU l.
Numerical Example

- Three-cell SISO circular Wyner model

- Each cell contains a single-antenna and a single-antenna RU.
- Inter-cell interference takes place only between adjacent cells.
- The intra-cell and inter-cell channel gains are given by 1 and α, respectively.
- All RUs have a fronthaul capacity of C.
Numerical Example

• Compare the following schemes
 – Single-cell processing
 • Each RU decodes the signal of the in-cell MS by treating all other MSs’ signals as noise.
 – Point-to-point fronthaul compression
 • Each RU compresses the received baseband signal and the quantized signals are decompressed in parallel at the control unit.
 – Distributed fronthaul compression [dCoso-Simoens ‘09]
 • Each RU performs Wyner-Ziv coding on the received baseband signal and the quantized signals are successively recovered at the control unit.
 • Joint Decompression and Decoding (noisy network coding [Sanderovich et al ‘08])
 – Compute-and-forward [Hong-Caire ‘11]
 • Each RU performs structured coding.
 – Oblivious processing upper bound
 • RUs cooperate and optimal compression is done over $3C$ fronthaul link.
 – Cutset upper bound [Simeone et al ‘12]
Numerical Example

\[\alpha = \frac{1}{\sqrt{2}} \text{ and } C = 3 \text{ bit/s/Hz} \]

- The performance advantage of distributed compression over point-to-point compression increases as SNR grows larger.
 - At high SNR, the correlation of the received signals at RUs becomes more pronounced.

- Compute-and-Forward
 - At low SNR, its performance coincides with single-cell processing.
 - RUs tend to decode trivial combinations.
 - At high SNR, the fronthaul capacity is the main performance bottleneck, so CoF shows the best performance.
Numerical Example

\(\alpha = \frac{1}{\sqrt{2}} \) and \(C = 3 \text{ bit/s/Hz} \)

- Distributed compression
- Joint decompression and decoding does not provide much gain compared to separate decompression and decoding.
- Optimality of joint decompression and decoding in symmetric case [Aguerri et al ‘19].
Numerical Example

\[\alpha = \frac{1}{\sqrt{2}} \quad \text{and} \quad C = 5 \log_{10} P \text{ bit/s/Hz} \]

- When \(C \) increases as \(\log(\text{snr}) \), CoF is not the best for high SNR.
- i.e., if \(C \) does not limit the performance, the oblivious compression technique will be advantageous than CoF.
Outline

I. Introduction

II. Uplink
 A. Distributed fronthaul compression
 B. Structured coding
 C. Multi-hop fronthaul topology
 D. Latency sensitive: Variable-to-fixed coding structures
 A. Channels with variable backhaul connectivity
 B. Multiple description (Congestion in packet-based fronthaul networks)
 E. Inter-connected radio units

III. Downlink
 A. Multivariate fronthaul compression
 B. Structured coding
 C. Inter-cluster multivariate fronthaul compression
 D. Inter-tenant cooperation under privacy constraints
 E. Physical-layer secrecy

IV. Outlook
 I. Fog: Caching
 II. CSI accuracy, impact

V. Tutorial references
Cloud Radio Access Networks

• In multihop fronthaul networks, each RU may have multiple incoming and outgoing fronthaul links.

• For example, RU 6 in the figure has two incoming and single outgoing links.

• Two different operations, \textit{routing} and \textit{in-network processing}, were compared in [Park et al TVT’15].
Directed Acyclic Graph

- Multihop fronthaul network modeled as a directed acyclic graph (DAG) [Koetter-Medard ’03]
Routing

• The bits received on the incoming links are simply forwarded on the outgoing links without any addition processing.
• This approach requires the optimization of standard flow variables that define the allocation of fronthaul capacity to different bit streams.
 – In [Park et al TVT’15], the problem was addressed via the Majorization Minimization (MM) algorithm [Beck-Teboulle ’11].
In a dense deployment of RUs, an RU may be connected to a large number of nearby RUs, all of which receive correlated baseband signals.
• It is possible to combine the correlated baseband signals at the RU in order to reduce redundancy.
In-Network Processing

[Park et al TVT‘15]

- In in-network processing, the RU must first decompress the received bit streams.
- The decompressed baseband signals are linearly processed, along with the IQ signal received locally by the RU.
- The in-network processed signal must be recompressed before being sent on the outgoing fronthaul links.
 - The effect of the resulting quantization noise must be counterbalanced by the advantage of in-network processing.
- The optimization of both routing and in-network processing was addressed in [Park et al TVT‘15].
Numerical Example

- Three-hop fronthaul network
- Single-antenna RUs and MSs
- All fronthaul links have the same capacity C
- i.i.d. Rayleigh fading channels with unit power
Numerical Results

4 MSs, average received per-antenna SNR of 20 dB

- The performance gain of in-network processing over routing becomes more pronounced as the number N of RUs in the first layer increases.

- As the density of the RUs’ deployment increases, it is desirable for each RU in layer 2 perform in-network processing.

- In-network processing is more advantageous when the fronthaul links have larger capacity, as the distortion introduced by the recompression step becomes smaller.
Outline

I. Introduction

II. Uplink
 A. Distributed fronthaul compression
 B. Structured coding
 C. Multi-hop fronthaul topology
 D. Latency sensitive: Variable-to-fixed coding structures
 A. Channels with variable backhaul connectivity
 B. Multiple description (Congestion in packet-based fronthaul networks)
 E. Inter-connected radio units

III. Downlink
 A. Multivariate fronthaul compression
 B. Structured coding
 C. Inter-cluster multivariate fronthaul compression
 D. Inter-tenant cooperation under privacy constraints
 E. Physical-layer secrecy

IV. Outlook
 I. Fog: Caching
 II. CSI accuracy, impact

V. Tutorial references
Variable Backhaul Connectivity

[Karasik et al TWC‘13]

- Wireless uplink channel is subject to fading.
- Fronthaul links’ capacity are subject to random fluctuations, i.e.,
 \[C_j = \begin{cases}
 C, & \text{with probability } p \\
 C + \Delta C, & \text{with probability } 1 - p
 \end{cases} \]
- Only receiver-side CSI, i.e.,
 - Fading channel gains are known only to BSs and cloud.
 - Fronthaul connectivity is known only to cloud.
Variable Backhaul Connectivity
[Karasik et al TWC‘13]

- To enable **variable-rate transmission** from users to cloud, an achievable scheme is proposed that leverages
 - **Broadcast coding** approach (at users, as in, e.g., [Shamai-Steiner TIT’03]
 [Verdu-Shamai TIT’10])
 - **Layered distributed compression** (at BSs, as in, e.g., [Ng et al TIT’12]
 [Park et al TVT’14])

- For small C, there is no gain in using multi-layer, i.e.,
 - Compression noise dominates the performance.

- As C increases, BC outperforms the single-layer strategy.
 - Due to its robust operation with respect to the uncertainty over fading channels.
Outline

I. Introduction

II. Uplink
 A. Distributed fronthaul compression
 B. Structured coding
 C. Multi-hop fronthaul topology
 D. Latency sensitive: Variable-to-fixed coding structures
 A. Channels with variable backhaul connectivity
 B. Multiple description (Congestion in packet-based fronthaul networks)
 E. Inter-connected radio units

III. Downlink
 A. Multivariate fronthaul compression
 B. Structured coding
 C. Inter-cluster multivariate fronthaul compression
 D. Inter-tenant cooperation under privacy constraints
 E. Physical-layer secrecy

IV. Outlook
 I. Fog: Caching
 II. CSI accuracy, impact

V. Tutorial references
Multiple Description Coding

[Park et al Entropy ‘19]

- In modern implementations of C-RAN (e.g., eCPRI [eCPRI]), the fronthaul transport network will often be packet-based and it will have a multi-hop architecture.
 - With general-purpose switches using network function virtualization (NFV) and Software-Defined Networking (SDN)
 - It can leverage the wide deployment of Ethernet infrastructure.
Multiple Description Coding

[Park et al Entropy‘19]

- Packet-based multi-hop networks are subject to congestion and packet losses.
- Traditional path diversity can successfully reduce the packet loss probability.
 - However, the performance remains the same regardless of the number of timely reception of packets.
- To better use the multiple routes in packet-based fronthaul networks, variable-rate transmission is proposed in [Park et al Entropy ‘19] based on
 - Multiple Description Coding (MDC) directly on the level of baseband signals [Alastic et al TIT ‘01]
 - Broadcast Coding (BC) at users [Shamai-Steiner TIT’03][Verdu-Shamai TIT’10]
Multiple Description Coding

[Park et al Entropy ‘19]

- The MDC scheme shows a larger gain over the path diversity (PD) scheme at high SNR.
- As the SNR increases, the overall performance becomes limited by the quantization noise distortion which is smaller for MDC than for PD.

ϵ_F: packet error probability

![Graph showing expected sum-rate versus wireless SNR]
Outline

I. Introduction

II. Uplink
 A. Distributed fronthaul compression
 B. Structured coding
 C. Multi-hop fronthaul topology
 D. Latency sensitive: Variable-to-fixed coding structures
 A. Channels with variable backhaul connectivity
 B. Multiple description (Congestion in packet-based fronthaul networks)
 E. Inter-connected radio units

III. Downlink
 A. Multivariate fronthaul compression
 B. Structured coding
 C. Inter-cluster multivariate fronthaul compression
 D. Inter-tenant cooperation under privacy constraints
 E. Physical-layer secrecy

IV. Outlook
 I. Fog: Caching
 II. CSI accuracy, impact

V. Tutorial references
System Model

- **C-RAN with inter-connected RUs, Wyner-type example**
 - N pairs of RU-UE ($\mathcal{N} = \{1, 2, \ldots, N\}$)

- **Fronthaul connections**
 - C bit/symbol between RU-CU
 - B bit/symbol between RU-RU

- **Uplink channel**
 \[Y_i = X_i + \alpha X_{[i-1]} + Z_i, \]
 where
 - Y_i: Rx signal RU i,
 - X_i: Tx signal of UE i,
 - Z_i: Noise at RU i with $Z_i \sim N(0, \sigma^2)$,
 - α: Inter-cell channel gain with $\alpha \in [0,1]$.

<Example for $N = 3$>
Oblivious Processing at RUs

- In-network processing (INP) at RU \(i \)

\[\hat{Y}_{C,i} = S_i + Q_{C,i} \]

(with \(Q_{C,i} \sim N(0, \sigma_{C,i}) \))

\[S_i = \gamma_i \hat{Y}_{B,[i-1]} + Y_i \]

(Linear is optimal.)

- Oblivious/Nomadic: no structure information (code-books) of UE's is available at the RUs

\[\hat{Y}_{B,i} = Y_i + Q_{B,i}, \]

(with quantization noise \(Q_{B,i} \sim N(0, \sigma_{B,i}) \))
Decoding at CU

- Decompression and decoding at CU
 - CU recovers the quantized INP output signals $\hat{Y}_{C,1}, \hat{Y}_{C,2}, \ldots, \hat{Y}_{C,N}$.
 - Then, it jointly decodes the messages $\hat{M}_1, \hat{M}_2, \ldots, \hat{M}_N$.

$$R_{\text{sum}} = \sum_{i \in \mathcal{N}} R_i = I(\{X_i\}_{i \in \mathcal{N}}; \{\hat{Y}_{C,i}\}_{i \in \mathcal{N}})$$

Without side information

With WZ-like side information
Joint Decompression and Decoding

• Joint decompression and decoding (JDD)
 [Sanderovich et al ‘09][Lim et al ‘11][Yassaee-Aref ‘11]
 – JDD at CU can potentially improve the performance
 [Sanderovich et al ‘08][Sanderovich et al ‘09].
 • Optimal oblivious processing [Aguerri et al ‘19].
Upper Bounds

- **Cut-Set upper bound** $R_{\text{cut-set}}$

 \[R_{\text{cut-set}} = \min\{NC, R_{\text{full}}\}, \]

 where R_{full} is the sum-rate achievable when full cooperation among RUs is possible.

- **Oblivious upper bound** $R_{\text{oblv-UB}}$

 - $R_{\text{oblv-UB}}$ is the rate achievable when the RUs are colocated and connected to the CU with capacity NC.
Numerical Example

- **Per-UE rate versus RU-RU capacity** B

 - $N = 3$, SNR = 20 dB, $\alpha = 0.7$

- With INP, the performance approaches upper bound as B increases.

- Leveraging SI for RU-RU link provides a slight sum-rate gain.

- Leveraging SI for RU-CU link leads to a significant sum-rate gain especially for small B.

- JDD further improves the sum-rate performance.
 - Its performance is very close to oblivious upper bound.
Numerical Example

- Per-UE rate versus SNR P/σ^2

 - $N = 3$, $\alpha = 0.7$, $C = B \in \{1, 2\}$

- JDD shows slightly improved performance, but the gap to upper bound is still large.

- This calls for the development of
 - Improved scheme based on
 - Non-oblivious RU processing
 - Improved upper bound
 - Extending the idea as [Wu et al '17]
I. Introduction
II. Uplink
 A. Distributed fronthaul compression
 B. Structured coding
 C. Multi-hop fronthaul topology
 D. Latency sensitive: Variable-to-fixed coding structures
 A. Channels with variable backhaul connectivity
 B. Multiple description (Congestion in packet-based fronthaul networks)
 E. Inter-connected radio units
III. Downlink
 A. Multivariate fronthaul compression
 B. Structured coding
 C. Inter-cluster multivariate fronthaul compression
 D. Inter-tenant cooperation under privacy constraints
 E. Physical-layer secrecy
IV. Outlook
 I. Fog: Caching
 II. CSI accuracy, impact
V. Tutorial references
System Model

Central ENC

\(M_1, \ldots, M_{N_M} \)

\(n_{R,1} \) antennas

\(C_1 \)

\(C_{N_R} \)

\(n_{R,N_R} \) antennas

\(\cdots \)

\(x_1^{dl} \)

\(\cdots \)

\(x_{N_R}^{dl} \)

\(H_1^{dl} \)

\(y_1 \)

\(\cdots \)

\(y_{N_M} \)

\(H_{N_M}^{dl} \)

\(\cdots \)

\(\hat{M}_1 \)

\(\cdots \)

\(\hat{M}_{N_M} \)

\(n_{M,1} \) antennas

\(\cdots \)

\(n_{M,N_M} \) antennas
System Model

• The signal y_k^{dl} received by MS k in the downlink

$$y_k^{dl} = H_k^{dl} x_k^{dl} + z_k^{dl},$$

where

$$x_k^{dl} = [x_1^{dl} \ldots x_{N_R}^{dl}]^T : \text{vector of symbols transmitted by all RUs;}$$

$$z_k^{dl} \sim \mathcal{CN}(0, \Omega_{z_k^{dl}}) : \text{noise and interference arising from the other clusters;}$$

$$H_k^{dl} : \text{channel vector from all RUs toward MS } k.$$

• Per-RU power constraint: $E\|x_1^{dl}\|^2 \leq P_{R,i}, \ i \in \{1, \ldots, N_R \}.$
Baseband signals for different RUs are **separately** compressed.

- For precoding, both linear precoding [Huh et al ‘10] and non-linear dirty-paper coding [Costa ‘83] can be considered.
Asymmetric Wyner model Downlink: Independent Compression

- Compressed dirty-paper coding (CDPC) [Simeone et al '09]

System model

Quantization is performed at the central unit using the forward test channel

\[X_m = \tilde{X}_m + Q_m, \]

where \(\tilde{X}_m \): DPC precoding output,
\(Q_m \): quantization noise with \(Q_m \sim \mathcal{CN}(0, \sigma^2) \),
\(m \): cell-index, thus \(Q_m \) is independent over the index \(m \).

With constrained backhaul links, we obtain a modified broadcast channel (BC) with the added quantization noises.

- Per-cell sum-rate

\[
R_{\text{per-cell}} = \log \left(\frac{1+\alpha^2\bar{P} + \sqrt{1+2(1+\alpha^2)\bar{P} + (1-\alpha^2)^2\bar{P}^2}}{2} \right)
\]

where \(\bar{P} \) is the effective SNR at the MSs decreased from \(P \) to

\[
\bar{P} = \frac{P}{(1+(1+\alpha^2)P/(2^C-1)+P).}
\]
Multivariate Compression

[Park et al TSP‘13]

Baseband signals for different RUs are **jointly** compressed.
Multivariate Compression

- Multivariate compression produces compressed signals with correlated quantization noises.
- Noise correlation enables finer control of effect quantization at the MSs.

\[x_{1}^{dl} = \tilde{x}_{1}^{dl} + q_{1}^{dl} \]
\[y^{dl} = h^{dlH} \begin{bmatrix} \tilde{x}_{1}^{dl} \\ \tilde{x}_{2}^{dl} \end{bmatrix} + h^{dlH} \begin{bmatrix} q_{1}^{dl} \\ q_{2}^{dl} \end{bmatrix} + z \]

\[E[q_{1}^{dl} q_{2}^{dl*}] = \omega_{1,2} \]

Variance controlled!!

Joint compression

Control Unit

RU 1

RU 2

Correlated

\[\mathcal{N}(0, h^{dlH} \begin{bmatrix} \omega_{1,1} \\ \omega_{1,2}^* \\ \omega_{1,2} \end{bmatrix} h^{dl}) \]

can be reduced by controlling \(\omega_{1,2} \)
Multivariate Compression

Lemma

\[p(\tilde{x}, x_1, \ldots, x_M) = p(\tilde{x}) p(x_1, \ldots, x_M \mid \tilde{x}) \]

\[\sum_{i \in S} h(X_i) - h(X_S \mid \tilde{X}) \leq \sum_{i \in S} C_i, \text{ for all } S \subseteq \{1, \ldots, M\} \]

[ElGamal-Kim '11, Ch. 9]
Multivariate Compression

• Linear precoding (DPC treated in a similar way)

• Gaussian test channel:

\[x_{dl}^i = \tilde{x}_{dl}^i + q_{dl}^i, \quad q_{dl}^i \sim \mathcal{CN}(0, \Omega_{i,i}), \quad i \in \mathcal{N}_R \]

• The compressed signal \(x_{dl} = \left[x_{dl}^1, \ldots, x_{dl}^{N_R} \right]^H \) is given as

\[x_{dl} = A s + q_{dl} \],

with \(q_{dl} = \left[q_{1,i}^H, \ldots, q_{N_R,i}^H \right]^H \sim \mathcal{CN}(0, \Omega_{dl}) \) and

\[\Omega_{dl} = \begin{bmatrix} \Omega_{dl}^{1,1} & \Omega_{dl}^{1,2} & \cdots & \Omega_{dl}^{1,N_R} \\ \Omega_{dl}^{2,1} & \Omega_{dl}^{2,2} & \cdots & \Omega_{dl}^{2,N_R} \\ \vdots & \vdots & \ddots & \vdots \\ \Omega_{dl}^{N_R,1} & \Omega_{dl}^{N_R,2} & \cdots & \Omega_{dl}^{N_R,N_R} \end{bmatrix} \]

(Independent compression is a special case with \(\Omega_{i,j}^{dl} = 0, \quad i \neq j \in \mathcal{N}_R \).)
Optimization

- Weighted sum-rate maximization

\[
\begin{align*}
\text{maximize} & \quad \sum_{k=1}^{N_M} w_k f_k (A, \Omega^k) \\
\text{s.t.} & \quad g_s (A, \Omega^k) \leq \sum_{i \in S} C_i, \quad \text{for all } S \subseteq \mathcal{N}_i, \\
& \quad \text{tr} \left(\mathbf{E}^H_i A \mathbf{A}^E_i + \Omega^{dl}_{i,i} \right) \leq P_i, \quad \text{for all } i \in \mathcal{N}_i.
\end{align*}
\]

where \(f_k (A, \Omega^k) = I (s_k; y_k^k) \)

\[
= \log \det \left(I + H_k^d (A A^H + \Omega^k) H_k^d H \right) - \log \det \left(I + H_k^d \left(\sum_{l \neq k} A_l A_l^H + \Omega^d \right) H_k^d H \right),
\]

\[
g_s (A, \Omega^k) = \sum_{i \in S} h (x_i^d) - h (x_i^d | \tilde{x}^d) \\
= \sum_{i \in S} \log \det \left(\mathbf{E}^H_i A \mathbf{A}^E_i + \Omega^{dl}_{i,i} \right) - \log \det \left(\mathbf{E}^H_i \Omega^{dl} \mathbf{E}^H_i \right) \leq \sum_{i \in S} C_i.
\]

- Difference-of-convex (DC) problem: Local optimum via MM algorithm

[Beck-Teboulle '11]
I. Introduction

II. Uplink
 A. Distributed fronthaul compression
 B. Structured coding
 C. Multi-hop fronthaul topology
 D. Latency sensitive: Variable-to-fixed coding structures
 A. Channels with variable backhaul connectivity
 B. Multiple description (Congestion in packet-based fronthaul networks)
 E. Inter-connected radio units

III. Downlink
 A. Multivariate fronthaul compression
 B. Structured coding
 C. Inter-cluster multivariate fronthaul compression
 D. Inter-tenant cooperation under privacy constraints
 E. Physical-layer secrecy

IV. Outlook
 I. Fog: Caching
 II. CSI accuracy, impact

V. Tutorial references
Structured Coding

- Reverse compute-and-forward (RCoF) [Hong-Caire ‘13]
Structured Coding

- Reverse compute-and-forward (RCoF) [Hong-Caire ‘13]
 - Downlink counterpart of the compute-and-forward (CoF) scheme proposed for the uplink in [Nazer et al ‘09].
 - Exchange the role of BSs and MSs and use CoF in reverse direction.
- System model
 - $N_B = N_M = L$, $C_i = C$ for all $i \in \mathcal{L} = \{1, \ldots, L\}$.

![Diagram of structured coding system](image)
Structured Coding

- Reverse compute-and-forward (RCoF) [Hong-Caire ‘13] (ctd’)

- The same lattice code is used by each BS.
- Each MS k estimates a function $\hat{w}_k = \sum_{j=1}^{L} a_{k,j} \tilde{w}_j$ by decoding on the lattice code.
- Achievable rate per MS is given by

$$R_{\text{per-MS}} = \min \left\{ C, \min_{l \in \mathcal{L}} R(h_l, a_l, \text{SNR}) \right\}$$

where

$$R(h, a, \text{SNR}) = \max \left\{ \log \left(\frac{\text{SNR}}{a^H (\text{SNR}^{-1} I + hh^H)^{-1} a} \right), 0 \right\}$$

Integer penalty
Numerical Example

• Three-cell SISO circular Wyner model

- Each cell contains one single-antenna RU and one single-antenna MS.
- Inter-cell interference takes place only between adjacent cells.
- The intra-cell and inter-cell channel gains are given by 1 and α, respectively.
- All RUs have a fronthaul capacity of C.
Numerical Example

$P = 20 \text{ dB and } \alpha = 0.5$

- Multivariate compression is significantly advantageous for both linear and DPC precoding.
- RCoF remains the most effective approach in the regime of moderate fronthaul capacity C, although multivariate compression allows to compensate for most of the rate loss of standard DPC precoding in the low-fronthaul regime.
- The curve of RCoF flattens before the others do, since it is limited by the integer approximation penalty when the fronthaul capacity is large enough.
Outline

I. Introduction

II. Uplink
 A. Distributed fronthaul compression
 B. Structured coding
 C. Multi-hop fronthaul topology
 D. Latency sensitive: Variable-to-fixed coding structures
 A. Channels with variable backhaul connectivity
 B. Multiple description (Congestion in packet-based fronthaul networks)
 E. Inter-connected radio units

III. Downlink
 A. Multivariate fronthaul compression
 B. Structured coding
 C. Inter-cluster multivariate fronthaul compression
 D. Inter-tenant cooperation under privacy constraints
 E. Physical-layer secrecy

IV. Outlook
 I. Fog: Caching
 II. CSI accuracy, impact

V. Tutorial references
Inter-Cluster Multivariate Fronthaul Design

[Park et al WCL'14]

• An illustration of the downlink of multi-cluster cloud radio access network
Inter-Cluster Multivariate Fronthaul Design

[Park et al. WCL'14]

- Problem of maximizing weighted sum-rate across multiple clusters is a DC problem.
 - The MM approach can be applied to obtain a stationary point [Park et al. WCL'14].

- Baseline schemes:
 - Inter-cluster TDMA: Activate only a single cluster
 - Intra-cluster design: Each cluster is designed assuming there is no incoming and outgoing inter-cluster interference signals.

- Inter-cluster design provides significant gains compared to inter-cluster TDMA and intra-cluster design.

- Advantage of multivariate compression is most pronounced for inter-cluster design.

Two clusters, two RUs and UEs per cluster, single-antenna at RUs and UEs and fronthaul capacity of 2 bps/Hz
Outline

I. Introduction

II. Uplink
 A. Distributed fronthaul compression
 B. Structured coding
 C. Multi-hop fronthaul topology
 D. Latency sensitive: Variable-to-fixed coding structures
 A. Channels with variable backhaul connectivity
 B. Multiple description (Congestion in packet-based fronthaul networks)
 E. Inter-connected radio units

III. Downlink
 A. Multivariate fronthaul compression
 B. Structured coding
 C. Inter-cluster multivariate fronthaul compression
 D. Inter-tenant cooperation under privacy constraints
 E. Physical-layer secrecy

IV. Outlook
 I. Fog: Caching
 II. CSI accuracy, impact

V. Tutorial references
Multi-Tenant C-RAN

Parks et al. TVT’18

- Spectrum pooling among multiple network operators
 - Emerging technique for meeting the rapidly increasing traffic demands over the available scarce spectrum resources [Khan et al CM’11][Boccardi et al CM’16].
- In [Park et al. TVT’18], centralized joint optimization of multi-tenant C-RAN was addressed.
 - Specifically, inter-operator privacy constraints were imposed.
Multi-Tenant C-RAN

[Park et al TVT‘18]

- Proposed optimized multi-tenant C-RAN achieves a significantly improved rate-privacy trade-off.

- The gain from inter-operator cooperation becomes more significant at lower SNR levels.

- Ex) To guarantee per-UE secrecy rate of 20 Mbps, the proposed multi-tenant C-RAN achieves a gain of 47% at 10 dB SNR with respect to traditional C-RAN.

<Advantages of optimized spectrum pooling>
Multi-Tenant C-RAN

[Park et al TVT ’18]

- As the SNR decreases, more spectrum resources are allocated to the shared subband to leverage the opportunity of inter-operator cooperation.
 - This coincides with the above observation, i.e., the impact of inter-operator cooperation is more pronounced in lower SNR regime.
Multi-Tenant C-RAN

[Park et al TVT‘18]

- The figure shows that multivariate compression is instrumental in improving the trade-off between inter-operator cooperation and privacy.
- The accrued performance gain increases with the SNR, since the performance degradation due to quantization is masked by the additive noise when the SNR is small.

<Advantages of multivariate compression>
Outline

I. Introduction

II. Uplink
 A. Distributed fronthaul compression
 B. Structured coding
 C. Multi-hop fronthaul topology
 D. Latency sensitive: Variable-to-fixed coding structures
 A. Channels with variable backhaul connectivity
 B. Multiple description (Congestion in packet-based fronthaul networks)
 E. Inter-connected radio units

III. Downlink
 A. Multivariate fronthaul compression
 B. Structured coding
 C. Inter-cluster multivariate fronthaul compression
 D. Inter-tenant cooperation under privacy constraints
 E. Physical-layer secrecy

IV. Outlook
 I. Fog: Caching
 II. CSI accuracy, impact

V. Tutorial references
Fronthaul Quantization as Artificial Noise

[Park et al SPAWC‘17]

- C-RAN downlink with confidential messages

- Each message M_k for UE k needs kept secret from the other UEs.
- In [Park et al SPAWC ‘17], it was proposed to leverage fronthaul quantization noise as artificial noise.
 - Specifically, multivariate compression is useful to effectively shape the quantization noise signals of different RUs.
The performance of the non-secure design is degraded in the high-SNR regime.
- due to the enhanced decodability of the messages of the unintended UEs.

- Multivariate compression yields a significant performance gain that is increasing with SNR.
- This is because the impact of the quantization noise is more significant when the SNR is large at the UE side.

(Non-secure design: Precoding and fronthaul quantization strategies are designed without considering the secrecy among the UEs.)
C-RAN Uplink With Confidential Messages

[Zeide et al ICSEE’18]

- Wyner-type K-cell C-RAN uplink with confidential messages

- **Two transmission strategies:**
 - **Orthogonal transmission:** Each user transmits for a fraction $1/K$ of the time with power KP, while the other users are silent.
 - **Non-orthogonal transmission:** All users simultaneously transmit with power P.

- **Achievable secrecy rates**

Orthogonal transmission:

$$R = \frac{1}{6} \log_2 (1 + 9P) - \frac{1}{6} \log_2 (1 + 3P)$$

Non-orthogonal transmission ($K \geq 5$):

$$R = \frac{1}{2K} \sum_{k=0}^{K-1} \log_2 \left(1 + 3P + 4P \cos \left(2\pi \frac{k}{K} \right) + 2P \cos \left(2\pi \frac{2k}{K} \right) \right)$$

$$- \frac{1}{2K} \log_2 (1 + 3P)$$
C-RAN Uplink With Confidential Messages

[Zeide et al ICSEE‘18]

- Wyner-type K-cell C-RAN uplink with confidential messages

- For sufficiently large K, non-orthogonal transmission achieves the same DoF as that achieved under no secrecy constraints.
 - This is due to the limited inter-cell interference span in ensuring confidential communication.

- * C-RAN uplink with confidential messages and finite fronthaul capacities

<Secrecy rate versus SNR for $K = 30$>
I. Introduction

II. Uplink
 A. Distributed fronthaul compression
 B. Structured coding
 C. Multi-hop fronthaul topology
 D. Latency sensitive: Variable-to-fixed coding structures
 A. Channels with variable backhaul connectivity
 B. Multiple description (Congestion in packet-based fronthaul networks)
 E. Inter-connected radio units

III. Downlink
 A. Multivariate fronthaul compression
 B. Structured coding
 C. Inter-cluster multivariate fronthaul compression
 D. Inter-tenant cooperation under privacy constraints
 E. Physical-layer secrecy

IV. Outlook
 I. Fog: Caching
 II. CSI accuracy, impact

V. Tutorial references
Fog-RAN w/ Edge Caching

• Some pioneering works
 – Receiver-end caching [MAli-Niesen ’14][MAli-Niesen ’15]
 – Edge-caching (a.k.a. femto-caching) [Golrezaei et al ’13]

• Information-theoretic analysis
 – DoF analysis of cache-aided IA [Naderializadeh et al ’16]
 – Latency trade-offs in cache-aided wireless networks [Sengupta et al ’16]

• Pre-fetching policy design
 – Coded caching [Ugur et al ’15]
 – Fronthaul-aware caching [Xpeng et al ’15], mobility-aware caching [Wang et al ’16]

• Delivery transmission design
 – Joint design of beamforming and BSs clustering [Tao et al ’16]
 – Hybrid hard-/soft-transfer fronthauling strategy [Park et al ’16]
CSI Accuracy, Impact

- Cloud may have a worse CSI quality than the distributed RUs.

- Impact of CSI quality
 - Deterministic worst-case design for uplink [Park et al TVT'13][Park et al TVT'14] and downlink [Park et al TSP'13]
 - Broadcast coding and layered compression for fading and unreliable fronthaul links [Karasik et al ‘13], [Steiner-Shamai ’19], [Steiner-Shamai ’20].
 - Joint transfer of CSI and baseband signals for uplink C-RAN [Kang et al TWC’14]
 - Stochastic optimization of precoding and fronthaul compression for the downlink of C-RAN with time-varying channels [Kang et al TVT’16]
 - Integer-Forcing CRAN Approach, CSI just at RUs [Bakoury-Nazer '20].

I. Introduction

II. Uplink
 A. Distributed fronthaul compression
 B. Structured coding
 C. Multi-hop fronthaul topology
 D. Latency sensitive: Variable-to-fixed coding structures
 A. Channels with variable backhaul connectivity
 B. Multiple description (Congestion in packet-based fronthaul networks)
 E. Inter-connected radio units

III. Downlink
 A. Multivariate fronthaul compression
 B. Structured coding
 C. Inter-cluster multivariate fronthaul compression
 D. Inter-tenant cooperation under privacy constraints
 E. Physical-layer secrecy

IV. Outlook
 I. Fog: Caching
 II. CSI accuracy, impact

V. Tutorial references
Summarizing/Tutorial References

Summarizing/Tutorial References

Thank you!
References
References

References

References

References

References

References

References

References

References

References

References

References

References

References

References

Abstract

Cloud based wireless networks referred also as Cloud Radio Access Networks (C-RANs) emerge as appealing architectures for next-generation wireless/cellular systems whereby the processing/decoding is migrated from the local base-stations/radio units (RUs) to a control/central units (CU) in the "cloud". The network operates via fronthaul digital links connecting the CU and the RUs (operating as relays). In this talk, we will address basic information theoretic aspects of such networks, with emphasis of simple oblivious processing at the RUs, which is attractive from the practical point of view. The uplink and downlink are examined from a network information theoretic perspective. The analytic approach, as applied to simple wireless/cellular models illustrates the considerable performance gains to be expected by advanced network information theoretically inspired techniques, carrying also practical implications. An outlook, pointing out interesting theoretical directions, referring also to Fog radio access networks (F-RAN), concludes the presentation.

The overview is based on joint studies with I.E. Augerri, G. Caire, S.-H. Park, O. Sahin, O. Simeone and, A. Zaidi.
The research of S. Shamai has been supported by the European Union's Horizon 2020, Research And Innovation Program: 694630.