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Outline

∗ Information Bottleneck:

∗ Connections:

- Remote Source Coding.
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- Wyner-Ahlswede-Korner Problem.

- Efficiency of Investment Information.

- Hypothesis Testing.

- Compound Wiretap Channel.

∗ Some Perspectives
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Information Bottleneck

Efficiency of a given representation U = f(Y ) measured by the pair

Rate (or Complexity): I(U ;Y ) and Information (or Relevance): I(U ;X)

Information I(X;U) can be achieved by OBLIVIOUS coding Y while with
the logarithmic distortion with respect to X

Single letter-wise, U is not necessarily a deterministic function of Y

The non-oblivious bottleneck problem is immediate as the min(I(X;Y ), R)
is achievable by having the relay decoding the message transmitted by X

The bottleneck problem connects to many timely aspects, such as ’deep
learning’ [Tishby-Zaslavsky, ITW’15].

3 / 22



Digression: Learning via the Information Bottleneck
Method

Preserving all the information about X that is contained in Y , i.e., I(X;Y ),
requires high complexity (in terms of minimum description coding length).

Other measures of complexity may be (Vapnik-Chervonenkis) VC-dimension,
covering numbers, ..

Efficiency of a given representation U = f(Y) measured by the pair

Complexity: I(U ;Y ) and Relevance: I(U ;X)

Example: E
(
x− f∗(v)

)2
, f∗(v) = E(x|v)

max
p(u|x)

I(U ;X) s.t. I(U ;Y ) ≤ R, for 0 ≤ R ≤ H(Y )

min
p(u|x)

I(U ;Y ) s.t. I(U ;X) ≥ ∆, for 0 ≤ ∆ ≤ I(X;Y ) 4 / 22



Basically, a Remote Source Coding Problem !

Reconstruction at decoder is under log-loss measure,

R(∆) = min
p(u|y)

I(U ;Y )

where the minimization is over all conditional pmfs p(u|y) such that

E[`log(X,U)] ≤ H(X)−H(X|U) = H(X)−∆

- R. L. Dobrushin and B. S. Tsybakov, “Information transmission with additional noise”, IRE Tran. Info.
Theory, Vol. IT-8, pp. 293-304, 1962.

- H. Witsenhausen, A. Wyner, “A conditional entropy bound for a pair of discrete random variables”,

IEEE Trans. on Info. Theory, Vol. 21, pp. 493-501, 1975.

Solution also coined as the Information Bottleneck Method [Tishby’99]

LIB(β, PX,Y ) = min
p(u|y)

I(Y ;U)− βI(X;U)
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Other Connections

Efficiency of Investment Information

- X - Stock Market Data.

Y - Correlated Information about X.

∆(R) the maximum increase in growth rate when Y is described to the
investor at rate R (a logarithmic distortion that relates to the
Wyner-Ahlswede-Korner Problem).

- Solution of the bottleneck for: (X,Y ) are binary and (X,Y ) Gaussian
(horse race examples).

- E. Erkip and T. M. Cover, “The Efficiency of Investment Information”,
IEEE Trans. on Info. Theory, Vol. 44, May 1998.
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Other Connections (Cont.)

Common Reconstruction. Because X −
− Y −
− U , we have

I(U ;X) = I(U ;Y )− I(U ;Y |X)

≤ R− I(U ;Y |X)

- Y. Steinberg, “Coding and common reconstruction”, IEEE Trans. on Inform.
Theory, vol. 55, no. 11, pp. 4995–5010, Nov. 2009 (X – side information is
not used for the ‘source’ Y common reconstruction).

∗ Heegard-Berger Problem with Common Reconstruction: Y -source, to be
commonly reconstructed (with logarithmic distortion), with and without side
information (X), as to maximize I(U ;X).

- M. Benammar, A. Zaidi, “Rate-Distortion of a Heegard-Berger Problem with
Common Reconstruction Constraint,” IZS, March 2–4, 2016.
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Other Connections (Cont.)

Information Combining

I(Y ;U,X) = I(U ;Y ) + I(X;Y )− I(U ;X) (since X −
− Y −
− U)

Since I(X;Y ) is given and I(Y ;U) = R, maximizing I(U ;X) is equivalent
to minimizing I(Y ;U,X).

- I. Sutskover, S. Shamai and J. Ziv, “Extremes of Information Combining”,
IEEE Trans. Inform. Theory, vol. 51, no. 4, pp. 1313–1325, April 2005.

- I. Land and J. Huber, ”Information combining,” Foundations and trends in
Commun. and Inform. Theory, vol. 3, pp. 227–330, Nov. 2006.
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Other Connections (Cont.)

Hypothesis Testing

Let (Xn;Y n) be an n length, iid sequence of pairs (X,Y ). Assume that the
sequences had been produced by two possible probability measures:

H0 : PXPY : (X,Y ) Independent random variables.
H1 : PX,Y : (X;Y ) Dependent random variables.

Xn is available at the destination, and Y n, is encoded at rate R.

⇒ For n→∞, the Stein error exponent (normalized by n), of the
Neuman-Pearson type II error: (the sequences were governed by H0,
while the decision was H1), is lower bounded by:

max I(X;U), I(Y ;U) ≤ R : X − Y − U ,

- (that is the information bottleneck result) for any type I decision error
(the sequences were governed by H1, while the decision was H0) ≤ ε.

R. Ahlswede and I. Csiszár, “Hypothesis Testing with Communication
Constraints,” IEEE Trans. Inform. Theory, vol. IT–32, no. 4, pp. 533–542,
July 1986.
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Other Connections (Cont.)

Compound Wiretap Channel

X − Y − U , (X-input, Y -legitimate receiver, U -eavesdropper).
The wiretap capacity is:

I(X;Y )− I(X;U) .

The compound degraded wiretap channel:
The wiretapper can have anything, satisfying I(Y ;U) ≤ C.

Evidently, as known [Liang-Kramer-Poor-Shamai, EURASIP 2009],
[Bjelakovic-Boche-Sommerfeld, Problems of Information Transmission, 2013]:

- The wiretap capacity is min : I(X;Y )− I(X;U), over the allowable set:
I(Y ;U) ≤ C, which is the bottleneck solution.
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Other Connections (Cont.)

Wyner-Ahlswede-Körner Problem

If X and Y are encoded at rates RX and RY , respectively. For given
RY = R, the minimum rate RX that is needed to recover X losslessly is

R?
X(R) = min

p(u|y) : I(U ;Y )≤ R
H(X|U)

So, we get
max

p(u|y) : I(U ;Y )≤R
I(U ;X) = H(X)−R?

X(R)

- R. F. Ahlswede and J. Korner, “Source coding with side information and a converse for
degraded broadcast channels”, IEEE Trans. on Info. Theory, Vol. 21, pp. 629-637, 1975.

- A. D. Wyner, “On source coding with side information at the decoder”,

IEEE Trans. on Info. Theory, Vol. 21, pp. 294-300, 1975.
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Vector Gaussian Information Bottleneck

(X,Y) jointly Gaussian, X ∈ RN and Y ∈ RM

Optimal encoding PU|Y is a noisy linear projection to a subspace whose dimensionality is
determined by the bottleneck Lagrangian multiplier β
[Chechik-Globerson-Tushby-Weiss, ’05]

U = AY + Z, Z ∼ N(0, I)

where

A =


[0T ; . . . ; 0T ], if 0 ≤ β ≤ βc

1

[α1vT
1 ; 0T ; . . . ; 0T ], if βc

1 ≤ β ≤ βc
2

[α1vT
1 ;α2vT

2 ; 0T ; . . . ; 0T ], if βc
2 ≤ β ≤ βc

3

...

and {vT
1 , . . . ,v

T
N} are the left eigenvectors of Σy|xΣ−1

y , sorted by their ascending

eigenvalues {λ1, . . . , λN}; βc
i = 1/(1− λi) are critical β values; ri = vT

i Σyvi and

αi =

√
β(1− λi)− 1

λiri

Rate-Information Trade-off Gaussian Vector Channel [Winkelbauer-Matz, ISIT’14].
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CEO Source Coding Problem under Log-Loss

CEO source coding problem under log-loss distortion:

dlog(x, x̂) := log

(
1

x̂(x)

)
where x̂ ∈ P(X) is a probability distribution on X.

Characterization of rate-distortion region in [Courtade-Weissman’14]

Key step: log-loss admits a lower bound in the form of conditional entropy of
the source conditioned on the compression indices:

nD ≥ E[dlog(Xn; X̂n)] ≥ H(Xn|JK) = H(Xn)− I(Xn; JK)
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Distributed Information Bottleneck

Information Bottleneck introduced by [Tishby’99] and [Witsenhausen’80]

“Indirect Rate Distortion Problems”, IT–26, no. 5, pp. 518–521, Sept. 1980.

It is a CEO source-coding problem under log-loss!

Theorem (Distributed Information Bottleneck [ Estella-Zaidi, IZS’18 ] )

The D-IB region is the set of all tuples (∆, R1, . . . , RK) which satisfy

∆ ≤
∑
k∈S

[Rk−I(Yk;Uk|X,Q)] + I(X;USc |Q), for all S ⊆ K

for some joint pmf p(q)p(x)
∏K

k=1 p(yk|x)
∏K

k=1 p(uk|yk, q).
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Vector Gaussian Distributed Information Bottleneck

(Y1, · · · ,YK ,X) jointly Gaussian, Yk ∈ RN and X ∈ RM ,

Yk = HkX + Nk, Nk ∼ N(0,Σnk
)

Optimal encoding P ∗Uk|Yk
is Gaussian and Q = ∅ [Estella-Zaidi’17]

Theorem ([Estella-Zaidi, IZS’18], [Ugur-Aguerri-Zaidi, arxiv:1811.03933] )

If (X,Y1, . . . ,YK) are jointly Gaussian, the D-IB region is given by the set of all
tuples (∆, R1, . . . , RL) satisfying that for all S ⊆ K

∆ ≤
∑
k∈S

[Rk + log |I−Bk|] + log

∣∣∣∣∣∑
k∈Sc

H̄H
k BkH̄k + I

∣∣∣∣∣
for some 0 � Bk � I, where H̄k = Σ

−1/2
nk HkΣ

1/2
x , and achievable with

p∗(uk|yk, q) = CN(yk,Σ
1/2
nk

(Bk − I)Σ1/2
nk

)

Reminiscent of the sum-capacity in Gaussian Oblivious CRAN with Constant
Gaussian Input constraint.
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Example
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0
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Optimal information (relevance):

∆∗(R, snr) =
1

2
log

(
1 + 2 snr exp(−4R)

(
exp(4R) + snr−

√
snr2 + (1 + 2 snr) exp(4R)

))
Collaborative encoding upper bound: (Y1, Y2) encoded at rate 2R

∆ub(R, sr) =
1

2
log (1 + 2 snr)−

1

2
log
(

1 + 2 snr exp(−4R)
)

Lower bound: Y1 and Y2 independently encoded

∆lb(R, snr) =
1

2
log
(

1 + 2 snr− snr exp(−2R)
)
−

1

2
log
(

1 + snr exp(−2R)
)
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Oblivious Relay Processing-CRAN System

Resource-sharing random variable Qn available at all terminals [Simeone et al’11].

Qn way easier to share, (e.g., on/off activity ).

Memoryless Channel: PY1,...,YK |X1,...,X1

User l ∈ {1, . . . , L}: φnl : [1, |Xl|n2nRl ]× [1, 2nRl ]× Qn → Xn
l

Relay k ∈ {1, . . . ,K}: gnk : Yk
n × Qn → [1, 2nCk ]

Decoder:

ψn : [1, |X1|n2nR1
]× · · · × [1, 2nCK ]× Qn → [1, 2nR1 ]× . . .× [1, 2nRL ]
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Capacity Region of a Class of CRAN Channels

Theorem (Aguerri-Zaidi-Caire-Shamai ’IT19)

For the class of discrete memoryless channels satisfying

Yk −
−XL −
− YK\k

with oblivious relay processing and enabled resource-sharing, a rate tuple (R1, . . . , RL) is
achievable if and only if for all T ⊆ L and for all S ⊆ K,∑

t∈T

Rt ≤
∑
s∈S

[Cs − I(Ys;Us|XL, Q)] + I(XT ;USc |XTc , Q),

for some joint measure of the form

PQ

L∏
l=1

PXl|Q

K∏
k=1

PYk|XL

K∏
k=1

PUk|Yk,Q,

with the cardinality of Q bounded as |Q| ≤ K + 2.

⇒ Equivalent to Noisy Network Coding [Lim-Kim-El Gamal-Chung, IT ’11].

⇒ Directly related to quantize-map-forward (QMF)
[Avestimehr-Diggavi-Tian-Tse, FnT’15, and references therein].
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Some Perspectives

Optimal input distributions for the input power constrained Gaussian bottleneck.

Discrete signaling is already known to sometimes outperform Gaussian signaling for
single-user Gaussian CRAN [Sanderovich-Shamai-Steinberg-Kramer ’08].

- It is conjectured that the optimal input distribution is discrete.

Universal Distortion: X ∈ X – features, V – observation,

`
(
X, f(V )

)
distortion, f(V ) ∈ X – estimate:

f∗(·) optimal estimate: L∗(X|V ) = inf
f(·)

E `
(
X, f(V )

)
Example: MMSE – E

(
X − f∗(V )

)2
, f∗(V ) = E(X|V )

‖ ` ‖∞= sup `(·, ·), L∗(X|Y ) – σ subGaussian or `(·, ·) uniformly bounded.

⇒L∗(X|U)− L∗(X|Y ) ≤ ‖ `∞ ‖√
2

I(Y ;X|U)

=
‖ `∞ ‖√

2
{I(X;Y )− I(X;U)} , X − Y − U , [Linder, 20]

IB ⇒ max I(X;U), I(Y ;U) ≤ R relevant to any distortion measure.
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Some Perspectives cont.’

Two sided Information Bottleneck: For: V −X − Y − U , find:

max I(U ;V ) subjected to: I(V ;X) ≤ R1, I(U ;Y ) ≤ R2 .

Entropy constaint bottleneck: X − Y − U max I(X;U) under the constraint
H(U) ≤ R practical applications: LZ distortionless compression.
⇒ U = f(Y ) is a deterministic function [Homri-Peleg-Shamai, TCOM, Nov.’18].

- The The deterministic bottleneck: advantages in complexity as compared to
a classical bottleneck: [Strouse-Schwab, Neural Comp.’17].
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Some Perspectives cont.’

Privacy Funnel, dual of bottleneck: X − Y − U , minimize: I(X;U), under
the constraint: I(Y ;U) = R. [Calmon-Makhdoumi-Medard-Varia-Christiansen-Duffy IT2017].

Direct connection to Information combining, maximize:
I(Y ;U,X) = I(X;Y ) + I(U ;Y )− I(U ;X), under the constraint:
I(U ;Y ) = R.

Example: (X,Y ) binary symmetric connected via a BSC, X − Y .
The channel Y − U is an Erasure Channel.

Example (Ordentlich-Shamai): For the Gaussian model: Y =
√

(snr)X +N ,
where (X,N) are unit norm independent Gaussians: Take U to be a
deterministic function of Y , say describes the m last digits of a b long
(b→∞) binary description of Y , such that I(U ;Y ) = H(U) = R (m is R
dependent). Evidently I(U ;X)→ 0, as I(Y ;U,X)→ R+ I(X;Y ).

Helper problem [Bross-Lapidoth, ITW2019]:Y = X +N,X, N independent finite
differential entropy. Noise helper: I(N ;U) = R. Direct solution via
information combining (Ordentlich-Shamai): We have: Y −N − U , and
(example above): I(N ;Y,U) = I(N ;Y ) +R⇒ I(X;Y,U) = I(X;Y ) +R.
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Thank you!
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