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* Information Bottleneck:

«x Connections:
- Remote Source Coding.
- Common Reconstruction.
- Information Combining.

- Wyner-Ahlswede-Korner Problem.

- Efficiency of Investment Information.

- Hypothesis Testing.
- Compound Wiretap Channel.

« Some Perspectives
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Information Bottleneck

X — Y — U

o Efficiency of a given representation U = f(Y') measured by the pair
Rate (or Complexity): I(U;Y) and Information (or Relevance): 1(U; X)

@ Information I(X;U) can be achieved by OBLIVIOUS coding Y while with
the logarithmic distortion with respect to X

@ Single letter-wise, U is not necessarily a deterministic function of Y

@ The non-oblivious bottleneck problem is immediate as the min(I(X;Y), R)
is achievable by having the relay decoding the message transmitted by X

@ The bottleneck problem connects to many timely aspects, such as 'deep
learning’ [Tishby-Zaslavsky, ITW'15].



Digression: Learning via the Information Bottleneck
Method

Limited Complexity

Pxy R U .
X— v—  f() » 9() |/ B
Features Observation Encoder Decoder Estimate

@ Preserving all the information about X that is contained in Y, ie., I(X;Y),
requires high complexity (in terms of minimum description coding length).

o Other measures of complexity may be (Vapnik-Chervonenkis) VC-dimension,
covering numbers, ..

o Efficiency of a given representation U = f(Y) measured by the pair
Complexity: I(U;Y) and Relevance: I(U;X)

e Example: E(.’L‘— f*(v))27 [*(v) = E(z|v)
max I(U; X) st. I({U;Y)<R, for 0<R<H(Y)

p(ulz) -

I/ni‘n\I(U;Y) st. I(U;X)>A, for 0<A<LI(X;Y)
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Basically, a Remote Source Coding Problem !

Latent Space

Pxy U
X —— Y —| Fuyy

Y

PX|U — > X

Features Observation Encoder Decoder Estimate

@ Reconstruction at decoder is under log-loss measure,
R(A) = min I(U;Y)
p(uly)
where the minimization is over all conditional pmfs p(uly) such that
Elfog(X, U)] < H(X) — H(X|U) = H(X) - A
- R. L. Dobrushin and B. S. Tsybakov, “Information transmission with additional noise”, IRE Tran. Info.
Theory, Vol. IT-8, pp. 293-304, 1962.
- H. Witsenhausen, A. Wyner, “A conditional entropy bound for a pair of discrete random variables”,
IEEE Trans. on Info. Theory, Vol. 21, pp. 493-501, 1975.
@ Solution also coined as the Information Bottleneck Method [Tishby'99]
LIB(ﬂ, nyy) = I(Illn) I(Y, U) - 6I(X, U)
p

uly 5/2
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Other Connections

o Efficiency of Investment Information
- X - Stock Market Data.
Y - Correlated Information about X.

A(R) the maximum increase in growth rate when Y is described to the
investor at rate R (a logarithmic distortion that relates to the
Wyner-Ahlswede-Korner Problem).

- Solution of the bottleneck for: (X,Y") are binary and (X,Y’) Gaussian
(horse race examples).

- E. Erkip and T. M. Cover, "The Efficiency of Investment Information”,
IEEE Trans. on Info. Theory, Vol. 44, May 1998.
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Other Connections (Cont.)

Common Reconstruction. Because X -~ Y -~ U, we have

I(U; X) = I(U;Y) - I(U; Y|X)
< R—I(U;Y|X)

Y. Steinberg, “Coding and common reconstruction”, |IEEE Trans. on Inform.
Theory, vol. 55, no. 11, pp. 4995-5010, Nov. 2009 (X - side information is
not used for the ‘source’ Y common reconstruction).

Heegard-Berger Problem with Common Reconstruction: Y-source, to be
commonly reconstructed (with logarithmic distortion), with and without side
information (X)), as to maximize I(U; X).

M. Benammar, A. Zaidi, “Rate-Distortion of a Heegard-Berger Problem with
Common Reconstruction Constraint,” 1ZS, March 2—4, 2016.
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Other Connections (Cont.)

@ Information Combining
IY;UX)=I1IU;Y)+ I(X;Y) - I(U; X) (since X =Y - U)

Since I(X;Y) is given and I(Y;U) = R, maximizing I(U; X) is equivalent
to minimizing I(Y; U, X).

- |. Sutskover, S. Shamai and J. Ziv, “"Extremes of Information Combining”,
IEEE Trans. Inform. Theory, vol. 51, no. 4, pp. 1313-1325, April 2005.

- I. Land and J. Huber, "Information combining,” Foundations and trends in
Commun. and Inform. Theory, vol. 3, pp. 227-330, Nov. 2006.
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Other Connections (Cont.)

o Hypothesis Testing
Let (X™;Y™) be an n length, iid sequence of pairs (X,Y"). Assume that the
sequences had been produced by two possible probability measures:

HO: PxPy: (X,Y) Independent random variables.
H1l: Pxy: (X;Y) Dependentrandom variables.

X™ is available at the destination, and Y™, is encoded at rate R.

= For n — 00, the Stein error exponent (normalized by n), of the
Neuman-Pearson type Il error: (the sequences were governed by HO,
while the decision was H1), is lower bounded by:

max I(X;U),IY;U)SR: X-Y -U,

- (that is the information bottleneck result) for any type | decision error
(the sequences were governed by H1, while the decision was HO) < e.

R. Ahlswede and I. Csiszar, “Hypothesis Testing with Communication
Constraints,” |IEEE Trans. Inform. Theory, vol. IT-32, no. 4, pp. 533-542,
July 1986.
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Other Connections (Cont.)

o Compound Wiretap Channel

e X —Y —U, (X-input, Y-legitimate receiver, U-eavesdropper).
The wiretap capacity is:

I(X;Y) - I(X;U).

@ The compound degraded wiretap channel:
The wiretapper can have anything, satisfying I(Y;U) < C.

) Evidently, as known [Liang-Kramer-Poor-Shamai, EURASIP 2009)],

[Bjelakovic-Boche-Sommerfeld, Problems of Information Transmission, 2013]:

- The wiretap capacity is min : I(X;Y) — I(X;U), over the allowable set:

I(Y;U) < C, which is the bottleneck solution.
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Other Connections (Cont.)

o Wyner-Ahlswede-Korner Problem

If X and Y are encoded at rates Rx and Ry, respectively. For given
Ry = R, the minimum rate Rx that is needed to recover X losslessly is

R%(R) = min H(X|U
x(R) p(uly) : [(U;Y) < R (X10)

So, we get

max I(U; X)=H(X)—- R%(R
p(uly) : I(U;Y)<R ( ) ( ) X( )

- R. F. Ahlswede and J. Korner, “Source coding with side information and a converse for
degraded broadcast channels”, IEEE Trans. on Info. Theory, Vol. 21, pp. 629-637, 1975.

- A. D. Wyner, “On source coding with side information at the decoder”,
IEEE Trans. on Info. Theory, Vol. 21, pp. 294-300, 1975.



N
Vector Gaussian Information Bottleneck

@ (X,Y) jointly Gaussian, X € RY and Y € RM

@ Optimal encoding Py|y is a noisy linear projection to a subspace whose dimensionality is
determined by the bottleneck Lagrangian multiplier 3
[Chechik-Globerson-Tushby-Weiss, '05]

U=AY+2Z, Z~N(0,I)

where
[0T;...;07], if 0<B< 8
[cavT;0T;...;07], if B <B<pBS
A= lonvlseav]i07s. ;0] if 5 < B < B5
and {v?, ... ,v%} are the left eigenvectors of Equ;l, sorted by their ascending
eigenvalues {A1,..., An}; BE = 1/(1 — X;) are critical 3 values; r; = vI 3, v; and

o — [B(1—X)—1
Airg

Rate-Information Trade-off Gaussian Vector Channel [Winkelbauer-Matz, ISIT'14].
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CEO Source Coding Problem under Log-Loss

Ry

Encoder 1

> X : Eldig(X; X)) < D

Decoder

Ry

Encoder K

o CEO source coding problem under log-loss distortion:

diog (, &) := log <$(1$>>

where & € P(X) is a probability distribution on X.
@ Characterization of rate-distortion region in [Courtade-Weissman'14]
o Key step: log-loss admits a lower bound in the form of conditional entropy of

the source conditioned on the compression indices:

nD > Eldiog(X™; X™)] > H(X"|Jx) = H(X™) — I(X"; Jx)



Distributed Information Bottleneck

Ry

Encoder 1

> X A<I(X;X)

Decoder

Ry

Encoder K

@ Information Bottleneck introduced by [Tishby’99] and [Witsenhausen'80]
“Indirect Rate Distortion Problems”, IT-26, no. 5, pp. 518-521, Sept. 1980.

@ It is a CEO source-coding problem under log-loss!

Theorem (Distributed Information Bottleneck [ Estella-Zaidi, 125’18 ] )

The D-IB region is the set of all tuples (A, Ry, ..., Rk) which satisfy

A<D [Re—I(Yi; UnlX, Q)] + I(X;Use|Q),  forall§ C X
kes

for some joint pmf p(q)p(z) [Ty P(yr|z) TTrey p(urlye, @)-
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Vector Gaussian Distributed Information Bottleneck

e (Yy, -+, Yg,X) jointly Gaussian, Y € RY and X € RM,
Y, =H,. X+ Nk, N ~ N(O, Enk)

@ Optimal encoding P, |y, is Gaussian and Q = () [Estella-Zaidi'17]

Theorem ([Estella-Zaidi, 12S'18], [Ugur-Aguerri-Zaidi, arxiv:1811.03933] )

If (X,Y1,...,Yx) are jointly Gaussian, the D-IB region is given by the set of all
tuples (A, Ry, ..., Ry) satisfying that for all $ C X

A < " [Ry +log [T — By + log
keS8

ke8¢

for some 0 < By, < I, where H, = 35,/*H,XX?, and achievable with
P (Wklyr, q) = CN(yk, Z2(Br — DEH?)

@ Reminiscent of the sum-capacity in Gaussian Oblivious CRAN with Constant
Gaussian Input constraint.
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Example
.
Ny a5l ————
R e
Enc. 1 3l
NI
X ~N(0,1) S X o
g <
R g2 //
—>| Enc. 2 2
g 150 //
Y) = /surX + Ny, with N ~ N(0,1), k= 1,2 W / oy —
Distributed encoding (Theorem)
05} Independent PtP compression il
Upper bound (Collaborative encoding)
0 1 2 3 4 5 6 7 8 9 10
e Optimal information (relevance): Rate R

A*(R,snr) = % log (1 + 2snr exp(—4R) (exp(4R) + snr — \/snr2 + (1+ 2snr) exp(4R)>
o Collaborative encoding upper bound: (Y7,Y3) encoded at rate 2R
Ayp(R,sr) = % log (1 + 2snr) — % log (1 + 2snr exp(74R))
@ Lower bound: Y; and Y5 independently encoded
App(R,snr) = % log (1 + 2snr — snr exp(72R)> — % log (1 + snr exp(f2R)>
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Oblivious Relay Processing-CRAN System

my, F1,Q ~| UE;

X7 (F1, My, QM)

mp, Fr,Q ~| UEL

X (Fr, ML,Q")

Channel

Q. .80 Fi,. FL,Q
¥
el

ES

CP

Vit Cxe g
Relg

@ Q" way easier to share, (e.g., on/off activity ).

@ Memoryless Channel:

@ Userle{l,...,L}:
@ Relay k€ {1,...,K}:

@ Decoder:

L, |72 x

o7 1,150,721 x [1,27R] x 9 — X

Py, |y |X1,.,X

Q.00

@ Resource-sharing random variable Q™ available at all terminals [Simeone et al’11].

gp Y™ x Q" — [1,27C%)

cex [1,27CK] x Q™ = [1,2"F1] x L x (1,27
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Capacity Region of a Class of CRAN Channels
Theorem (Aguerri-Zaidi-Caire-Shamai 'IT19)

For the class of discrete memoryless channels satisfying

Yk %XL %Yg{\k

with oblivious relay processing and enabled resource-sharing, a rate tuple (Ra, . ..

achievable if and only if for all T C £ and for all § C X,

SR <3 [Cs — I(Ya; Usl X, Q)] + I(X; Use | Xoe, Q)

teT sSES

for some joint measure of the form

L K K
Pq HPXlIQ HPYMXL HPUk‘Yk7Q7
=1 k=1 k=1

with the cardinality of Q bounded as |Q| < K + 2.
= Equivalent to Noisy Network Coding [Lim-Kim-El Gamal-Chung, IT '11].

= Directly related to quantize-map-forward (QMF)
[Avestimehr-Diggavi-Tian-Tse, FnT'15, and references therein].




Some Perspectives

@ Optimal input distributions for the input power constrained Gaussian bottleneck.

Discrete signaling is already known to sometimes outperform Gaussian signaling for
single-user Gaussian CRAN [Sanderovich-Shamai-Steinberg-Kramer '08].

- It is conjectured that the optimal input distribution is discrete.

@ Universal Distortion: X € X — features, V' — observation,
E(X,f(V)) distortion, f(V') € X — estimate:

f*(-) optimal estimate: L*(X|V) = }I(lf) ]EE(ny(V))

2
Example: MMSE — ]E(X — f*(V)) , [1(V) =E(X[V)
|| € ||loo=supf(-,-), L*(X|Y) — o subGaussian or £(-,-) uniformly bounded.

Il £oo |l
V2
o |l

| : -Y — inder
g5 HOGY) —I(GU)} X =¥ — U, [Linder, 20

=L (X|U) — L*(X]Y) < I(Y; X|U)

IB = max I(X;U), I(Y;U) < R relevant to any distortion measure.
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Some Perspectives cont.’

@ Two sided Information Bottleneck: For: V — X —Y — U, find:
max I(U; V) subjected to: I(V; X) < Ry, I(U;Y) < Rs.

e Entropy constaint bottleneck: X —Y — U max I(X;U) under the constraint
H(U) < R practical applications: LZ distortionless compression.
= U = f(Y) is a deterministic function [Homri-Peleg-Shamai, TCOM, Nov.'18].

- The The deterministic bottleneck: advantages in complexity as compared to
a classical bottleneck: [Strouse-Schwab, Neural Comp.'17].



Some Perspectives cont.’

@ Privacy Funnel, dual of bottleneck: X —Y — U, minimize: I(X;U), under
the constraint: I(Y;U) = R. [Calmon-Makhdoumi-Medard-Varia-Christiansen-Duffy 1T2017].

e Direct connection to Information combining, maximize:
I(Y;U,X)=1(X;Y)+ I(U;Y) — I(U; X), under the constraint:
I(U;Y)=R.

e Example: (X,Y") binary symmetric connected via a BSC, X — Y.
The channel Y — U is an Erasure Channel.

o Example (Ordentlich-Shamai): For the Gaussian model: Y = /(snr) X + N,
where (X, N) are unit norm independent Gaussians: Take U to be a
deterministic function of Y, say describes the m last digits of a b long
(b = o0) binary description of Y, such that I(U;Y)=H({U) =R (mis R
dependent). Evidently I(U; X) — 0, as I(Y;U,X) - R+ I(X;Y).

o Helper problem [Bross-Lapidoth, ITW2019]:Y = X + N, X, N independent finite
differential entropy. Noise helper: I(N;U) = R. Direct solution via
information combining (Ordentlich-Shamai): We have: Y — N — U, and
(example above): I(N;Y,U) =I(N;Y)+ R=I(X;Y,U)=1(X;Y)+ R.
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Thank you!



