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Abstract—This paper focuses on variants of the bottleneck
problem taking an information theoretic perspective. The inti-
mate connections of this setting to: remote source-coding, infor-
mation combining, common reconstruction, the Wyner-Ahlswede-
Korner problem, the efficiency of investment information, CEO
source coding under logarithmic-loss distortion measure and
others are highlighted. We discuss the distributed information
bottleneck problem with emphasis on the Gaussian model.
For this model, the optimal tradeoffs between relevance (i.e.,
information) and complexity (i.e., rates) in the discrete and vector
Gaussian frameworks is determined.

I. STATISTICAL INFERENCE

Let a measurable variable X ∈ X and a target variable Y ∈ Y
with unknown joint distribution PX,Y be given. In the classic prob-
lem of statistical learning, one wishes to infer an accurate predictor
of the target variable Y ∈ Y based on observed realizations of
X ∈ X . That is, for a given class F of admissible predictors
ψ ∶ X → Ŷ and a loss function ` ∶ Y → Ŷ that measures
discrepancies between true values and their estimated fits, one
aims at finding the mapping ψ ∈ F that minimizes the expected
(population) risk

CPX,Y
(ψ, `) = EPX,Y

[`(Y,ψ(X))]. (1)

An abstract inference model is shown in Figure 1.

PX|YY ∈ Y ψ Ŷ ∈ Y
X ∈ X

Fig. 1. An abstract inference model for learning.

The choice of a “good” loss function `(⋅) is often controversial in
statistical learning theory. There is however numerical evidence that
models that are trained to minimize the error’s entropy often outper-
form ones that are trained using other criteria such as mean-square
error (MSE) and higher-order statistics [1], [2]. This corresponds to
choosing the loss function given by the logarithmic loss, which is
defined as

`log(y, ŷ) ∶= log
1

ŷ(y) (2)

for y ∈ Y and ŷ ∈ P(Y) designates here a probability distribution
on Y and ŷ(y) is the value of that distribution evaluated at the
outcome y ∈ Y . Although a complete and rigorous justification of
the usage of the logarithmic loss as distortion measure in learning
is still awaited, recently a partial explanation appeared in [3] where

Painsky and Wornell show that, for binary classification problems,
by minimizing the logarithmic-loss one actually minimizes an
upper bound to any choice of loss function that is smooth, proper
(i.e., unbiased and Fisher consistent) and convex. Along the same
line of work, the authors of [4] show that under some natural
data processing property Shannon’s mutual information uniquely
quantifies the reduction of prediction risk due to side information.
Perhaps, this justifies partially why the logarithmic-loss fidelity
measure is widely used in learning theory and has already been
adopted in many algorithms in practice such as the infomax cri-
terion [5]. The logarithmic loss measure also plays a central role
in the theory of prediction [6, Ch. 09], where it is often referred
to as the self-information loss function, as well as in Bayesian
modeling [7] where priors are usually designed so as to maximize
the mutual information between the parameter to be estimated and
the observations.
Let for every x ∈ X , ψ(x) = Q(⋅∣x) ∈ P(Y). It is easy to see that

EPX,Y
[`log(Y,Q)] = ∑

x∈X , y∈Y PX,Y (x, y) log ( 1

Q(y∣x)) (3a)

= H(Y ∣X) +D(PY ∣X∥Q) (3b)≥ H(Y ∣X) (3c)

with equality iff ψ(X) = PY ∣X . That is,

min
ψ
CPX,Y

(ψ, `log) = H(Y ∣X). (4)

If the joint distribution PX,Y is unknown, which is most often
the case in practice, the population risk as given by (1) cannot
be computed directly; and, in the standard approach, one usually
resorts to choosing the predictor with minimal risk on a training
dataset consisting of n labeled samples {(xi, yi)}ni=1 that are drawn
independently from the unknown joint distribution PX,Y . In this
case, it is important to restrict the set F of admissible predictors
to a low-complexity class to prevent overfitting. One way to reduce
the model’s complexity is by restricting the range of the predic-
tion function as shown in Figure 2. Here, the stochastic mapping
φ ∶ X Ð→ U is a compressor with

∥φ∥ ≤ R (5)

for some prescribed ’input-complexity’ value R.
Let U = φ(X). The expected logarithmic loss is now given by

CPX,Y
(φ,ψ; `log) = EPX,Y

[`log(Y,ψ(U))] (6)

and takes its minimum value with the choice ψ(U) = PY ∣U ,

min
ψ
CPX,Y

(φ,ψ; `log) = H(Y ∣U) (7)
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PX|YY ∈ Y φ ψ Ŷ ∈ Y
X ∈ X U = φ(X)

Fig. 2. Inference problem with constrained model’s complexity.

where the choice of U is subjected to the input constraint (5).
Noting that the right-hand-side (RHS) of (7) is larger for small
values of R, it is clear that a good predictor φ should strike a right
balance between reducing the model’s complexity and reducing the
error’s entropy, or, equivalently, maximizing the mutual information
I(U ;Y ) about the target variable Y .

A. Remote Source Coding under Logarithmic Loss

The aforementioned inference problem is a one-shot coding
problem, in the sense that the prediction and estimation operations
are performed letter-wise. Consider now the (asymptotic) remote
source coding problem shown in Figure 3 in which the coding
operations are performed over blocks of size n, with n assumed
to be large. Here, Y designates a memoryless remote source; andX
a noisy version of it that is observed at the encoder. The range of the
encoder map is allowed to grow with the size of the input sequence
as ∥φ(n)∥ ≤ nR. (8)

That is, the encoder uses at most R bits per sample to describe its
observation to a decoder which is interested in reconstructing the
remote source Y n to within an average distortion level D, i.e.,

E[`(n)log (y, ŷ)] ≤ D (9)

where the incurred distortion between two vectors y and ŷ is given
by

`
(n)
log (y, ŷ) = 1

n

n∑
i=1 `log(yi, ŷi) (10)

with the per-letter distortion defined as specified by (2).

PXn|Y nY n ∈ Yn φ(n) ψ(n) Ŷ n ∈ Yn
Xn ∈ Xn Un = φ(n)(Xn)

Fig. 3. A remote source coding problem.

The rate distortion region of this model is given by the union of all
pairs (R,D) that satisfy [8], [9]

R ≥ I(U ;X) (11a)
D ≥ H(Y ∣U) (11b)

where the union is over all auxiliary random variables U that satisfy
that U −
− X −
− Y forms a Markov Chain in this order. Invoking
the support lemma [10, p. 310], it is easy to see that this region is
not altered if one restricts U to satisfy ∣U ∣ ≤ ∣X ∣+ 1. Also, using the
substitution ∆ ∶= H(Y )−D, the region can be written equivalently
as the union of all pairs (R,H(Y ) −∆) that satisfy

R ≥ I(U ;X) (12a)
∆ ≤ I(U ;Y ) (12b)

where the union is over all U ’s that satisfy U −
− X −
− Y , with∣U ∣ ≤ ∣X ∣ + 1.

B. Information Bottleneck
The Information Bottleneck (IB) method has been introduced by

Tishby et al. in [11] as a method for extracting the information
that some variable X ∈ X provides about another one Y ∈ Y
that is of interest. Specifically, IB finds a representation U that
is maximally informative about Y , i.e., large mutual information
I(U ;Y ), while being minimally informative about X, i.e., small
mutual information I(U ;X) 1. The auxiliary random variable U
satisfies that U −
− X −
− Y is a Markov chain in this order; and
is chosen so a to strike a suitable balance between the degree
of relevance of the representation as measured by the mutual
information I(U ;Y ) and its degree of complexity as measured by
the mutual information I(U ;X). For example,U can be determined
so as to minimize the IB-Lagrangian

L ∶ I(U ;X) − βI(U ;Y ) (13)

over all mappings that satisfy U −
−X −
−Y . The tradeoff parameter
β is a positive Lagrange multiplier associated with the constraint
on I(U ;Y ). The solution of this constrained optimization problem
is determined by the following self-consistent equations, for all(u, x, y) ∈ U ×X ×Y ,

PU ∣X(u∣x) = PU(u)
Z(β, x) exp ( − βD(PY ∣X(⋅∣x)∥PY ∣U(⋅∣u)))

(14a)

PU(u) = ∑
x∈X PX(x)PU ∣X(u∣x) (14b)

PY ∣U(y∣u) = ∑
x∈X PY ∣X(y∣x)PX ∣U(x∣u) (14c)

where PX ∣U(x∣u) = PU ∣X(u∣x)PX(x)/PU(u) and Z(β, x) is a
normalization term. It is shown in [11] that alternating iterations of
these equations converges to a solution of the problem for any initial
PU ∣X . However, by opposition to the standard Blahut-Arimoto
algorithm [13], [14] which is classically used in the computation of
rate-distortion functions of discrete memoryless sources for which
convergence to the optimal solution is guaranteed, convergence here
may be to a local optimum only. If β = 0 the optimization is non-
constrained and one can set U = ∅, which yields minimal relevance
and complexity levels. Increasing the value of β steers towards more
accurate and more complex representations, untilU = X in the limit
of very large (infinite) values of β for which the relevance reaches
its maximal value I(X;Y ).

C. Variational Inference
Recall the IB goal of finding a representation U of X that is

maximally informative about Y while being concise enough (i.e.,
bounded I(U ;X)). This corresponds to the Lagrangian formulation

L ∶ max I(U ;Y ) − βI(U ;X) (15)

where the maximization is over all stochastic mappings PU ∣X such
that U −
− X −
− Y and ∣U ∣ ≤ ∣X ∣ + 1. The main drawback of
the IB principle is that in the exception of small-sized discrete(X,Y ) for which iterating (14) converges to an (at least local)
solution and jointly Gaussian (X,Y ) for which an explicit analytic
solution was found, solving (15) is generally computationally costly

1As such, the usage of Shannon’s mutual information seems to be motivated
by the intuition that such a measure provides a natural quantitative approach
to the questions of meaning, relevance and common-information, rather than
the solution of a well-posed information-theoretic problem – a connection
with source coding under logarithmic loss measure appeared later on in [12].
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especially for high-dimensional data since it requires computation
of mutual information terms. Another important barrier in solv-
ing (15) directly is that IB necessitates knowledge of the joint
distribution PX,Y . A major step ahead, which widened up the
range of applications of IB inference for various learning problems,
appeared in [15] where the authors use variational inference to
derive a lower bound on (15) and show that its optimization can
be done through the classic and widely used stochastic gradient
descendent (SGD). This has allowed to use deep neural networks
to parametrize the involved distributions (including the test channel
PU ∣X ); and, thus, to handle high-dimensional, possibly continuous,
data.

II. CONNECTIONS

A. Common Reconstruction

Consider the problem of source coding with side information at
the decoder, i.e., the well known Wyner-Ziv setting [16], with the
distortion measured under logarithmic-loss. Specifically, a mem-
oryless source X is to be conveyed lossily to a decoder that
observes a statistically correlated side information Y . The encoder
uses R bits per sample to describe its observation to the decoder
which wants to reconstruct an estimate of X to within an average
distortion level D, where the distortion is evaluated under the log-
loss distortion measure. The rate distortion region of this problem
is given by the set of all pairs (R,D) that satisfy

R +D ≥ H(X ∣Y ). (16)

The optimal coding scheme utilizes standard Wyner-Ziv compres-
sion at the encoder and the decoder map ψ ∶ U × Y → X̂ is given
by

ψ(U,Y ) = Pr[X = x∣U,Y ] (17)

for which it is easy to see that

E[`log(X,ψ(U,Y ))] = H(X ∣U,Y ). (18)

Now, assume that we constrain the coding in a manner that the
encoder be able to produce an exact copy of the compressed source
constructed by the decoder. This requirement, termed common re-
construction constraint (CR), was introduced and studied by Stein-
berg in [17] for various source coding models, including the Wyner-
Ziv setup, in the context of a ”general distortion measure. For the
Wyner-Ziv problem under log-loss measure that is considered in
this section, such a CR constraint causes some rate loss because the
reproduction rule (17) is no longer possible. In fact, it is not difficult
to see that under the CR constraint the above region reduces to the
set of pairs (R,D) that satisfy

R ≤ I(U ;X ∣Y ) (19a)
D ≥ H(X ∣U) (19b)

for some auxiliary random variable for which U −
−X −
− Y holds.
Observe that (19b) is equivalent to I(U ;X) ≥ H(X) −D and that,
for a given prescribed fidelity levelD, the minimum rate is obtained
for a description U that achieves the inequality (19b) with equality,
i.e.,

R(D) = min
PU ∣X ∶ I(U ;X)=H(X)−D I(U ;X ∣Y ). (20)

Because U −
−X −
− Y , we have

I(U ;Y ) = I(U ;X) − I(U ;X ∣Y ). (21)

Under the constraint I(U ;X) = H(X) − D it is easy to see that
minimizing I(U ;X ∣Y ) amounts to maximizing I(U ;Y ), an aspect
which bridges the problem at hand with the IB problem.
In the above, the side information Y is used for binning but not for
the estimation at the decoder. If the encoder ignores whether Y is
present or not at the decoder side, the benefit of binning is reduced –
see the Heegard-Berger model with common reconstruction studied
in [18], [19].

B. Information Combining
Consider again the IB problem. Say one wishes the find the

representation U that maximizes the relevance I(U ;Y ) for a given
prescribed complexity level, e.g., I(U ;X) = R. For this setup,

I(X;U,Y ) = I(U ;X) + I(Y ;X) − I(U ;Y ) (22)= R + I(Y ;X) − I(U ;Y ) (23)

where the first equality holds since U −
−X −
−Y is a Markov chain.
Maximizing I(U ;Y ) is then equivalent to minimizing I(X;U,Y ).
This is reminiscent of the problem of information combining [20],
whereX can be interpreted as a source information that is conveyed
through two channels: the channel PY ∣X and the channel PU ∣X .
The outputs of these two channels are conditionally independent
given X; and they should be processed in a manner such that, when
combined, they preserve as much information as possible about X.

C. Wyner-Ahlswede-Korner Problem
Here, the two memoryless sources X and Y are encoded sep-

arately at rates RX and RY respectively. A decoder gets the two
compressed streams and aims at recovering Y losslessly. This
problem was studied and solved separately by Wyner [21] and
Ahlswede and Körner [22]. For given RX = R, the minimum rate
RY that is needed to recover Y losslessly is

R
⋆
Y (R) = min

PU ∣X ∶ I(U ;X) ≤RH(Y ∣U). (24)

So, we get

max
PU ∣X ∶ I(U ;X)≤R I(U ;Y ) = H(Y ) −R⋆Y (R).

D. The Privacy Funnel
Consider again the setting of Figure 3; and let us assume that

the pair (Y,X) models data that a user possesses and which has
the following properties: the data Y is some sensitive (private) data
that is not meant to be revealed at all, or else not beyond some level
∆; and the data X is non-private and is meant to be shared with
another user (analyst). Because X and Y are correlated, sharing the
non-private data X with the analyst possibly reveals information
about Y . For this reason, there is a tradeoff between the amount
of information that the user shares about X and the information
that he keeps private about Y . The data X is passed through a
randomized mapping φ whose purpose is to make U = φ(X)
maximally informative about X while being minimally informative
about Y .
The analyst performs an inference attack on the private data Y
based on the disclosed information U . Let ` ∶ Y × Ŷ Ð→ R̄ be an
arbitrary loss function with reconstruction alphabet Ŷ that measures
the cost of inferring Y after observing U . Given (X,Y ) ∼ PX,Y
and under the given loss function `, it is natural to quantify the
difference between the prediction losses in predicting Y ∈ Y prior
and after observing U = φ(X). Let

C(`, P) = inf
ŷ∈Ŷ EP [`(Y, ŷ)] − inf

Ŷ (φ(X))EP [`(Y, Ŷ )] (25)

International Zurich Seminar on Information and Communication (IZS), February 26 – 28, 2020

75



PX1,...,XK |YY ∈ Y ·
·
·

φ1

φk

ψ Ŷ ∈ Y

XK

X1 U1

UK

Fig. 4. A model for distributed, e.g., multi-view, learning.

where ŷ ∈ Ŷ is deterministic and Ŷ (φ(X)) is any measurable func-
tion of U = φ(X). The quantity C(`, P) quantifies the reduction in
the prediction loss under the loss function ` that is due to observing
U = φ(X), i.e., the inference cost gain. In [23] (see also [24]) it is
shown that that under some mild conditions the inference cost gain
C(`, P) as defined by (25) is upper-bounded as

C(`, P) ≤ 2
√

2L
√
I(U ;Y ) (26)

where L is a constant. The inequality (26) holds irrespective to the
choice of the loss function `; and this justifies the usage of the
logarithmic loss function as given by (2) in the context of finding a
suitable tradeoff between utility and privacy, since

I(U ;Y ) = H(Y ) − inf
Ŷ (U)EP [`log(Y, Ŷ )]. (27)

Under the logarithmic loss function, the design of the mapping
U = φ(X) should strike a right balance between the utility for
inferring the non-private data X as measured by the mutual infor-
mation I(U ;X) and the privacy metric about the private date Y as
measured by the mutual information I(U ;Y ).

E. Efficiency of Investment Information
Let Y model a stock market data andX some correlated informa-

tion. In [25], Erkip and Cover investigated how the description of
the correlated information X improves the investment in the stock
market Y . Specifically, let ∆(C) denote the maximum increase in
growth rate when X is described to the investor at rate C. Erkip
and Cover found a single-letter characterization of the incremental
growth rate ∆(C). When specialized to the horse race market, this
problem is related to the aforementioned source coding with side
information of Wyner [21] and Ahlswede-Körner [22]; and, so,
also to the IB problem. The work [25] provides explicit analytic
solutions for two horce race examples, jointly binary and jointly
Gaussian horce races.

III. DISTRIBUTED LEARNING

Consider now a generalization of the IB problem in which the
prediction is to be performed in a distributed manner. The model is
shown in Figure 4. Here, the prediction of the target variable Y ∈ Y
is to be performed on the basis of samples of statistically correlated
random variables (X1,⋯,XK) that are observed each at a distinct
predictor. Throughout, we assume that the following Markov chain
holds for all k ∈ K ∶= {1,⋯,K},

Xk −
− Y −
−XK/k. (28)

The variable Y is a target variable and we seek to characterize
how accurate it can be predicted from a measurable random vector(X1,⋯,XK) when the components of this vector are processed
separately, each by a distinct encoder.

A. Optimal relevance-complexity tradeoff region
The distributed IB problem of Figure 4 is studied in [26], [27]

from information-theoretic grounds. For both discrete memoryless
(DM) and memoryless vector Gaussian models, the authors estab-
lish fundamental limits of learning in terms of optimal tradeoffs
between relevance and complexity. The following theorem [26],
[27] states the result for the case of discrete memoryless sources.

Theorem 1. The relevance-complexity region IRDIB of the dis-
tributed learning problem is given by the union of all non-negative
tuples (∆,R1, . . . ,RK) ∈ RK+1+ that satisfy

∆ ≤ ∑
k∈S[Rk−I(Xk;Uk ∣Y, T)] + I(Y ;USc ∣T), ∀S ⊆ K (29)

for some joint distribution of the form
PTPY ∏Kk=1 PXk ∣Y ∏Kk=1 PUk ∣Xk,T .

B. A Variational Bound
Let us consider the problem of maximizing the relevance under

a sum-complexity constraint. Let Rsum = ∑Kk=1Rk and

RIsumDIB ∶= {(∆,Rsum) ∈ R2+ ∶ ∃(R1, . . . ,RK) ∈ RK+ s.t.

K∑
k=1Rk = Rsum and (∆,R1, . . . ,RK) ∈RIDIB}. (30)

It is easy to see that the regionRIsumDIB is composed of all the pairs(∆,Rsum) ∈ R2+ for which ∆ ≤ ∆(Rsum, PXK,Y ), with

∆(Rsum, PXK,Y ) = max
P

min{I(Y ;UK),Rsum − K∑
k=1 I(Xk;Uk ∣Y )} ,

(31)
where the maximization is over joint distributions that factorize as
PY ∏Kk=1 PXk ∣Y ∏Kk=1 PUk ∣Xk

. The pairs (∆,Rsum) that lie on the
boundary ofRIsumDIB can be characterized as given in the following
proposition [27, Section 7.3].

Proposition 1. For every pair (∆,Rsum) ∈ R2+ that lies on the
boundary of the regionRIsumDIB there exists a parameter s ≥ 0 such
that (∆,Rsum) = (∆s,Rs), with

∆s = 1(1 + s) [(1 + sK)H(Y ) + sRs +max
P
Ls(P)] , (32)

Rs = I(Y ;U
∗K) + K∑

k=1[I(Xk;U
∗
k ) − I(Y ;U

∗
k )], (33)

where P∗ is the set of conditional pmfs P = {PU1∣X1
,⋯, PUK ∣XK

}
that maximize the cost function

Ls(P) ∶=−H(Y ∣UK)− s K∑
k=1[H(Y ∣Uk) + I(Xk;Uk)]. (34)

The optimization of (34) generally requires to compute marginal
distributions that involve the descriptions U1,⋯, UK , which might
not be possible in practice. In what follows, we derive a variational
lower bound on Ls(P) on the DIB cost function in terms of fami-
lies of stochastic mappings QY ∣U1,...,UK

(a decoder), {QY ∣Uk
}Kk=1

and priors {QUk
}Kk=1. For the simplicity of the notation, we let

Q ∶= {QY ∣U1,...,UK
,QY ∣U1

, . . . ,QY ∣UK
,QU1

, . . . ,QUK
}. (35)

Let

LVB
s (P,Q) ∶= E[logQY ∣UK(Y ∣UK)]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

av. logarithmic-loss
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+ s K∑
k=1 (E[logQY ∣Uk

(Y ∣Uk)] −DKL(PUk ∣Xk
∥QUk

))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

regularizer

. (36)

Lemma 1. ( [27, Section 7.4]) For fixed P, we have

Ls(P) ≥ LVB
s (P,Q), for all pmfs Q. (37)

In addition, there exists a unique Q that achieves the maximum
maxQLVB

s (P,Q) = Ls(P), and is given by, ∀k ∈ K,

Q
∗
Uk

= PUk
(38a)

Q
∗
Y ∣Uk

= PY ∣Uk
(38b)

Q
∗
Y ∣U1,...,Uk

= PY ∣U1,...,UK
, (38c)

where the marginals PUk
and the conditional marginals PY ∣Uk

and
PY ∣U1,...,UK

are computed from P.

C. Vector Gaussian Model

In this section, we show that for the jointly vector Gaussian data
model it is enough to restrict to Gaussian auxiliaries (U1,⋯,UK)
in order to exhaust the entire relevance-complexity region. Also,
we provide an explicit analytical expression of this region. Let(X1, . . . ,XK ,Y) be a jointly vector Gaussian vector that satisfies
the Markov chain (28). Without loss of generality, let the target
variable be a complex-valued, zero-mean multivariate Gaussian
Y ∈ Cny with covariance matrix Σy, i.e., Y ∼ CN (y; 0,Σy),
and Xk ∈ Cnk given by

Xk = HkY +Nk, (39)

where Hk ∈ Cnk×ny models the linear model connecting Y to
the observation at encoder k, and Nk ∈ Cnk is the noise vector at
encoder k, assumed to be Gaussian with zero-mean and covariance
matrix Σk, and independent from all other noises and Y.
The following theorem [27, Section 7.5] characterizes the
relevance-complexity region of the model (39), which we denote
hereafter as RIGDIB. The theorem also shows that in order to
exhaust this region it is enough to restrict to no time sharing, i.e.,
T = ∅ and multivariate Gaussian test channels

Uk = AkXk +Zk ∼ CN (uk; AkXk,Σz,k), (40)

where Ak ∈ Cnk×nk projects the observation Xk and Zk is a zero-
mean Gaussian noise with covariance Σz,k.

Theorem 2. For the model (39) the region RIGDIB is given by the
union of all tuples (∆,R1, . . . ,RL) that satisfy ∀S ⊆ K
∆ ≤ ∑

k∈S (Rk + log ∣I −Σ
1/2
k ΩkΣ

1/2
k ∣)+log ∣I + ∑

k∈Sc

Σ
1/2
y H

†
kΩkHkΣ

1/2
y ∣

for some matrices 0 ⪯ Ωk ⪯ Σ−1
k .
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