Bottleneck Problems: Connections, Applications and Implications

Shlomo Shamai

Technion—Israel Institute of Technology
sshlomo@ee.technion.ac.il
Views reflected in joint studies with:
A. Zaidi, I.E. Auguerri, G. Caire, O. Simeone and S-H. Park

2020 Workshop on Coding, Cooperation, and Security in Modern Communication Networks (COCO 2020): July 16, 2020

Outline

* Information Bottleneck:
* Connections:
- Remote Source Coding.
- Common Reconstruction.
- Information Combining.
- Wyner-Ahlswede-Korner Problem.
- Efficiency of Investment Information.
- Hypothesis Testing.
- Compound Wiretap Channel.
* Some Perspectives

Information Bottleneck

$$
X \longrightarrow Y \longrightarrow U
$$

- Efficiency of a given representation $U=f(Y)$ measured by the pair Rate (or Complexity): $I(U ; Y)$ and Information (or Relevance): $I(U ; X)$
- Information $I(X ; U)$ can be achieved by OBLIVIOUS coding Y while with the logarithmic distortion with respect to X
- Single letter-wise, U is not necessarily a deterministic function of Y
- The non-oblivious bottleneck problem is immediate as the $\min (I(X ; Y), R)$ is achievable by having the relay decoding the message transmitted by X
- The bottleneck problem connects to many timely aspects, such as 'deep learning' [Tishby-Zaslavsky, ITW'15].

Digression: Learning via the Information Bottleneck Method

Limited Complexity

Features Observation
Encoder
Decoder
Estimate

- Preserving all the information about X that is contained in Y, i.e., $I(X ; Y)$, requires high complexity (in terms of minimum description coding length).
- Other measures of complexity may be (Vapnik-Chervonenkis) VC-dimension, covering numbers, ..
- Efficiency of a given representation $\mathbf{U}=f(\mathbf{Y})$ measured by the pair

$$
\text { Complexity: } I(U ; Y) \quad \text { and } \quad \text { Relevance: } I(U ; X)
$$

- Example: $\mathbb{E}\left(x-f^{*}(v)\right)^{2}, f^{*}(v)=\mathbb{E}(x \mid v)$

$$
\begin{array}{llll}
\max _{p(u \mid x)} I(U ; X) & \text { s.t. } & I(U ; Y) \leq R, & \text { for } \\
\min ^{2} I(U ; Y) & \text { s.t. } & I(U ; X) \geq \Delta, & \text { for } \\
0 \leq \Delta \leq I(X ; Y)
\end{array}
$$

Basically, a Remote Source Coding Problem!

Latent Space

Features Observation Encoder
Decoder
Estimate

- Reconstruction at decoder is under log-loss measure,

$$
R(\Delta)=\min _{p(u \mid y)} I(U ; Y)
$$

where the minimization is over all conditional pmfs $p(u \mid y)$ such that

$$
\mathbb{E}\left[\ell_{\log }(X, U)\right] \leq H(X)-H(X \mid U)=H(X)-\Delta
$$

- R. L. Dobrushin and B. S. Tsybakov, "Information transmission with additional noise", IRE Tran. Info. Theory, Vol. IT-8, pp. 293-304, 1962.
- H. Witsenhausen, A. Wyner, "A conditional entropy bound for a pair of discrete random variables",

IEEE Trans. on Info. Theory, Vol. 21, pp. 493-501, 1975.

- Solution also coined as the Information Bottleneck Method [Tishby'99]

$$
L_{\mathrm{IB}}\left(\beta, P_{X, Y}\right)=\min _{p(u \mid y)} I(Y ; U)-\beta I(X ; U)
$$

Other Connections

- Efficiency of Investment Information
- X - Stock Market Data.
Y - Correlated Information about X.
$\Delta(R)$ the maximum increase in growth rate when Y is described to the investor at rate R (a logarithmic distortion that relates to the Wyner-Ahlswede-Korner Problem).
- Solution of the bottleneck for: (X, Y) are binary and (X, Y) Gaussian (horse race examples).
- E. Erkip and T. M. Cover, "The Efficiency of Investment Information", IEEE Trans. on Info. Theory, Vol. 44, May 1998.

Other Connections (Cont.)

- Common Reconstruction. Because $X \mapsto Y \multimap U$, we have

$$
\begin{aligned}
I(U ; X) & =I(U ; Y)-I(U ; Y \mid X) \\
& \leq R-I(U ; Y \mid X)
\end{aligned}
$$

- Y. Steinberg, "Coding and common reconstruction", IEEE Trans. on Inform. Theory, vol. 55, no. 11, pp. 4995-5010, Nov. 2009 (X - side information is not used for the 'source' Y common reconstruction).
* Heegard-Berger Problem with Common Reconstruction: Y-source, to be commonly reconstructed (with logarithmic distortion), with and without side information (X), as to maximize $I(U ; X)$.
- M. Benammar, A. Zaidi, "Rate-Distortion of a Heegard-Berger Problem with Common Reconstruction Constraint," IZS, March 2-4, 2016.

Other Connections (Cont.)

- Information Combining

$$
I(Y ; U, X)=I(U ; Y)+I(X ; Y)-I(U ; X) \quad(\text { since } \quad X \multimap Y \multimap U)
$$

Since $I(X ; Y)$ is given and $I(Y ; U)=R$, maximizing $I(U ; X)$ is equivalent to minimizing $I(Y ; U, X)$.

- I. Sutskover, S. Shamai and J. Ziv, "Extremes of Information Combining", IEEE Trans. Inform. Theory, vol. 51, no. 4, pp. 1313-1325, April 2005.
- I. Land and J. Huber, "Information combining," Foundations and trends in Commun. and Inform. Theory, vol. 3, pp. 227-330, Nov. 2006.

Other Connections (Cont.)

- Hypothesis Testing

Let $\left(X^{n} ; Y^{n}\right)$ be an n length, iid sequence of pairs (X, Y). Assume that the sequences had been produced by two possible probability measures:

$$
\begin{array}{llll}
H 0: & P_{X} P_{Y}: & (X, Y) & \text { Independent random variables. } \\
H 1: & P_{X, Y}: & (X ; Y) & \text { Dependent random variables. }
\end{array}
$$

X^{n} is available at the destination, and Y^{n}, is encoded at rate R.
\Rightarrow For $n \rightarrow \infty$, the Stein error exponent (normalized by n), of the Neuman-Pearson type II error: (the sequences were governed by H0, while the decision was H1), is lower bounded by:

$$
\max I(X ; U), I(Y ; U) \leq R: X-Y-U,
$$

- (that is the information bottleneck result) for any type I decision error (the sequences were governed by H 1 , while the decision was H 0$) \leq \varepsilon$.
R. Ahlswede and I. Csiszár, "Hypothesis Testing with Communication Constraints," IEEE Trans. Inform. Theory, vol. IT-32, no. 4, pp. 533-542, July 1986.

Other Connections (Cont.)

- Compound Wiretap Channel
- $X-Y-U$, (X-input, Y-legitimate receiver, U-eavesdropper). The wiretap capacity is:

$$
I(X ; Y)-I(X ; U)
$$

- The compound degraded wiretap channel:

The wiretapper can have anything, satisfying $I(Y ; U) \leq C$.

- Evidently, as known [Liang-Kramer-Poor-Shamai, EURASIP 2009], [Bjelakovic-Boche-Sommerfeld, Problems of Information Transmission, 2013]:
- The wiretap capacity is $\min : I(X ; Y)-I(X ; U)$, over the allowable set: $I(Y ; U) \leq C$, which is the bottleneck solution.

Other Connections (Cont.)

- Wyner-Ahlswede-Körner Problem

If X and Y are encoded at rates R_{X} and R_{Y}, respectively. For given $R_{Y}=R$, the minimum rate R_{X} that is needed to recover X losslessly is

$$
R_{X}^{\star}(R)=\min _{p(u \mid y): I(U ; Y) \leq R} H(X \mid U)
$$

So, we get

$$
\max _{p(u \mid y): I(U ; Y) \leq R} I(U ; X)=H(X)-R_{X}^{\star}(R)
$$

- R. F. Ahlswede and J. Korner, "Source coding with side information and a converse for degraded broadcast channels", IEEE Trans. on Info. Theory, Vol. 21, pp. 629-637, 1975.
- A. D. Wyner, "On source coding with side information at the decoder", IEEE Trans. on Info. Theory, Vol. 21, pp. 294-300, 1975.

Vector Gaussian Information Bottleneck

- (\mathbf{X}, \mathbf{Y}) jointly Gaussian, $\mathbf{X} \in \mathbb{R}^{N}$ and $\mathbf{Y} \in \mathbb{R}^{M}$
- Optimal encoding $P_{U \mid Y}$ is a noisy linear projection to a subspace whose dimensionality is determined by the bottleneck Lagrangian multiplier β [Chechik-Globerson-Tushby-Weiss, '05]

$$
\mathbf{U}=\mathbf{A} \mathbf{Y}+\mathbf{Z}, \quad \mathbf{Z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})
$$

where

$$
\mathbf{A}= \begin{cases}{\left[\mathbf{0}^{T} ; \ldots ; \mathbf{0}^{T}\right],} & \text { if } 0 \leq \beta \leq \beta_{1}^{c} \\ {\left[\alpha_{1} \mathbf{v}_{1}^{T} ; \mathbf{0}^{T} ; \ldots ; \mathbf{0}^{T}\right],} & \text { if } \beta_{1}^{c} \leq \beta \leq \beta_{2}^{c} \\ {\left[\alpha_{1} \mathbf{v}_{1}^{T} ; \alpha_{2} \mathbf{v}_{2}^{T} ; \mathbf{0}^{T} ; \ldots ; \mathbf{0}^{T}\right],} & \text { if } \beta_{2}^{c} \leq \beta \leq \beta_{3}^{c} \\ \vdots & \end{cases}
$$

and $\left\{\mathbf{v}_{1}^{T}, \ldots, \mathbf{v}_{N}^{T}\right\}$ are the left eigenvectors of $\boldsymbol{\Sigma}_{y \mid x} \boldsymbol{\Sigma}_{y}^{-1}$, sorted by their ascending eigenvalues $\left\{\lambda_{1}, \ldots, \lambda_{N}\right\} ; \beta_{i}^{c}=1 /\left(1-\lambda_{i}\right)$ are critical β values; $r_{i}=\mathbf{v}_{i}^{T} \boldsymbol{\Sigma}_{y} \mathbf{v}_{i}$ and

$$
\alpha_{i}=\sqrt{\frac{\beta\left(1-\lambda_{i}\right)-1}{\lambda_{i} r_{i}}}
$$

Rate-Information Trade-off Gaussian Vector Channel [Winkelbauer-Matz, ISIT'14].

CEO Source Coding Problem under Log-Loss

- CEO source coding problem under log-loss distortion:

$$
d_{\log }(x, \hat{x}):=\log \left(\frac{1}{\hat{x}(x)}\right)
$$

where $\hat{x} \in \mathcal{P}(X)$ is a probability distribution on X.

- Characterization of rate-distortion region in [Courtade-Weissman'14]
- Key step: log-loss admits a lower bound in the form of conditional entropy of the source conditioned on the compression indices:

$$
n D \geq \mathrm{E}\left[d_{\log }\left(X^{n} ; \hat{X}^{n}\right)\right] \geq H\left(X^{n} \mid J_{\mathcal{K}}\right)=H\left(X^{n}\right)-I\left(X^{n} ; J_{\mathcal{K}}\right)
$$

Distributed Information Bottleneck

- Information Bottleneck introduced by [Tishby'99] and [Witsenhausen'80] "Indirect Rate Distortion Problems", IT-26, no. 5, pp. 518-521, Sept. 1980.
- It is a CEO source-coding problem under log-loss!

Theorem (Distributed Information Bottleneck [Estella-Zaidi, IZS'18])

The D-IB region is the set of all tuples $\left(\Delta, R_{1}, \ldots, R_{K}\right)$ which satisfy

$$
\Delta \leq \sum_{k \in \mathcal{S}}\left[R_{k}-I\left(Y_{k} ; U_{k} \mid X, Q\right)\right]+I\left(X ; U_{\mathcal{S}^{c}} \mid Q\right), \quad \text { for all } \mathcal{S} \subseteq \mathcal{K}
$$

for some joint pmf $p(q) p(x) \prod_{k=1}^{K} p\left(y_{k} \mid x\right) \prod_{k=1}^{K} p\left(u_{k} \mid y_{k}, q\right)$.

Vector Gaussian Distributed Information Bottleneck

- ($\left.\mathbf{Y}_{1}, \cdots, \mathbf{Y}_{K}, \mathbf{X}\right)$ jointly Gaussian, $\mathbf{Y}_{k} \in \mathbb{R}^{N}$ and $\mathbf{X} \in \mathbb{R}^{M}$,

$$
\mathbf{Y}_{k}=\mathbf{H}_{k} \mathbf{X}+\mathbf{N}_{k}, \quad \mathbf{N}_{k} \sim \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Sigma}_{\mathbf{n}_{k}}\right)
$$

- Optimal encoding $P_{U_{k} \mid Y_{k}}^{*}$ is Gaussian and $Q=\emptyset$ [Estella-Zaidi'17]

Theorem ([Estella-Zaidi, IZS'18], [Ugur-Aguerri-Zaidi, arxiv:1811.03933])

If $\left(\mathbf{X}, \mathbf{Y}_{1}, \ldots, \mathbf{Y}_{K}\right)$ are jointly Gaussian, the D-IB region is given by the set of all tuples $\left(\Delta, R_{1}, \ldots, R_{L}\right)$ satisfying that for all $\mathcal{S} \subseteq \mathcal{K}$

$$
\Delta \leq \sum_{k \in S}\left[R_{k}+\log \left|\mathbf{I}-\mathbf{B}_{k}\right|\right]+\log \left|\sum_{k \in \mathcal{S}^{c}} \overline{\mathbf{H}}_{k}^{H} \mathbf{B}_{k} \overline{\mathbf{H}}_{k}+\mathbf{I}\right|
$$

for some $\mathbf{0} \preceq \mathbf{B}_{k} \preceq \mathbf{I}$, where $\overline{\mathbf{H}}_{k}=\boldsymbol{\Sigma}_{\mathbf{n}_{k}}^{-1 / 2} \mathbf{H}_{k} \boldsymbol{\Sigma}_{\mathbf{x}}^{1 / 2}$, and achievable with

$$
p^{*}\left(\mathbf{u}_{k} \mid \mathbf{y}_{k}, q\right)=\operatorname{CN}\left(\mathbf{y}_{k}, \Sigma_{\mathbf{n}_{k}}^{1 / 2}\left(\mathbf{B}_{k}-\mathbf{I}\right) \boldsymbol{\Sigma}_{\mathbf{n}_{k}}^{1 / 2}\right)
$$

- Reminiscent of the sum-capacity in Gaussian Oblivious CRAN with Constant Gaussian Input constraint.

Example

$\Delta^{*}(R, \mathrm{snr})=\frac{1}{2} \log \left(1+2 \mathrm{snr} \exp (-4 R)\left(\exp (4 R)+\mathrm{snr}-\sqrt{\mathrm{snr}^{2}+(1+2 \mathrm{snr}) \exp (4 R)}\right)\right.$

- Collaborative encoding upper bound: $\left(Y_{1}, Y_{2}\right)$ encoded at rate $2 R$

$$
\Delta_{\mathrm{ub}}(R, \mathrm{sr})=\frac{1}{2} \log (1+2 \mathrm{snr})-\frac{1}{2} \log (1+2 \mathrm{snr} \exp (-4 R))
$$

- Lower bound: Y_{1} and Y_{2} independently encoded

$$
\Delta_{l b}(R, \mathrm{snr})=\frac{1}{2} \log (1+2 \mathrm{snr}-\mathrm{snr} \exp (-2 R))-\frac{1}{2} \log (1+\mathrm{snr} \exp (-2 R))
$$

Oblivious Relay Processing-CRAN System

- Resource-sharing random variable Q^{n} available at all terminals [Simeone et al'11].
- Q^{n} way easier to share, (e.g., on/off activity).
- Memoryless Channel:

$$
\begin{aligned}
& P_{Y_{1}}, \ldots, Y_{K} \mid X_{1}, \ldots, X_{1} \\
& \phi_{l}^{n}:\left[1,\left|X_{l}\right|^{n 2^{n R_{l}}}\right] \times\left[1,2^{n R_{l}}\right] \times Q^{n} \rightarrow X_{l}^{n}
\end{aligned}
$$

- User $l \in\{1, \ldots, L\}$:
- Relay $k \in\{1, \ldots, K\}: \quad g_{k}^{n}: y_{k}{ }^{n} \times Q^{n} \rightarrow\left[1,2^{n C_{k}}\right]$
- Decoder:

$$
\psi^{n}:\left[1,\left|X_{1}\right|^{n 2^{n R_{1}}}\right] \times \cdots \times\left[1,2^{n C_{K}}\right] \times Q^{n} \rightarrow\left[1,2^{n R_{1}}\right] \times \ldots \times\left[1,2^{n R_{L}}\right]
$$

Capacity Region of a Class of CRAN Channels

Theorem (Aguerri-Zaidi-Caire-Shamai 'IT19)

For the class of discrete memoryless channels satisfying

$$
Y_{k} \multimap X_{\mathcal{L}} \multimap Y_{\mathcal{K} \backslash k}
$$

with oblivious relay processing and enabled resource-sharing, a rate tuple $\left(R_{1}, \ldots, R_{L}\right)$ is achievable if and only if for all $\mathcal{T} \subseteq \mathcal{L}$ and for all $\mathcal{S} \subseteq \mathcal{K}$,

$$
\sum_{t \in \mathcal{T}} R_{t} \leq \sum_{s \in \mathcal{S}}\left[C_{s}-I\left(Y_{s} ; U_{s} \mid X_{\mathcal{L}}, Q\right)\right]+I\left(X_{\mathcal{T}} ; U_{\mathcal{S}^{c}} \mid X_{\mathcal{T}^{c}}, Q\right)
$$

for some joint measure of the form

$$
P_{Q} \prod_{l=1}^{L} P_{X_{l} \mid Q} \prod_{k=1}^{K} P_{Y_{k} \mid X_{\mathcal{L}}} \prod_{k=1}^{K} P_{U_{k} \mid Y_{k}, Q}
$$

with the cardinality of Q bounded as $|Q| \leq K+2$.
\Rightarrow Equivalent to Noisy Network Coding [Lim-Kim-El Gamal-Chung, IT '11].
\Rightarrow Directly related to quantize-map-forward (QMF) [Avestimehr-Diggavi-Tian-Tse, FnT'15, and references therein].

Some Perspectives

- Optimal input distributions for the input power constrained Gaussian bottleneck. Discrete signaling is already known to sometimes outperform Gaussian signaling for single-user Gaussian CRAN [Sanderovich-Shamai-Steinberg-Kramer '08].
- It is conjectured that the optimal input distribution is discrete.
- Universal Distortion: $X \in X$ - features, V - observation, $\ell(X, f(V))$ distortion, $f(V) \in \mathcal{X}$ - estimate:
$f^{*}(\cdot)$ optimal estimate: $L^{*}(X \mid V)=\inf _{f(\cdot)} \mathbb{E} \ell(X, f(V))$
Example: MMSE $-\mathbb{E}\left(X-f^{*}(V)\right)^{2}, f^{*}(V)=\mathbb{E}(X \mid V)$
$\|\ell\|_{\infty}=\sup \ell(\cdot, \cdot), L^{*}(X \mid Y)-\sigma$ subGaussian or $\ell(\cdot, \cdot)$ uniformly bounded.

$$
\begin{aligned}
& \Rightarrow L^{*}(X \mid U)-L^{*}(X \mid Y) \leq \frac{\left\|\ell_{\infty}\right\|}{\sqrt{2}} I(Y ; X \mid U) \\
& =\frac{\left\|\ell_{\infty}\right\|}{\sqrt{2}}\{I(X ; Y)-I(X ; U)\}, X-Y-U,[\text { Linder, 20] }
\end{aligned}
$$

$I B \Rightarrow \max I(X ; U), I(Y ; U) \leq R$ relevant to any distortion measure.

Some Perspectives cont.'

- Two sided Information Bottleneck: For: $V-X-Y-U$, find:

$$
\max I(U ; V) \text { subjected to: } I(V ; X) \leq R_{1}, I(U ; Y) \leq R_{2} .
$$

- Entropy constaint bottleneck: $X-Y-U \max I(X ; U)$ under the constraint $H(U) \leq R$ practical applications: LZ distortionless compression. $\Rightarrow U=f(Y)$ is a deterministic function [Homri-Peleg-Shamai, TCOM, Nov.' ${ }^{18]}$.
- The The deterministic bottleneck: advantages in complexity as compared to a classical bottleneck: [Strouse-Schwab, Neural Comp.'17].

Some Perspectives cont.'

- Privacy Funnel, dual of bottleneck: $X-Y-U$, minimize: $I(X ; U)$, under the constraint: $I(Y ; U)=R$. [Calmon-Makhdoumi-Medard-Varia-Christiansen-Duffy IT2017].
- Direct connection to Information combining, maximize: $I(Y ; U, X)=I(X ; Y)+I(U ; Y)-I(U ; X)$, under the constraint: $I(U ; Y)=R$.
- Example: (X, Y) binary symmetric connected via a BSC, $X-Y$. The channel $Y-U$ is an Erasure Channel.
- Example (Ordentlich-Shamai): For the Gaussian model: $Y=\sqrt{(\mathrm{snr})} X+N$, where (X, N) are unit norm independent Gaussians: Take U to be a deterministic function of Y, say describes the m last digits of a b long $(b \rightarrow \infty)$ binary description of Y, such that $I(U ; Y)=H(U)=R(m$ is R dependent). Evidently $I(U ; X) \rightarrow 0$, as $I(Y ; U, X) \rightarrow R+I(X ; Y)$.
- Helper problem [Bross-Lapidoth, ITW2019]: $Y=X+N, X, N$ independent finite differential entropy. Noise helper: $I(N ; U)=R$. Direct solution via information combining (Ordentlich-Shamai): We have: $Y-N-U$, and (example above): $I(N ; Y, U)=I(N ; Y)+R \Rightarrow I(X ; Y, U)=I(X ; Y)+R$.

Thank you!

