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Abstract—Over-the-air computation (AirComp) is an efficient
solution to enable federated learning on wireless channels. Air-
Comp assumes that the wireless channels from different devices
can be controlled, e.g., via transmitter-side phase compensation,
in order to ensure coherent on-air combining. Intelligent reflect-
ing surfaces (IRSs) can provide an alternative, or additional,
means of controlling channel propagation conditions. This work
studies the advantages of deploying IRSs for AirComp systems
in a large-scale cloud radio access network (C-RAN). In this
system, worker devices upload locally updated models to a
parameter server (PS) through distributed access points (APs)
that communicate with the PS on finite-capacity fronthaul links.
The problem of jointly optimizing the IRSs’ reflecting phases and
a linear detector at the PS is tackled with the goal of minimizing
the mean squared error (MSE) of a parameter estimated at the
PS. Numerical results validate the advantages of deploying IRSs
with optimized phases for AirComp in C-RAN systems.

Index Terms—Over-the-air computation, C-RAN, intelligent
reflecting surface.

I. INTRODUCTION

Federated learning is an emerging distributed learning
paradigm in which mobile devices collaboratively train a ma-
chine learning model while preserving the privacy of local data
sets [1]. In the presence of latency and bandwidth constraints,
the implementation of federated learning on wireless systems
is challenging if many workers, or devices, are involved. A
potential solution to this problem is over-the-air computation
(AirComp), which leverages the superposition property of the
multiple access channel (MAC) from worker devices to a
parameter server (PS) to allow for simultaneous transmissions
from multiple devices [2]–[4]. It was reported in [3] that Air-
Comp outperforms a conventional multiple access technique
in terms of test accuracy, and that the gain is particularly
significant at low transmit power and large number of workers.

AirComp assumes that the wireless channels from different
devices can be controlled, e.g., via transmitter-side phase
compensation, in order to ensure coherent on-air combining
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Fig. 1. Over-the-air computation system in an IRS-aided C-RAN with NW =
4, NA = 2 and NI = 2.

[5]. To alleviate this problem, the work [6] considered a
deployment of intelligent reflecting surfaces (IRSs). IRSs,
also referred to as reconfigurable intelligent surfaces, can be
controlled through integrated electronics in order to shape
their response to impinging electromagnetic waves [7]. This
enables the modification of the propagation channel between
nearby transceivers. As a result, IRSs are considered as a cost-
effective solution to improve spectral and energy efficiency
of wireless systems [8]–[11]. As examples of recent works
on IRSs, references [9] and [10] addressed the joint design
of downlink beamforming and IRSs’ phases for interference
management in multi-user [9] and multi-cell systems [10].
Reference [8] analyzed the number of reflecting elements of
IRSs needed to beat conventional wireless relaying techniques
(see also [12]). Finally, an information-theoretic study was
provided in [13].

In this work, we study the advantages of deploying IRSs
for AirComp systems. Unlike [6], which focused on a MAC
channel where workers directly communicate with a PS,
we consider the large-scale cloud radio access network (C-
RAN) illustrated in Fig. 1, in which the workers upload local
models to the PS through distributed access points (APs).
The APs, or remote radio heads (RRHs), in C-RAN send the
received signals to the PS on fronthaul links. The fronthaul
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links have finite capacity, requiring fronthaul quantization and
compression [14]. We tackle the problem of jointly optimizing
the IRSs’ reflecting phases and a linear detector at the PS
with the goal of minimizing the mean squared error (MSE) of
a parameter estimated at the PS. Due to the non-convexity of
the problem, we propose an iterative algorithm that alternately
updates the IRSs’ phases and the linear detector. Via numerical
results, we validate the advantages of deploying IRSs with
optimized phases for AirComp in C-RAN systems.

II. SYSTEM MODEL

As illustrated in Fig. 1, we consider an over-the-air compu-
tation task performed on a C-RAN system. In the system, NW
single-antenna worker devices send locally updated models to
a PS through NA single-antenna APs. Each AP is connected
to the PS via a fronthaul link, which we model as a dig-
ital link of capacity C bit/sample [14]. We define the sets
NW = {1, 2, . . . , NW } and NA = {1, 2, . . . , NA} for the
workers’ and APs’ indices, respectively.

A. Over-the-Air Computation Model

We focus on the transmission at a specific time slot where
each worker k ∈ NW sends a scalar parameter θk, and the
PS estimates a function f(θ) of the transmitted parameters
θ = {θk}k∈NW

. The parameter θk can be an element of the
gradient vector [3] or the local model [4] updated at worker k
using its local dataset. The PS typically estimates the weighted
sum f(θ) =

∑
k∈NW

wkθk, with wk = Sk/(
∑
l∈NW

Sl),
where Sk denotes the number of training samples at device
k [4]. To simplify the discussion, we assume Sk = S for all
k ∈ NW , and that the target parameter denoted by θ̄ is given
by the sum

θ̄ = f(θ) =
∑

k∈NW

θk. (1)

We also assume that the parameters θk are independent, and
we define the power of parameter θk as E[|θk|2] = σ2

θ,k. Thus,
the target parameter θ̄ has power E[|θ̄|2] =

∑
k∈NW

σ2
θ,k.

B. Channel Model

To assist edge communication from the workers to the APs,
we assume the presence of NI IRSs [6] in the network. Each
IRS has nI reflecting elements, whose reflecting phases are dy-
namically adjusted to adapt to the instantaneous channel state
information (CSI). We define the set NI = {1, 2, . . . , NI} for
the IRSs’ indices.

Under a flat-fading channel model, the received signal yi of
AP i can be written as

yi =
∑

k∈NW

hi,kxk + zi, (2)

where xk is the signal transmitted by worker k; hi,k de-
notes the channel coefficient from worker k to AP i; and
zi ∼ CN (0, σ2

z) represents the additive noise. The signal xk
satisfies the transmit power constraint E[|xk|2] ≤ P .

Due to the presence of IRSs, the channel coefficient hi,k is
modelled as [8]–[10]

hi,k =
√
ρd,i,khd,i,k +

∑
j∈NI

√
ρr,i,j,kg

H
i,jΘjhr,j,k, (3)

where hd,i,k denotes the small-scale fading channel from
worker k to AP i; gi,j ∈ CnI×1 represents the small-scale
fading channel vector from IRS j to AP i; hr,j,k ∈ CnI×1 is
the small-scale fading channel vector from worker k to IRS j;
ρd,i,k denotes the path-loss of the direct link from worker k to
AP i; ρr,i,j,k is the path-loss of the composite link from worker
k to AP i through IRS j; and Θj is a diagonal matrix that
represents the reflecting operation of IRS j, which is defined
as

Θj = diag
(
{ejφj,m}nI

m=1

)
, (4)

where φj,m ∈ [0, 2π) denotes the reflecting phase of the mth
element of IRS j.

We model the path-loss ρd,i,k between worker k and AP i
as ρd,i,k = c0 ·D(pW,k,pA,i)

−η, where D(a,b) = ||a−b||2 is
the Euclidean distance in meter between the two input vectors,
pW,k and pA,i denote the position vectors of worker k and
AP i, respectively, η is the path-loss exponent, and c0 denotes
the path-loss at the reference distance of 1 m. For the path-
loss ρr,i,j,k of the composite channel from worker k to AP i
through IRS j, we adopt the sum-distance model [7] which
models ρr,i,j,k as

ρr,i,j,k = c0 (D(pW,k,pI,j) + D(pI,j ,pA,i))
−η
, (5)

where pI,j denotes the position vector of IRS j.

III. OVER-THE-AIR COMPUTATION IN IRS-AIDED C-RAN

In this section, we illustrate the operations at the worker
devices, the APs, and the PS in the IRS-aided C-RAN system
described in Sec. II.

A. Transmission at Worker Devices

Without claim of optimality (see [15]), we assume that each
worker k uses the maximum transmit power P , so that the
transmit signal xk is given as

xk = αkθk, (6)

with the coefficient αk = (P/σ2
θ,k)1/2. We note that this does

not require CSI at worker devices.

B. Quantization at APs

AP i sends a quantized version of the received signal yi
to the PS through a fronthaul link of capacity C bit/sample.
Under the assumptions that the updated model vectors have a
sufficiently large dimension, the quantized signal denoted by
ŷi can be modelled as [14], [16]

ŷi = yi + qi, (7)

where qi models the quantization distortion as being indepen-
dent of yi and distributed as qi ∼ CN (0, ωi). According to
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standard rate-distortion theoretic results [17], the quantization
noise power ωi satisfies the condition

I(yi; ŷi) = log2

(
1 +

σ2
y,i

ωi

)
≤ C, (8)

where σ2
y,i denotes the variance of the received signal yi given

as

σ2
y,i =

∑
k∈NW

|hi,k|2P + σ2
z . (9)

The minimum distortion power ωi that satisfies the condition
(8) is given as

ωi = σ2
y,i/(2

C − 1). (10)

Note that the optimal distortion level (10) is a function of the
reflecting phases φ = {φj,m}j∈NI ,m∈{1,...,nI}, since φ affects
the channel coefficients hi,k as seen in (3).

C. Estimation at PS

Based on the received quantized signals {ŷi}i∈NA
, the

PS estimates the target parameter θ̄ in (1). To elaborate, let
us define a vector ŷ = [ŷ1 ŷ2 · · · ŷNA

]T which stacks the
quantized signals. Then, the vector ŷ can be expressed as

ŷ =
∑

k∈NW

αkhkθk + z + q, (11)

where we have defined the vectors hk =
[h1,k h2,k · · ·hNA,k]T , z = [z1 z2 · · · zNA

]T ∼ CN (0, σ2
zI)

and q = [q1 q2 · · · qNA
]T ∼ CN (0,Ω) with

Ω = diag({ωi}i∈NA
).

The channel vector hk ∈ CNA×1 from worker k to all the
APs can be written as a function of the IRSs’ phases φ as

hk = hd,k +
∑

j∈NI

Rr,j,kGjdiag(hr,j,k)vj , (12)

where the matrices Rr,j,k ∈ CNA×NA , Gj ∈ CNA×nI ,
and the vectors hd,k ∈ CNA×1, vj ∈ CnI×1 are defined
as Rr,j,k = diag({ρ1/2

r,i,j,k}i∈NA
), Gj = [g1,j · · ·gNA,j ]

H ,
hd,k = [ρ

1/2
d,1,khd,1,k · · · ρ

1/2
d,NA,k

hd,NA,k]T , and vj =

[ejφj,1 · · · ejφj,nI ]T , respectively. Note that the optimization of
the phases {φj,m}nI

m=1 of IRS j is equivalent to that of the
vector vj as long as the conditions

|vj(m)|2 = 1 (13)

are satisfied for all m ∈ {1, . . . , nI}, where vj(m) denotes
the mth element of vj . From the vector vj , each phase φj,m
can be obtained as −∠vj(m).

We assume that the PS performs a linear estimation of the
target parameter θ̄ from ŷ. Accordingly, an estimate ˆ̄θ of θ̄ is
given as

ˆ̄θ = fH ŷ, (14)

with a linear detection vector f ∈ CNA×1.

For given phases φ, i.e., v = {vj}j∈NI
, and linear detection

vector f , the MSE between the estimate ˆ̄θ and the target
parameter θ̄ is evaluated as

e(v, f) = E
[
| ˆ̄θ − θ̄|2

]
(15)

=
∑
k∈NW

|αkfHhk − 1|2σ2
θ,k + fH

(
σ2
zI + Ω

)
f .

IV. OPTIMIZATION

We tackle the problem of jointly optimizing the IRSs’
reflecting phases v and the linear detection vector f of the PS
with the goal of minimizing the MSE e(v, f) in (15) while
satisfying the unit modulus constraints (13). The problem can
be stated as

minimize
v,f

e(v, f) (16a)

s.t. |vj(m)|2 = 1, j ∈ NI , m ∈ {1, . . . , nI}. (16b)

Since it is difficult to jointly optimize the variables v and f ,
we propose an iterative algorithm that alternately optimizes
one variable while fixing other.

If we fix the IRSs’ phases v in problem (16), finding
the optimal detector f becomes an unconstrained quadratic
optimization problem, whose closed-form solution is given as

f =

( ∑
k∈NW

Phkh
H
k + σ2

zI + Ω

)−1 ∑
k∈NW

αkσ
2
θ,khk . (17)

To tackle the problem of optimizing the IRSs’ phases v for
fixed f , we remove the terms that are not dependent on the
IRSs’ phases from the cost function. Stating the obtained prob-
lem with respect to a stacked vector v̄ = [vH1 vH2 · · ·vHNI

]H ∈
Cn̄I×1 with n̄I = nINI yields

minimize
v̄

( ∑
k∈NW

(
|aHk v̄|2+2<{b∗kaHk v̄}

)
σ2
θ,k+∑

i∈NA,k∈NW

(
|cHi,kv̄|2+2<{d∗i,kcHi,kv̄}

))
(18a)

s.t. |v̄(m)|2 = 1, m ∈ {1, . . . , n̄I}, (18b)

where we have defined the notations ak = H̄H
r,kfα

∗
k ∈ Cn̄I×1,

bk = αkf
Hhd,k − 1, H̄r,k = [Hr,1,kHr,2,k · · ·Hr,NI ,k] ∈

CNA×n̄I , Hr,j,k = Rr,j,kGjdiag(hr,j,k) ∈ CNA×nI , ci,k =
(P/(2C − 1))1/2|f(i)|H̄H

r,kei ∈ Cn̄I×1, and di,k = (P/(2C −
1))1/2|f(i)|eHi hd,k with f(i) and ei being the ith element
of f and the ith column of an identity matrix of size NA,
respectively.

The problem (18) is non-convex due to the unit modulus
constraints (18b). To handle this issue, we adopt the matrix
lifting approach proposed in [6]. Accordingly, we tackle the
problem (18) with respect to a matrix V ∈ C(n̄I+1)×(n̄I+1)

defined as

V =

[
v̄
1

] [
v̄H 1

]
=

[
v̄v̄H v̄
v̄H 1

]
. (19)

The matrix V is subject to the constraints V � 0, rank(V) ≤
1, and V(m,m) = 1 for all m ∈ {1, 2, . . . , n̄I + 1}. From
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V, the IRSs’ phase vector v̄ can be recovered as the first n̄I
elements of the last column of V.

We tackle (18) with respect to V by using the following
equalities:

|aHk v̄|2 + 2<{b∗kaHk v̄} =
[
v̄H 1

] [ aka
H
k bkak

b∗ka
H
k 0

] [
v̄
1

]
= tr

([
aka

H
k bkak

b∗ka
H
k 0

]
V

)
,

(20)

|cHi,kv̄|2 + 2<{d∗i,kcHi,kv̄} =
[
v̄H 1

][ ci,kc
H
i,k di,kci,k

d∗i,kc
H
i,k 0

][
v̄
1

]
= tr

([
ci,kc

H
i,k di,kci,k

d∗i,kc
H
i,k 0

]
V

)
.

(21)

Specifically, by substituting (20) and (21) into problem (18),
we obtain the problem

minimize
V�0

tr (MV) (22a)

s.t. V(m,m) = 1, m ∈ {1, . . . , n̄I + 1}, (22b)
rank(V) ≤ 1, (22c)

with the matrix M defined as

M =
∑
k∈NW

σ2
θ,k

[
aka

H
k bkak

b∗ka
H
k 0

]
(23)

+
∑

i∈NA,k∈NW

[
ci,kc

H
i,k di,kci,k

d∗i,kc
H
i,k 0

]
.

To address the non-convexity of constraint (22c), we note
that (22c) is equivalent to the constraint [6]

tr(V)− σ1(V) = 0, (24)

where σ1(·) denotes the largest singular value of the input
matrix. Function σ1(V) is convex in V [18]. Furthermore, for
V � 0, the left-hand side (LHS) of (24) is 0 when rank(V) ≤
1 and it becomes larger than 0 otherwise.

Based on this observation, as in [6], we tackle the problem

minimize
V�0

tr (MV) + γ (tr(V)− σ1(V)) (25a)

s.t. V(m,m) = 1, m ∈ {1, . . . , n̄I + 1}, (25b)

with a fixed weight γ ≥ 0. In problem (25), we have removed
the rank constraint (22c) and instead added a penalty term
γ(tr(V)− σ1(V)) to the cost function that increases if (22c)
is not satisfied.

The problem (25) is a difference-of-convex (DC) problem
whose locally optimal solution can be efficiently found via the
concave convex procedure (CCP) approach [19]. CCP solves a
sequence of convex problems obtained by linearizing the terms
that induce non-convexity. In the DC problem (25), the only
term that induces non-convexity is −γ · σ1(V) in the penalty
term. Linearizing −γ · σ1(V) at a reference point V = V′

yields the upper bound [6]

−γ · σ1(V) ≤ −γ · tr
(
V u1(V′)u1(V′)H

)
, (26)

Algorithm 1 CCP based algorithm for optimizing V

1. Initialize V(1) as (19) with arbitrary v̄ that satisfies (18b),
and set t← 1
2. Update V(t+1) as a solution of the convex problem:

minimize
V�0

tr (MV)+γ
(
tr(V)− tr

(
V u1(V(t))u1(V(t))H

))
s.t. V(m,m) = 1, m ∈ {1, . . . , n̄I + 1},

3. Stop if ||V(t+1) −V(t)||2F ≤ δ is satisfied. Otherwise, go
back to Step 2 with t← t+ 1.

Algorithm 2 Proposed algorithm alternately optimizing v and
f

1. Initialize v(1) as arbitrary vectors that satisfy (16b).
2. Update f (1) according to (17) with v = v(1), and set t← 1.
3. For j ∈ NI , update v

(t+1)
j as the elements from (j −

1)nI + 1 to jnI of the last column of the matrix V obtained
by Algorithm 1 with f = f (t).
4. For j ∈ NI and m ∈ {1, . . . , nI}, update v

(t+1)
j (m) ←

v
(t+1)
j (m)/|v(t+1)

j (m)|.
5. Update f (t+1) according to (17) with v = v(t+1).
6. Stop if

∑
j∈NI

||v(t+1)
j − v

(t)
j ||2 + ||f (t+1) − f (t)||2 ≤ δ.

Otherwise, go back to Step 3 with t← t+ 1.

where u1(·) returns the eigenvector of the input matrix
corresponding to the largest eigenvalue. The condition (26)
is satisfied with equality when V = V′. The CCP based
algorithm for optimizing V is summarized in Algorithm 1.

Overall, the proposed algorithm that alternately optimizes
the IRSs’ phases v and the linear detector f is detailed in
Algorithm 2. In the algorithm, we initialize v and f in Steps
1-2, and update v for fixed f in Steps 3-4. In Step 4, v is
modified only when it does not satisfy the modulus constraints
(18b). In Step 5, f is updated for fixed v, and we check the
convergence in Step 6.

V. NUMERICAL RESULTS

In simulation, we assume that the positions of NW workers,
NA APs and NI IRSs are uniformly distributed in a circular
area of radius 100 m. We set the variance of local parameters
to σ2

θ,k = 1 for k ∈ NW and assume c0 = 20 dB, η = 3 in
the path-loss models and γ = 1 for the penalty coefficient
in (25a). For all links, we consider independent Rayleigh
fading channels that are distributed as hd,i,k ∼ CN (0, 1),
gi,j ∼ CN (0, I) and hr,j,k ∼ CN (0, I). We compare the
performance of the proposed optimized scheme with two
baseline schemes, one without IRSs and one with IRSs whose
reflecting phases are randomly chosen. In all figures, we plot
the normalized MSE, which is defined as the MSE e(v, f)
normalized by E[|θ̄|2] so that it lies in the range [0, 1].

In Fig. 2, we plot the average normalized MSE versus the
fronthaul capacity C for an IRS-aided C-RAN system with
NW = 10, NA = 5, NI = 2, nI = 10 and P/σ2

z ∈ {5, 20}
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Fig. 2. Average normalized MSE versus the fronthaul capacity C for an
IRS-aided C-RAN with NW = 10, NA = 5, NI = 2, nI = 10 and
P/σ2

z ∈ {5, 20} dB.
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Fig. 3. Average normalized MSE versus the number NA of APs for an IRS-
aided C-RAN system with NW = 5, NI = 2, nI ∈ {20, 50}, C = 5 and
P/σ2

z = 10 dB.

dB. The figure shows that the proposed optimized scheme
outperforms both baseline schemes without IRS and with
random phases, and that the gain increases with the fronthaul
capacity C. This is because, when C is small, the impact of
carefully designing the IRSs’ phases becomes minor due to the
impact of the quantization noise signals {qi}i∈NA

. Also, the
gain increases with the signal-to-noise ratio (SNR) P/σ2

z of the
uplink channel, and this trend coincides with the observation
reported in [10, Sec. IV].

Fig. 3 plots the average normalized MSE versus the number
NA of APs for an IRS-aided C-RAN system with NW = 5,
NI = 2, nI ∈ {20, 50}, C = 5 and P/σ2

z = 10 dB.
When there are only a few APs, deploying IRSs provides

relevant gains only when the reflecting phases are optimized
according to Algorithm 2. However, the impact of optimizing
the reflecting phases becomes minor for sufficiently large NA.

VI. CONCLUDING REMARKS

We have studied the impacts of deploying IRSs on AirComp
in a C-RAN system. To this end, we have tackled the joint
optimization of the IRSs’ reflecting phases and the linear
detector at the PS with the goal of minimizing the MSE of
the parameter estimated at the PS. Numerical results were
provided that investigate the effects of various parameters on
the performance gain of the proposed optimization scheme
compared to baseline schemes. Among open problems, we
mention the design of channel estimation process, the inves-
tigation of the effect of imperfect CSI, and the design of
AirComp jointly with information transfer.
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