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Abstract—The single user parallel multiple input multiple
output (MIMO) slow (block) flat fading channel, subject to a
two-state fading per channel with additive white Gaussian noise
(AWGN) is examined. The fading in each of the parallel channels
is interpreted as state, which takes on two values with prescribed
probabilities. We focus here on the variable to fixed channel rate
(the broadcast approach) where a novel view of extension of
El-Gamal’s capacity of degraded broadcast product channels is
examined. The optimized average rate is analytically derived over
the parameters of the proposed scheme, and comparison to the
simple scheme that employs the broadcast approach per each of
the parallel channels separately. The achievable improvement in
rates under the latency demand (transmission in a single fading
block) is reflected.

I. INTRODUCTION

Recent growth in bandwidth requirements of the 5G wireless
communications networks, under stringent low latency require-
ments lead to vast contributions of innovations. This work
focuses on the slow (block) fading parallel MIMO channel [1],
where channel state is known at the receiver only. Under
this channel model the transmitter may adopt a broadcast
approach [2], which can optimize the expected transmission
rate under no transmission channel state information (CSI),
which is essentially characterized by the variable-to-fixed
coding [3].

The broadcast approach [2] for slow flat-fading channels [4]
uses the degradedness nature of the fading channel and applies
multi-layer coding, to deliver variable-to-fixed coding over
block fading channels. The amount of successfully decoded
layers depends on the channel realization. For deeply fad-
ing channels few layers are decoded, while for high fading
gains, more layers can be decoded. Rate and power allocation
per layer are optimized to maximize the expected rate. The
broadcast approach can be compared to the ergodic bound [5],
achievable given transmit CSI, and other contributions such as
[6]–[14].

El-Gamal [15] composed two degraded broadcast chan-
nels [16], [17] into a three-user setup: an encoder with two
outputs, each driving a dual-output broadcast channel; two
decoders, each is input by one less-noisy broadcast channel
output and one more-noisy output of the other channel (called
‘unmatched’). This was coined degraded broadcast product
channel. For the AWGN case, the capacity region (private and
common rates) was derived.

In this paper, the MIMO setup for the broadcast approach
is revisited, with new tools that differ from those in [2], [18].
This is by analyzing the finite state parallel MIMO channel,
where El-Gamal’s capacity region [15] is used to address
the multi-layering optimization problem for maximizing the

expected rate of a two-state fading [19]–[21] parallel MIMO
channel.

II. CHANNEL MODEL

Consider a single user parallel MIMO channel setting,
where a message w is to be block-encoded and sent through
a diagonal matrix two-input two-output flat fading channel
depicted in Fig. 1. The channel is given by

Y1 = H1X1 + N1,

Y2 = H2X2 + N2,
(1)

where Yi ∈ Cn is the received n-length symbols vector on
channel i ∈ 1, 2, Xi ∈ Cn is the transmitted vector over
channel i which satisfies the power constraint E[|Xi|2] ≤ P
, i ∈ 1, 2. The additive noise vector is denoted Ni ∈ Cn
and its elements are complex normal i.i.d with zero mean and
unit variance CN (0, 1). The i-th sub-channel fading coefficient
is denoted Hi ∈ R+, is drawn by some probability function
PH(·) and its value remains fixed during a block transmission,
changes along blocks independently, and H1 and H2 are
statistically independent. These channel states are known only
to the receiver side and are not fed back to the transmitter.
With no loss of generality, the channel fading Hi is assumed
to be real and positive.

For a given realization set of channel states {H1, H2} known
to both the transmitter and receiver, the per-block Shannon
capacity is well known [1]. Since H1 and H2 are unknown to
the transmitter, setting the rates to withstand the worst (lowest)
possible Hi may occur a great deal of rate loss. Variable-to-
fixed coding allows to deliver higher throughput, at the expense
that only parts of the message are decodable, according the
channel conditions. Clearly, the expected achievable rate can
be higher than the worst-case classical capacity. The recovered
message ŵ has different cardinality upon the realization set.

In this work, the channel model is limited to a two-state
symmetric case. Each channel i = 1, 2 can have independent
fading gain realizations Si ∈ {A,B}, state A denotes a fading
coefficient Hi = HA with probability PA; whereas state
B refers to the sub-channel Hi = HB , and |HA| < |HB |,
and is with probability PB = 1 − PA. This is reflected by
the condition PH(h) = PAδ(h − HA) + PBδ(h − HB)
where δ(·) is the kronecker delta.For brevity, denote the
fading gains by ν = |H|2, νa = |HA|2 and νb = |HB |2
and by definition νb > νa. The common power constraint
is given by E[|Xi|2] ≤ P , i = 1, 2. The ergodic capacity of
the two state fading parallel MIMO channel is specified by
Cerg = 2(PA log(1 + Pνa) + PB log(1 + Pνb)).
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Fig. 1: The parallel MIMO block fading channel with channel
state information at receiver. All codewords are of length n.

III. PRELIMINARY: CAPACITY OF DEGRADED GAUSSIAN
BROADCAST PRODUCT CHANNELS

Consider the model introduced in [15]: two receiver
discrete memoryless degraded product broadcast channels.
The Gaussian case was addressed as a special case. A single
transmitter codes two n-length codewords consisting of a
common message w0 ∈ {1, ..., 2nR0} to be decoded by both
users, and two private messages wBA ∈ {1, ..., 2nRBA} and
wAB ∈ {1, ..., 2nRAB}, one for each of the two decoding users.
A single function codes these 3 messages into two codewords;
each undergoes parallel degraded broadcast subchannels{

Y1 = X1 +N11

Z1 = Y1 +N12

{
Z2 = X2 +N21

Y2 = Z2 +N22,

and N11, N21 ∼ CN (0, ν−1
b ) , N21, N22 ∼ CN (0, ν−1

a −ν−1
b ).

As depicted in the bold and red parts of Fig. 2, two users
(namely AB and BA) receive both common and private mes-
sages from the transmitter independently decode the messages.
This is an unmatched setting, as Y1 is less noisy than Z1, alas
Z2 is less noisy than Y2. Hence, each of the users has one less-
noisy channel output alongside another which is the noisier
output of the other sub-channel.

Following Theorem 2 of [15] which shows this case, and
exploiting symmetry for equal power allocation to both sub-
channels, optimal allocation is expected to be achieved by
equal common rate allocation to every user (state). Denoting
ᾱ = 1− α, the capacity region (R0, RBA, RAB) is

R0 ≤ log
(

1 + νaαP
1+νaᾱP

)
+ log

(
1 + νbαP

1+νbᾱP

)

R0 +RBA = R0 +RAB ≤ log
(
1 + νaαP

1+νaᾱP

)
+log(1 + νbP )

R0 +RBA +RAB ≤ log (1 + νbP ) + log
(

1 + νaαP
1+νaᾱP

)

+ log (1 + νbᾱP ) . (2)

IV. MAIN CONTRIBUTION

A. Extended Degraded Gaussian Broadcast Product Channels

The classical product channel is extended by introducing
two dual-input receivers in addition to the original two. The
first has the two more noisy channel outputs (Z1, Y2), whereas
the second gets the two less noisy outputs (Z2, Y1). To support
this, two messages wAA and wBB are added. The total two
n-length codewords are the superposition of three codewords
by independent encoders as follows (X1,X2) = fAA(wAA) +
fcr(w0, wBA, wAB) + fBB(wBB), where subscript cr stands
for "crossed" states ((A,B) or (B,A)). See Fig. 2 for an
illustration.

Stream AA is decoded first, regardless of whether the others
can be decoded (this is done by treating all the other streams as
interference). Then, both streams AB and BA including their
common stream subscripted 0 can be decoded after removing
the AA impact from their decoder inputs (treating the BB
stream as interference). Finally, removing all above decoded
streams allows decoding stream BB. From (2), we have

RAA ≤ 2 log
(

1 + αAAP

ν−1
a +ᾱAAP

)
;

RAA +R0 ≤ 2 log
(

1 + αAAP

ν−1
a +ᾱAAP

)

+ log
(

1 + ααcrP

ν−1
b +(ᾱαcr+αBB)P

)
+ log

(
1 + ααcrP

ν−1
a +(ᾱαcr+αBB)P

)
;

RAA +R0 +RBA = RAA +R0 +RAB

≤ 2 log
(

1 + αAAP

ν−1
a +ᾱAAP

)
+ log

(
1 + ααcrP

ν−1
a +(ᾱαcr+αBB)P

)

+ log
(

1 + αcrP

ν−1
b +αBBP

)
;

RAA +R0 +RBA +RAB

≤ 2 log
(

1 + αAAP

ν−1
a +ᾱAAP

)
+ log

(
1 + αcrP

ν−1
b +αBBP

)

+ log
(

1 + ααcrP

ν−1
a +(ᾱαcr+αBB)P

)
+ log

(
1 + ᾱαcrP

ν−1
b +αBBP

)
;

RAA +R0 +RBA +RAB +RBB

≤ 2 log
(

1 + αAAP

ν−1
a +ᾱAAP

)
+ log

(
1 + αcrP

ν−1
b +αBBP

)

+ log
(

1 + ααcrP

ν−1
a +(ᾱαcr+αBB)P

)
+ log

(
1 + ᾱαcrP

ν−1
b +αBBP

)

+ 2 log
(

1 + αBBP

ν−1
b

)
; (3)

where αAA, αcr, αBB ∈ [0, 1] are the relative power alloca-
tions for the subscripted letters αAA + αcr + αBB = 1, and
α ∈ [0, 1] is the single user private power allocation within the
unmatched channel.

B. Suggested Encoding and Decoding Scheme

Wrapping the extended model of Section IV-A with a
message splitter at the transmitter and channel state dependent
message multiplexer at the receiver enriches the domain. Fig.
3 illustrates the encoding and decoding schemes in full.

During decoding, the 4 possible channel states S = (S1, S2)
impose different decoding capabilities. If S = (A,A), then
gAA(·) can reconstruct wAA to achieve a total rate of
RAA. For S = (B,A), gBA(·) is capable of reconstructing
three messages (wAA, w0, wBA) with sum rate of RAA +
R0 + RBA. Similarly for S = (A,B), gAB(·) reconstructs
(wAA, w0, wAB) with sum rate RAA + R0 + RAB . When
both channels are permissive S = (B,B), all 5 messages
(wAA, w0, wBA, wAB , wBB) are reconstructed at gBB(·) un-
der the rate RAA +R0 +RBA +RAB +RBB .

C. Average Sum Rate

Stitching up all cases with their probabilities, gives rise to
the average rate of the parallel channel of

Ravg = P 2
ARAA + PAPB(RAA +R0 +RAB)

+ PBPA(RAA +R0 +RBA)

+ P 2
B(RAA +R0 +RBA +RAB +RBB). (4)
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ŵ
(AB)
AA ,ŵ
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Fig. 2: Encoding-decoding scheme of the 2 receiver Gaussian degraded product broadcast channel with users: AA,AB,BA,BB
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Fig. 3: Encoding and decoding scheme of the two receiver Gaussian degraded product broadcast channel broadcast approach

Using (3), and since both channels have identical statistics lead
to RAB = RBA, and the achievable average rate is
Ravg = 2(PA + PB)2 log (1 + νaP ) +R0(1− αAA)

+R1(1− αAA − ααcr) +R2(1− αAA − αcr), (5)

where the new notations are
R0(α0) = [(PA + PB)2 − P 2

A] log(1 + νbα0P )

− [(PA + PB)2 + P 2
A] log(1 + νaα0P ), (6)

R1(α1) = P 2
B log(1 + νbα1P )

− [(PA + PB)2 − P 2
A] log(1 + νaα1P ), (7)

R2(α2) = −2PAPB log(1 + νbα2P ). (8)

and the arguements α0 = 1−αAA, α1 = 1−αAA−ααcr and
α2 = 1 − αAA − αcr = αBB . Note that R0(α0) and R1(α1)
are not obliged to be positive, as they can be negative for some
scenarios, and R2(α2) is non-positive by definition.

Denoting the domain D′ of valid power allocations vector
α′ = [α, αAA, αcr, αBB ]T ∈ [0, 1]4 and the operator [x]+ =
max{0, x} yield the following.

Proposition 1. The maximal sum rate of the symmetric two
parallel two state channel over all power allocations is
max
α′∈D′

Ravg(α′) = 2(PA + PB)2 log(1 + νaP )

+ max
0≤αAA≤1

{
R0(1− αAA) +R1(αopt

1 (αAA))
}
,

where
αopt

1 (αAA) = max{0,min{1− αAA, α∗1}}, (9)

α∗1 =
P 2
Bνb − [(PA + PB)2 − P 2

A]νa
[(PA + PB)2 − P 2

A − P 2
B ]νaνbP

, (10)

where the latter solves ∂
∂α1

R1(α∗1) = 0.

Proof. Consider the transform t′ : D′ → D defined by
[α0, α1, α2]T = α = t′(α′T ) = t′

(
[α, αAA, αcr, αBB ]T

)
=

[1 − αAA, 1 − αAA − ααcr, αBB ]T , which is bijective,
with inverse transform t : D → D′ defined by
[α, αAA, αcr, αBB ]T = α′ = t′(α′T ) = t′

(
[α0, α1, α2]T

)
=

[α0−α1

α0−α2
, 1− α0, α0 − α2, α2]T . Bijectiveness leads to

max
α′∈D′

Ravg(α′) = max
α∈D

{
2(PA+PB)2log(1+νaP )+

2∑

i=0

Ri(αi)

}

= 2(PA + PB)2 log (1 + νaP ) + max
α0,α1:

0≤α1≤α0≤1

{R0(α0) +R1(α1)}

The maximization of R2(α2) yields αopt
2 = 0, as R2(α2) is a

decreasing function. Further simplification gives,
max
α′∈D′

Ravg(α′) = 2(PA + PB)2 log (1 + νaP )

+ max
0≤αAA≤1

{
R0(1− αAA) + max

α1:
0≤α1≤1−αAA

R1(α1)

}
.

The inner maximization is done over α1 while αAA is fixed
prior to the maximization. By taking the first derivative w.r.t
α1 and some calculus, optimality is achieved for (9). �
Corollary 2. The optimal power allocation for the state
(B,B) is αopt

BB = 0.

This is true for any set of parameters νa, νb, PA, PB , even
if PB → 1 and νb � νa. Inherently, a penalty occurs when
trying to exploit the double permissive state.

Corollary 3. Under the optimal power allocation,
αopt(αAA) = 1− αopt

1 (αAA)/(1− αAA).
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This removes a degree of freedom in the optimization
problem. Using these corollaries, and the notation α′ =
[α, αAA, αcr, αBB ]T instead of α = [α0, α1, α2]T , we have:

Theorem 4. The maximal sum rate of the symmetric two-
parallel two-state channel over all allocations α′ ∈ D′ is
Ropt

avg = 2(PA + PB)2 log(1 + νaP )

+ max
0≤αAA≤1

{
R0(1−αAA)+R1((1−αAA)·(1−αopt(αAA)))

}

where
αopt(αAA) =

[
min

{
1, 1− P 2

Bνb−[(PA+PB)2−P 2
A]νa

2PA·PB ·νaνbP (1−αAA)

}]
+
. (11)

Denoting the argument of the maximization as αopt
AA, the

optimal power allocation vector is
α′opt = [αopt(αAA), αopt

AA, 1− α
opt
AA, 0]T .

Proof. Use Prop. 1 and note that α1 = 1 − αAA − ααcr =
(1− αAA)(1− α) for the optimal alocation αBB = 0. �

D. Sub Optimal Schemes

For evaluation of the advantage of the joint αAA and α, the
following sub optimal schemes are introduced: a) independent
broadcasting; b) privately broadcasting; and c) only common
broadcasting.

Definition 5. A scheme for which the encoder disjointly
encodes different messages into each single channel of the
parallel channel using the broadcast approach over the fading
channel is denoted independent broadcasting.

The broadcast approach for fading SISO channel (introduced
in [8], elaborated in [2]) relies on two main operations: super-
position coding by layering at the transmitter; and successive
interference cancellation at the receiver. The maximal average
sum rate of the symmetric two parallel two state channel under
independent broadcasting is

Rind-bc,opt
avg = 2(PA + PB) log

(
1+νaP

1+νa(1−αind-bc,opt)P

)

+ 2PB log
(
1 + νb(1− αind-bc,opt)P

)
,

αbc,opt =
[
min

{
1, 1− PBνb−(PA+PB)νa

PAνaνbP

}]
+
. (12)

Definition 6. A scheme for which no power is allocated for
the common stream in the (B,A) and (A,B) states (message
w0) is denoted privately broadcasting.

This scheme is equivalent to setting α = 0 in Theorem
4, thus allocating encoding power from the common stream
(R0 = 0) to the other streams RAA, RAB , RBA and RBB
which achieves optimality for

αprv-bc,opt
AA =

[
min

{
1, 1− [PB−PA]νb−[PB+PA]νa

2PAνaνbP

}]
+
.

Definition 7. A scheme for which all of the crossed state power
is allocated for common stream only (message w0) and no
power is allocated privately (no allocation for messages wAB
and wBA) is denoted only common broadcasting.

This scheme is equivalent to setting α = 1 in Theorem
4, thus allocating encoding power from the private streams
(RAB = RBA = 0) to the other streams RAA, R0 and RBB
which achieves optimality for
αcmn-bc,opt
AA =

[
min

{
1,1− [(PA+PB)2−P 2

A]νb−[(PA+PB)2+P 2
A]νa

2P 2
AνaνbP

}]
+
.

E. Numerical Results

Fig. 4 demonstrates the optimality of the proposed scheme
(Theorem 4). The selected metric is the part of each scheme
as a fraction of ergodic capacity. It is always superior in
comparison to the other sub-optimal schemes, and captures a
large portion of the ergodic capacity which stands as the upper
bound. The sub-optimal methods inferior or superior to other
sub-optimal methods, dependent on the parameters set. Some
parameters sets can make them coincide for all SNR values.
The gap to ergodic capacity does not change much, indicating
that most coding gain is achieved via one of the classical
broadcasting, and the specific one is parameters-set dependent.

V. SISO BLOCK FADING

A. SISO consecutive block encoding model

Consider a block fading channel, as depicted at Fig. 5. Each
n discrete time samples, a message w is to be encoded into
the sequence X ∈ Cn, which enters the single input single
output block fading channel satisfying the power constraint
E|X|2 ≤ P where X is the single letter random variable
representation of the vector X and P is the power constraint
Y = HX + N. The channel gain H ∈ C is fixed within the
n length block, and changes in-between blocks according to a
priori known statistics PH in a memoryless fashion. A complex
normal noise is added, i.i.d. per channel output sample. The
decoder is fully aware of the block gain (by channel sounding
using pilot symbols) and reconstructs the message ŵ. The
encoder has no way to know the channel realizations, yet has
knowledge regarding its statistics PH .

This setting, when allowing consecutive blocks variable-to-
fixed coding [3] joint encoding, is actually a variant of the
parallel MIMO single user case, where the diversity is over
time blocks. Any development done so far can be applied on
this special case. By allowing coding over two blocks at a time,
the parallel channel model described till this section holds for
this channel as well. The drawback is additional latency, yet
only in the length of a single block, which in some use cases
can be justified for the boos of achievable average rate.

B. A comment on Whiting [20]

The result in Theorem 4 differs from the one presented in
[20] for the two-parallel two state channel. In [20] it is chosen
to transmit only common information to the pairs (A,B)
and (B,A). [20, eq. (39)] clearly states that for the crossed
states (A,B) and (B,A) only common rate is used without
justification. It is further claimed that this is an expected
rate upper bound for some power allocation. Our result fully
coincides with [20, eq. (39)] for α = 1 rather than as in (9).
However, this work proves that α = 1 is suboptimal, and does
not yield the maximal average rate. Furthermore, [20] does
not notice that αBB = 0, whereas in this paper it is shown
analytically to be optimal in Corollary 2.

VI. CONCLUSION

The broadcast approach for the parallel MIMO two state
block fading channel is studied. The optimal scheme based on
the concept of El-Gamal’s degraded broadcast product channel,
requires transmission of both private and common streams on
two states (A, B) or (B, A). The expected rate is maximized
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Fig. 5: The SISO n-length block fading channel and system.

analytically for layered transmission over the parallel channel.
We demonstrate that the simple broadcast approach operating
on each of the parallel channels separately achieves a signif-
icant portion of the optimal average rate. While the simple
two-state parallel channel is considered here, the results apply
directly to reduced latency constraints, that permit decoding
over two fading blocks of a single two state fading channel.
Evidently, extensions to a richer state spaces are called for,
which may motivate new broadcast approach concepts of
direct interest to future latency limited wireless systems. The
framework considered motivates extensions where also the
number of parallel channels received is random (adding thus
a zero state), and this model may give rise to examine also
secrecy constraints [22].
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