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On the Capacity of the Peak Power Constrained
Vector Gaussian Channel: An Estimation

Theoretic Perspective
Alex Dytso , Mert Al , H. Vincent Poor , Fellow, IEEE, and Shlomo Shamai (Shitz) , Life Fellow, IEEE

Abstract— This paper studies the capacity of an n-dimensional
vector Gaussian noise channel subject to the constraint that
an input must lie in the ball of radius R centered at the
origin. It is known that in this setting, the optimizing input
distribution is supported on a finite number of concentric spheres.
However, the number, the positions, and the probabilities of
the spheres are generally unknown. This paper characterizes
necessary and sufficient conditions on the constraint R, such that
the input distribution supported on a single sphere is optimal.
The maximum R̄n, such that using only a single sphere is optimal,
is shown to be a solution of an integral equation. Moreover, it is
shown that R̄n scales as

√
n and the exact limit of R̄n√

n
is found.

Index Terms— Capacity, mutual information, minimum mean
square error (MMSE), I-MMSE, peak-power, amplitude
constraint, harmonic functions.

I. INTRODUCTION

WE CONSIDER an additive noise channel for which the
input-output relationships are given by

Y = X + Z , (1)

where X ∈ R
n is independent of Z ∈ R

n and where Z ∼
N (0, In). We are interested in finding the capacity of the
channel in (1) subject to the constraint that X ∈ B0(R) where
B0(R) is an n-ball centered at 0 of radius R (amplitude or peak
power constraint), that is

max
X∈B0(R)

I (X; Y ). (2)

In general the capacity in (2) is an open problem and only
some special cases have been solved. In this work the capacity
in (2) will be characterized for all R that are smaller than
roughly

√
n.

The necessity of characterization of the capacity with a
peak power constraint on the input is self-evident. Many

Manuscript received April 23, 2018; revised September 16, 2018; accepted
December 5, 2018. Date of publication January 1, 2019; date of current version
May 20, 2019. This work was supported in part by the U.S. National Science
Foundation under Grant CCF–1513915 and in part by the European Union’s
Horizon 2020 Research and Innovation Programme under Grant 694630. This
paper was presented in part in [37].

A. Dytso, M. Al, and H. V. Poor are with the Department of Electri-
cal Engineering, Princeton University, Princeton, NJ 08544 USA (e-mail:
adytso@princeton.edu; merta@princeton.edu; poor@princeton.edu).

S. Shamai (Shitz) is with the Department of Electrical Engineer-
ing, Technion–Israel Institute of Technology, Haifa 32000, Israel (e-mail:
sshlomo@ee.technion.ac.il).

Communicated by M. Costa, Associate Editor for Shannon Theory.
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2018.2890208

practical systems inherently have a peak power constraint due
to the limited range of operations of electronic equipment.
Some channels (e.g., the direct detection photon channel [1])
have well defined ranges of operations where average power
constraints are not relevant and peak power constraints must
be used.

A. Prior Work

For the case of n = 1 Smith in his seminal work [2],
using convex optimization techniques, has shown that the
maximizing distribution in (2) must be discrete with finitely
many points. In [3], for the case of n = 2, the maximizing
input distribution has been shown to be supported on finitely
many concentric spheres. The generalization to an arbitrary n
can be found in [4], [5] and [6].

This paper can be considered as an n-dimensional gener-
alization of the work in [7] where, in the case of n = 1
and under the conjecture that the number of mass points,
as we vary R, increases by at most one, a two point input
distribution uniform on ±R has been shown to be optimal if
and only if R ≤ 1.665, and a three point input distribution
on {−R, 0, R} has been shown to be optimal if and only if
1.665 ≤ R ≤ 2.786. However, unlike the approach in [7],
the proof strategy used in this work relies on very different
methods (rooted in estimation theory) and, for every dimension
n, recovers the exact condition for the optimality of an input
supported on a single sphere. Moreover, our proof does not
require the assumption of the conjecture that the number of
points increases by at most one as we vary R.

The fact that a uniform distribution on a single sphere
is optimal as R√

n
→ 0 has been shown in [5]. More-

over, Rassouli and Clerckx [5] have observed via numerical
results the fact that a distribution with the support on a
single sphere can be optimal for non-vanishing values of
R. In addition, Rassouli and Clerckx [5] have computed the
maximum values of R, for which a single sphere is optimal, up
to n = 20.

A number of works have also focused on deriving lower and
upper bounds on (2). Thangaraj et al. [8] derived an asymptot-
ically tight upper bound on the capacity as R → ∞ by using
the dual representation of channel capacity. Dytso et al. [9]
derived an upper bound on the capacity, by using a maximum
entropy principle under L p moment constraints, that is tight
for small values of R. See also [9] and [10] for asymptotically
tight lower bounds on the capacity.
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The interested reader is also referred to [11] where in
addition to the amplitude input constraint the authors also
considered an average power constraint on the input and
characterized the amplitude-to-power ratio of good codes.

B. Paper Outline and Contributions

The paper outline and contributions are as follows:
1) Section II reviews some known facts about the optimal

input distribution in (2) (e.g., the support is given by
concentric spheres);

2) Section II-A gives the definition of the “small ampli-
tude” regime as the regime in which a uniform probabil-
ity distribution supported on a single sphere is optimal;

3) Section III, Theorem 2, presents our main result, which
is an exact characterization of the size of the small
amplitude regime. The proof of the main result is
postponed to Section V-A;

4) Section IV, for an input distribution on X uniformly
distributed on a sphere of radius R, computes the output
distribution, the conditional expectation of the input X
given the output Y , the mutual information between X
and Y and the minimum mean square error (MMSE) of
estimating X from Y ;

5) Section V presents new conditions for the optimality
of the distribution on a single sphere. The new condi-
tions have an advantage of being easier to verify than
the classical conditions presented in Section II. The
key ingredients for the proof of the new conditions
are the change of sign lemma due to Karlin [12],
the I-MMSE relationship [13] and the point-wise
I-MMSE relationship [14]. To the best of our knowledge
this is the first application of the point-wise I-MMSE
relationship to a capacity problem;

6) Section V-A presents the proof of the main result;
7) Section VI gives an alternative proof, using yet another

information estimation identity, that R ≤ √
n is suffi-

cient for the optimality of the distribution on a single
sphere; and

8) Section VII concludes the paper by discussing connec-
tions between maximization of the mutual information
and maximization of the MMSE (i.e., the theory of
finding least favorable prior distributions). In particu-
lar, we discuss conditions under which least favorable
distributions are also capacity achieving.

C. Definitions and Notation

The volume of the unit n-ball and the unit (n − 1)-sphere
are denoted and given by

Vn := π
n
2

�
� n

2 + 1
� , (3)

Sn−1 := 2π
n
2

�
� n

2

� . (4)

We denote the (n−1)-sphere of radius r centered at the origin
as follows:

C(r) := {x : �x� = r}. (5)

Q(·) denotes the tail distribution function of the standard
normal distribution. The modified Bessel function of the first
kind of order v is denoted by Iv (x). We also use the following
commonly encountered ratio of Bessel functions:

hv (x) := Iv (x)

Iv−1(x)
. (6)

All logarithms in this paper are base e.
We denote the distribution of a random variable X by PX .

Moreover, we say that a point x is in the support of the
distribution PX if for every open set O such that x ∈ O we
have that PX (O) > 0 and denote the collection of the support
points of PX as supp(PX ).

At times it will be convenient to use the following para-
metrization of the mutual information in terms of the input
distribution PX :

I (PX ) := I (X; Y ). (7)

We also define the following quantity that is akin to the
information density:

i(x, PX ) :=
�

Rn

1

(2π)
n
2

e− �y−x�2

2 log
1

fY (y)
dy − h(Z) (8)

= E

�
log

�
fY |X (Y |X)

fY (Y )

�
| X = x

�
, (9)

where fY (y) is the output probability density function (pdf)
of Y induced by X ∼ PX and h(Z) is the entropy of Gaussian
noise. Moreover, note that

E[i(X, PX )] = I (PX ). (10)

The MMSE of estimating the input X from the output Y
will be denoted as follows:

mmse(X | Y ) := E

	
�X − E[X | Y ]�2



. (11)

II. OPTIMIZING THE INPUT DISTRIBUTION

The optimal input distribution in (2) can be characterized
by using the method presented in [2] and its extension to the
complex channel (i.e., n = 2) given in [3]; see also [4], [5],
and [6] for a detailed solution for any n ≥ 2.

Theorem 1 (Characterization of the Optimal Input Distri-
bution): Suppose P�

X is an optimizer in (2). Then, P�
X satisfies

the following properties:

• P�
X is unique;

• P�
X is optimal if and only if the following two conditions

are satisfied:

i(x, P�
X ) = I (P�

X ), x ∈ supp(P�
X ), (12a)

i(x, P�
X ) ≤ I (P�

X ), x ∈ B0(R); and (12b)

• the support of the optimal input distribution is given by

supp(P�
X ) =

N�

i=1

C(ri ), (12c)

where N < ∞ (finite).
An example of the support of distributions in (12c) for

n = 2 is shown in Fig. 1.
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Fig. 1. An example of a support of an optimal input distribution for n = 2.

Note that for n = 1 the optimal inputs are discrete with
finitely many points. For n > 1 the optimal input probability
distributions are no-longer discrete but singular, however,
the magnitude of the optimal input distribution �X� is discrete
with finitely many points.

A. Small Amplitude Regime

In this paper the small amplitude regime has the following
definition.

Definition 1: Let X R ∼ PX R be uniform on C(R). The
capacity in (2) is said to be in the small amplitude regime if
R ≤ R̄n where

R̄n := max{R : PX R = arg max max
X∈B0(R)

I (X; Y )}. (13)

In words, R̄n is the largest radius R for which PX uniformly
distributed on C(R) is the capacity achieving distribution
in (2).

In this work we are interested in exactly characterizing R̄n .

III. MAIN RESULT

The following theorem, which is the main result of this
paper, gives a complete characterization of the small amplitude
regime.

Theorem 2 (Characterization of the Small Amplitude
Regime): The input X R is optimal in (2) (i.e., capacity achiev-
ing) if and only if R ≤ R̄n where R̄n is given as the solution
of the following equation:
� 1

0
E

	
h2

n
2

�√
γ R�Z��



+E

	
h2

n
2

�√
γ R�√γ x +Z��



dγ = 1,

(14a)

for any x such that �x� = R. In addition, it is sufficient to
take R ≤ √

n (i.e.,
√

n ≤ R̄n), and

lim
n→∞

R̄n√
n

= c ≈ 1.860935682, (14b)

Fig. 2. Plots of R̄n as defined in Theorem 2 vs. n. (a) Comparison of R̄n
and

√
n. (b) Plot of R̄n normalized by

√
n.

where c is the solution of the following equation:

� 1

0

γ c2

�
1
2 +
�

1
4 +γ c2

�2+ γ c2(1+γ c2)
�

1
2 +
�

1
4 +γ c2(1+γ c2)

�2 dγ = 1.

(14c)
Proof: See Section V-A.

Note that Rn is given as the solution of an integral equation
in (14a) and does not have an exact analytical form and
must be found using numerical methods. Similarly, while
the integral in (14c) does have a closed form expression
given (62), the resulting equation must be solved numerically.
The numerical evaluation of R̄n up to n = 35 is shown on
Fig. 2 and the values of R̄n are provided in Table I.

It is important to note that numerical computation of h n
2
(x)

via direct evaluations of the Bessel functions may be unstable
for large x . The interested reader is referred to Appendix A
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TABLE I

VALUES OF R̄n AND R̄MMSE
n

for a discussion of these stability issues and details on how
values of R̄n can be computed by using a known continued
fraction expansion of h n

2
(x).

Remark 1: Recall that �Z + x�2 in (14a) is distributed
according to the non-central chi-square distribution of degree
n with non-centrality parameter �x�2; this fact becomes useful
when numerically computing R̄n.

We can also give the following alternative characteriza-
tion of R̄n that does not require integration over γ as
in (14a).

Theorem 3 (Alternative Characterization of R̄n): The
input X R is optimal in (2) if and only if R ≤ R̄n where R̄n is
given as a positive zero of the following equation:

E

�
W1

�W�h n
2
(R�W�)

�
= 1

2
, (15)

where W is a random vector of independent components
such that W1 ∼ Q(w−R)−Q(w)

R and Wi ∼ N (0, 1) for
2 ≤ i ≤ n.

Proof: See Section V-B.
Remark 2: For the case of n = 1 using the fact that

R
y

|y|h 1
2
(R|y|) = E[X R |Y = y] = R tanh(Ry), (16)

the expression in (15) simplifies to

�

R

(Q(w − R) − Q(w)) tanh(Rw)dw = R

2
. (17)

The non-zero solution to (17) can be easily found numerically
and is given by R̄1 ≈ 1.665925641 as was already computed
in [7]. However, interestingly, while the expression (17) is
equivalent to the one presented in [7], it is not of the same
form. In [7] R̄1 is instead given as a solution of the following
equation:

�

R

⎛

⎝e− (y−R)2

2 + e− (y+R)2

2

2
− e− y2

2

⎞

⎠ log
�

e−Ry + eRy
�

dy

=
√

2π R2

2
.

IV. SOME ANALYTICAL COMPUTATIONS

In this section for the input X R we compute the output pdf,
the mutual information and the MMSE.

Proposition 1 (Output Distribution): The pdf of the out-
put distribution induced by the input X R is given by

fY (y) = �
� n

2

�
e− R2+�y�2

2

2π
n
2

I n
2 −1(�y�R)

(�y�R)
n
2 −1

. (18)

Proof: Let X̂� have distribution with the pdf given on the
annulus

f X̂�
(x) = 1

Vn (Rn − (R − �)n)
1{R−�≤�X̂��≤R}(x), (19)

for some � > 0. Observe that X̂� → X R in distribution as
� → 0 and, therefore, by the Dominated Convergence
Theorem the output pdf can be written as follows:

fY (y) = lim
�→0

E

�
1

(2π)
n
2

e− �y−X̂��2

2

�

= 1

Vn(2π)
n
2

lim
�→0

�
R−�≤�x�≤R e− �y−x�2

2 dx

(Rn − (R − �)n)
. (20)

To compute the limit in (20) we will need the following
integral [15]:

�

�x�=1
exT y Rdx =

��y�R

2

�1− n
2

Sn−1�
�n

2

�
I n

2 −1(�y�R).

(21)
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The derivation of the limit in (20) now proceeds as follows:

lim
�→0

�
R−�≤�x�≤R e− �y−x�2

2 dx

(Rn − (R − �)n)

a)= lim
�→0

� R
R−�

�
Sn−1

e− �y−r��2

2 rn−1d�dr

(Rn − (R − �)n)

b)= lim
�→0

� R
R−� f (r, y)dr

(Rn − (R − �)n)

c)=
d

d�

� R
R−� f (r, y)dr |�=0

d
d� (Rn − (R − �)n) |�=0

d)= f (R, y)

n Rn−1

=
�

Sn−1
e− �y−R��2

2 Rn−1d�

n Rn−1

= e− R2+�y�2

2
�

Sn−1
eR�T yd�

n

e)=
e− R2+�y�2

2

� �y�R
2

�1− n
2

Sn−1�
� n

2

�
I n

2 −1(�y�R)

n
, (22)

where the labeled equalities follow from: a) changing to spher-

ical coordinates; b) defining f (r) := �
Sn−1

e− �y−r��2

2 rn−1d�;
c) applying L’Hôpital’s rule; d) applying the Fundamental
Theorem of Calculus; and e) using the integral in (21).

Putting together (20) and (22) and using (21) we have that
the output pdf is given by

fY (y) = 1

Vn(2π)
n
2

×
e− R2+�y�2

2

� �y�R
2

�1− n
2

Sn−1�
� n

2

�
I n

2 −1(�y�R)

n

= �
� n

2

�
e− R2+�y�2

2

2π
n
2

I n
2 −1(�y�R)

(�y�R)
n
2 −1

.

This concludes the proof.

For n = 1 using the identity I− 1
2
(x) = � 2

πx

� 1
2 cosh(x) we

have that

fY (y) = e− R2+|y|2
2√

2π
cosh(|y|R)

= 1

2

�
1√
2π

e− (R+|y|)2
2 + 1√

2π
e− (R−|y|)2

2

�
.

For n = 2 the output distribution is shown in Fig. 3 and is
given by

fY (y) = e− R2+�y�2

2

2π2

� π

0
e�y�R cos(θ)dθ;

for n = 3 using the identity I 1
2
(x) = � 2

πx

� 1
2 sinh(x) we have

that

fY (y) =
√

2

8π
3
2

1

�y�R

�
e− (R−�y�)2

2 − e− (R+�y�)2

2

�
.

Fig. 3. The output pdf in (18) for n = 2 and R = 3.

Using the expression for the pdf in (18) we can now also
compute the conditional expectation E[X |Y ].

Proposition 2 (Conditional Expectation): For every R >
0

E[X R | Y = y] = Ry

�y�h n
2
(�y�R) . (23)

Proof: Using the identity between the conditional expec-
tation and score function [16] we have that

E[X R | Y = y] = y + ∇y fY (y)

fY (y)
, (24)

and due to the symmetry of fY (y) we have that

∇y fY (y) = y
�y�

d
d�y� fY (�y�), (25)

where
d

d�y� fY (�y�)

= d

d�y�
�
� n

2

�
e− R2+�y�2

2

2π
n
2

I n
2 −1(�y�R)

(�y�R)
n
2 −1

= −�
� n

2

�
e− R2+�y�2

2 �y�
2π

n
2

I n
2 −1(�y�R)

(�y�R)
n
2 −1

+ �
� n

2

�
e− R2+�y�2

2

2π
n
2

d

d�y�
I n

2 −1(�y�R)

(�y�R)
n
2 −1

= −�y� fY (y) + �
� n

2

�
e− R2+�y�2

2 R

2π
n
2

·
⎛

⎝
(�y�R)I�n

2 −1(�y�R) − � n
2 − 1

�
I n

2 −1(�y�R)

(�y�R)
n
2

⎞

⎠ (26)

a)= −�y� fY (y) + �
� n

2

�
e− R2+�y�2

2

2π
n
2

�
R2�y�I n

2
(�y�R)

(�y�R)
n
2

�

b)= −�y� fY (y) + R fY (y)I n
2
(�y�R)

I n
2 −1(�y�R)

= −�y� fY (y) + R fY (y)h n
2
(�y�R), (27)
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where the labeled equalities follow from: a) using the well-
known recurrence relation x Iv+1(x) = x I�v (x) − vIv (x) [17];
and b) using the expression for fY (y) in (18).

The proof of (23) is completed by combining (24),
(25) and (27).

Remark 3: The proof of Proposition 2 relies on the fol-
lowing identity between the conditional expectation and the
output pdf [16]:

E[X | Y = y] = y + ∇y fY (y)

fY (y)
, (28)

in which the quantity
∇y fY (y)

fY (y) is commonly known as the score
function. The application of the identity in (28) considerably
simplifies the computation of E[X | Y ] as we do not need
to derive the conditional distribution PX |Y and only use
properties of the output pdf fY (y).

Examples of shapes of the conditional expectation for n = 1
and n = 2 are shown on Fig. 4.

The mutual information and the MMSE of X R are given
next.

Proposition 3 (MMSE and Mutual Information): For
every R > 0

I (X R; Y ) = R2 + log

�
21− n

2

�
� n

2

�

�

− E

�

log

�
I n

2 −1(�Z + x�R)

(�Z + x�R)
n
2 −1

��

, (29)

and

mmse(X R | Y ) = R2 − R2
E

	
h2

n
2
(R�x + Z�)



, (30)

for any �x� = R.
Proof: First observe that due to the symmetry of i(x, PX R )

and X R we have that

I (X R; Y ) = E[i(X, PX R )] = i(x, PX R ),

where �x� = R. Therefore,

I (X R; Y ) + h(Z)

=
�

Rn

1

(2π)
n
2

e− �y−x�2

2 log
1

fY (y)
dy

= log

�
2π

n
2

�
� n

2

�

�

+ R2 + E[�Z + x�2]
2

+ E

�

log

�
(�Z + x�R)

n
2 −1

I n
2 −1(�Z + x�R)

��

= log

�
2(πe)

n
2

�
� n

2

�

�

+ R2

+ E

�

log

�
(�Z + x�R)

n
2 −1

I n
2 −1(�Z + x�R)

��

.

This concludes the proof of (29). To show (30) observe that
the MMSE can be written as

mmse(X R |Y ) = E[�X R�2] − E

	
�E[X R | Y ]�2




= R2 − E

	
�E[X R | Y ]�2 | �X R� = R




= R2 − R2
E

	
h2

n
2
(R�x + Z�)



,

where �x� = R. This concludes the proof.

Fig. 4. Examples of the conditional expectation in (23) for n = 1 and n = 2.
(a) Case of n = 1. The conditional expectation E [X R |Y = y] = R tanh(Ry)
where R = 2. (b) Case of n = 2. The conditional expectation E [X1|Y = y]
where X R = [X1, X2] with R = 2.5 and where y = [y1, y2].

Fig. 5 shows the MMSE of X R in (30) vs. the MMSE of
XG ∼ N (0, R2 In) which is given by

mmse(XG |Y ) = n
1
n R2

1 + 1
n R2

. (31)

V. A NEW CONDITION FOR OPTIMALITY

IN THE SMALL AMPLITUDE REGIME

In this section an equivalent optimality condition to that in
Theorem 1 is derived. The new condition has the advantage
of being easier to verify than the condition in Theorem 1.

The following two lemmas would be useful in our analysis.
Lemma 1: The function x 
→ i(x, PX R ) is a function only

of �x�.
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Fig. 5. Comparison of the MMSE of X R (dashed line) and the MMSE of
XG ∼ N (0, R2 In) (solid line).

Proof: The proof follows from the symmetry of the
Gaussian distribution and the symmetry of PX R .

The next lemma was shown in [12, Theorem 3].
Lemma 2: Let the pdf f (x, ω) be a positive-definite kernel

that can be differentiated n times with respect to x for all ω,
and let η(ω) be a function that changes sign n times. If

M(x) :=
�

η(ω) f (x, ω)dω, (32)

can be differentiated n times, then M(x) changes sign at most
n times.

Theorem 4 (A New Optimality Condition): PX R is opti-
mal if and only if for all �x� = R

i(0, PX R ) ≤ i(x, PX R ), . (33)
Proof: Since by Lemma 1 i(x, PX R ) is a function only of

�x� let

g(�x�) := i(x, PX R ). (34)

The goal now is to show that the maximum of g(�x�) for
x ∈ B0(R) occurs either at �x� = 0 or �x� = R. This would
simplify the two conditions in (12a) and (12b) to only one
condition

g(0) ≤ g(R). (35)

In order to show this claim, we prove that the derivative of
g(�x�) makes only one sign change, and that sign change
is from negative to positive. Hence, g(�x�) has only one
local minimum and must be maximized only at the boundaries
�x� = 0 and �x� = R.

Because g(�x�) depends on x only through �x�, there is
no loss of generality in taking x = [x1, 0, ..., 0]. Consider the

derivative of g(x1) with respect to x1

g�(x1)

= d

dx1

�

Rn

1

(2π)
n
2

e−
�n

i=2 y2
i +(y1−x1)2

2 log
1

fY (y)
dy

=
�

Rn

1

(2π)
n
2

e−
�n

i=2 y2
i +(y1−x1)2

2 (y1 − x1) log
1

fY (y)
dy

= −
�

Rn

1

(2π)
n
2

e−
�n

i=2 y2
i +(y1−x1)2

2 (y1 − x1) log fY (y)dy.

Integrating by parts with respect to y1 we have that

g�(x1) = − �
Rn

1

(2π)
n
2

e−
�n

i=2 yn
i +(y1−x1)2

2 ρ(y)dy,

where

ρ(y) := d

dy1
log fY (y) =

d
dy1

fY (y)

fY (y)
.

Next using the chain rule of differentiation we have that

d

dy1
fY (y) = d

d�y� fY (y)
y1

�y�
=
�

−�y� fY (y) + R fY (y)I n
2
(�y�R)

I n
2 −1(�y�R)

�
y1

�y� ,

where in the last step we have used (27). Therefore,

ρ(y) =
�
−�y� + Rh n

2
(�y�R)

� y1

�y�
:= M(�y�) y1

�y� .

Next by transforming to spherical coordinates we have that

g�(x1) = −2 x1

� ∞

0
M(r)e− r2+x2

1
2

1

2

�
r

x1

� n
2

I n
2
(x1r)dr

(36)

= −2x1E

	
M(
�

V 2)


, (37)

where V 2 is the non-central chi-square distribution with n + 2
degrees of freedom and non-centrality x2

1 ; see Appendix B for
the derivation (36) and (37).

Another fact which is not difficult to check is that for large
enough x1 the function g�(x1) is positive. This is shown next

−2 x1E

	
M
��

V 2
�


= −2 x1E

	
−
�

V 2 + Rh n
2

��
V 2 R

�


= 2 x1

�
E

	�
V 2



− E

	
Rh n

2
(
�

V 2 R)

�

a)≥ 2x1

��
E[V 2] − R

�

b)≥ 2x1

��
n + 2 + x2

1 − R

�
, (38)

where the labeled (in)-equalities follow from: a) using
h n

2
(
√

V 2 R) ≤ 1 and E

	√
V 2



≥
�

E[V 2]; and b) using

the expression of the mean of the non-central chi-square
distribution with n + 2 degrees of freedom and non-centrality
x2

1 . Therefore, in view of the bound in (38), the expression in
(37) is positive for x1 large enough.
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Next observe that in (36) the function

M(r) = −r + Rh n
2
(r R),

changes sign at most once for r > 0, which follows from
the fact that h n

2
(x) is increasing and concave (see [15]) and

h n
2
(0) = 0. Hence, using Lemma 2 we have that for x1 > 0

the function g�(x1) changes sign at most once, and since
g�(x1) > 0 for large enough x1, we conclude that the sign
change can only be from negative to positive. Therefore, for
x1 > 0 the function g(x1) has only one local minimum,
no local maxima, and g(�x�) is maximized only at the
boundaries. This concludes the proof.

Remark 4: Condition (33) significantly simplifies the nec-
essary and sufficient conditions for optimality in (12). For
instance, we do not have to verify the conditions in (12b)
for all x ∈ B0(R) and instead need only to check the points
satisfying �x� = 0 and �x� = R.

Moreover, the condition in (33) implies that as we increase
R the new points of support cannot appear for 0 < �x� <
R and shows that a new probability mass, as we transition
beyond R̄n, can only appear at �x� = 0.

Fig. 6 shows i(x, PX R ) vs. x for n = 1. Note that,
as expected, when R = R̄1 we have that i(0, PX R ) =
i(R, PX R ). Moreover, for R > R̄1 as X R is no longer optimal,
we have that i(0, PX R ) > i(R, PX R )

Next, we rewrite i(0, PX R ) and i(x, PX R ) in terms of esti-
mation theoretic measures which facilitates the computation
of R̄n .

Lemma 3: For every R > 0 and �x� = R

i(x, PX R ) = 1

2

� 1

0
E

	��
�X R − E[X R | Yγ ]�2 | �X R

�
�
�= R



dγ,

(39)

i(0, PX R ) = 1

2

� 1

0
E

	�
�X R − E[X R | Yγ ]��2 | �X R�=0



dγ,

(40)

where Yγ =√
γ X R + Z.

Proof: The proof of (39) follows by a symmetry argument
used in Proposition 3 and the I-MMSE relationship [13]

I (X; Y ) = 1

2

� 1

0
E

	
�X − E[X | Yγ ]�2



dγ. (41)

To show (40) we use the point-wise I-MMSE formula [14]

log
fY |X (Y |X)

fY (Y )
− 1

2

� 1

0
�X − E[X | Yγ ]�2dγ

=
� 1

0
(X − E[X | Yγ ]) · dWγ , a.s. (42)

where the integral on the right hand side of (42) is the Itô
integral with respect to Wγ . The proof of the representation

Fig. 6. Plot of i(x, PX R ) vs. x for n = 1. Solid lines are i(x, PX R ) and
vertical dashed lines are x = R and x = −R. (a) Plot of i(x, PX R ) vs. x for
R = 1.64. (b) Plot of i(x, PX R ) vs. x for R = R̄1 = 1.665925641. (c) Plot
of i(x, PX R ) vs. x for R = 1.67.
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of i(0, PX R ) now goes as follows:

2 i(0, PX R ) = E

�
log

fY |X R (Y |X R)

fY (Y )
| �X R� = 0

�

a)= E

�� 1

0
�X R − E[X R | Yγ ]�2dγ | �X R� = 0

�

− E

�� 1

0
(X R − E[X R | Yγ ]) · dWγ | X R = 0

�

b)= E

�� 1

0
�X R − E[X R | Yγ ]�2dγ | X R = 0

�

=
� 1

0
E

	
�X R − E[X R | Yγ ]�2 | X R = 0



dγ,

where the labeled equalities follow from: a) using the point-
wise formula in (42); and b) using the symmetry of X R to
conclude that E[E[X R |Yγ ]|X R = 0] = 0. This concludes the
proof.

A. Proof of Theorem 2

Combining Lemma 3 and the optimality condition in The-
orem 4 we arrive at

0 ≥ i(0, PX R ) − i(x, PX R )

=
� 1

0
E

	
�X R − E[X R | Yγ ]�2 | �X R� = 0




− E

	
�X R − E[X R | Yγ ]�2 | �X R� = R



dγ

=
� 1

0
R2

E

	
h2

n
2

�√
γ R�Z��



− R2

− R2
E

	
h2

n
2

�√
γ R�√γ x + Z��



dγ, (43)

where in the last step we have used the expression for the
conditional expectation in (23) and the expression for the
MMSE in (30). Now the condition in (43) is equivalent to

� 1

0
E

	
h2

n
2

�√
γ R�Z��



+E

	
h2

n
2

�√
γ R�√γ x +Z��



dγ ≤1,

(44)

where �x� = R. The value of R̄n would now be a solution of
(44) which concludes the proof of (14a).

To show the second part of Theorem 2 let R = c
√

n. We will
also need the following bounds on hv (x) [18], [19]:

hv (x) ≥ x

v + √
v2 + x2

, for v > 0, (45)

hv (x) ≤ x

2v−1
2 +

�
(2v−1)2

4 + x2
, for v >

1

2
. (46)

Moreover, if we let x̄ = [c√n, 0, 0, ...] and define

Vn := 1√
n
�cZ + c

√
γ x̄�, (47)

Wn := 1√
n
�cZ�, (48)

then the two terms on the left hand side of (44) can be lower
and upper bounded as follows:

E

⎡

⎢
⎣

⎛

⎝
√

γ Wn

1
2 +

�
1
4 + γ W 2

n

⎞

⎠

2
⎤

⎥
⎦

≤ E

	
h2

n
2

�
c
√

n
√

γ �Z��



≤ E

⎡

⎢
⎣

⎛

⎝
√

γ Wn

n−1
2n +

�
(n−1)2

4n2 + γ W 2
n

⎞

⎠

2
⎤

⎥
⎦ , (49)

and

E

⎡

⎢
⎣

⎛

⎝
√

γ Vn

1
2 +

�
1
4 + γ V 2

n

⎞

⎠

2
⎤

⎥
⎦

≤ E

	
h2

n
2

�
c
√

n
√

γ �√γ x̄ + Z��



≤ E

⎡

⎢
⎣

⎛

⎝
√

γ Vn

n−1
2n +

�
(n−1)2

4n2 + γ V 2
n

⎞

⎠

2
⎤

⎥
⎦ , (50)

where the lower bounds hold for n ≥ 1 and the upper bounds
hold for n > 1.

In view of the fact that u 
→ u
(a+√

a2+u)2 is a concave
function for a > 0, using Jensen’s inequality, we can further
upper bound the expressions in (49) and (50) as follows:

E

⎡

⎢
⎣

⎛

⎝
√

γ Wn

n−1
2n +

�
(n−1)2

4n2 + γ W 2
n

⎞

⎠

2
⎤

⎥
⎦

≤ γ E[W 2
n ]

�
n−1
2n +

�
(n−1)2

4n2 + γ E[W 2
n ]
�2

= γ c2

�
n−1
2n +

�
(n−1)2

4n2 + γ c2

�2 , (51)

and

E

⎡

⎢
⎣

⎛

⎝
√

γ Vn

n−1
2n +

�
(n−1)2

4n2 + γ 2V 2
n

⎞

⎠

2
⎤

⎥
⎦

≤ γ E[V 2
n ]

�
n−1
2n +

�
(n−1)2

4n2 + γ E[V 2
n ]
�2

= γ c2(1 + γ c2)
�

n−1
2n +

�
(n−1)2

4n2 + γ c2(1 + γ c2)

�2 , (52)

where we have also used that E[W 2
n ] = c2 and E[V 2

n ] = c2(1+
γ c2). Applying the bounds in (51) and (52) to a necessary and
sufficient condition in (44) we arrive at the following sufficient
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condition for optimality:
� 1

0

γ c2

�
n−1
2n +

�
(n−1)2

4n2 + γ c2

�2

+ γ c2(1 + γ c2)
�

n−1
2n +

�
(n−1)2

4n2 + γ c2(1 + γ c2)

�2 dγ ≤ 1. (53)

Next, we verify that it is sufficient to take R ≤ √
n which

is equivalent to verifying that the inequality in (53) holds for
c = 1. Choosing c = 1 in (53) and letting a = n−1

2 n we arrive
at the following inequality:

2a log(2a + 1) − 2a log
�

2
�

a2 + 2 + 3
�

− 4a2 tanh−1
�

8a2 − 1
�

+ 4a2 tanh−1

�
4a

√
a2 + 2 − 1

3

�

≤ 1. (54)

The solution to the above inequality can be found numerically
and is given by 0.2358 ≤ a = n−1

2 n or n ≥ 1.892. Therefore,
for n ≥ 2 it is sufficient to take c = 1 or R ≤ √

n.
Next, we find the exact limiting behavior of c. Observe that

the lower and upper bounds in (49) and (50) are equal as
n → ∞ and, therefore, we focus only on the upper bounds
in (49) and (50). By the strong law of large numbers almost
surely we have the following limits:

lim
n→∞ V 2

n = lim
n→∞

1

n
�cZ + c

√
γ x̄�2

= lim
n→∞

1

n
(cZ1 + c2√γ

√
n)2 + lim

n→∞
1

n

n!

i=2

(cZi)
2

= c2(1 + γ c2), (55)

and similarly

lim
n→∞ W 2

n = limn→∞ 1
n

�n
i=1(cZi )

2 = c2. (56)

Now to show that the limit and the expectation can be
interchanged observe that

"
"
"
""
"

√
γ Vn

n−1
2n +

�
(n−1)2

4n2 + γ V 2
n

"
"
"
""
"

≤ 1, (57)

"
"
""
"
"

√
γ Wn

n−1
2n +

�
(n−1)2

4n2 + γ W 2
n

"
"
""
"
"

≤ 1, (58)

and by the Dominated Convergence Theorem the limits are
give by

lim
n→∞ E

⎡

⎢
⎣

⎛

⎝ c
√

n
√

γ �Z + √
γ x̄�

n−1
2 +

�
(n−1)2

4 + c2nγ �Z + √
γ x̄�2

⎞

⎠

2
⎤

⎥
⎦

= lim
n→∞ E

⎡

⎢
⎣

⎛

⎝
√

γ Vn

n−1
2n +

�
(n−1)2

4n2 + γ V 2
n

⎞

⎠

2
⎤

⎥
⎦

=
⎛

⎝
√

γ c
�

1 + γ c2

1
2 +

�
1
4 + γ c2(1 + γ c2)

⎞

⎠

2

, (59)

and

lim
n→∞ E

⎡

⎢
⎣

⎛

⎝ c
√

n
√

γ �Z�
n−1

2 +
�

(n−1)2

4 + c2n
√

γ �Z�2

⎞

⎠

2
⎤

⎥
⎦

= lim
n→∞ E

⎡

⎢
⎣

⎛

⎝
√

γ Wn

n−1
2n +

�
(n−1)2

4n2 + γ W 2
n

⎞

⎠

2
⎤

⎥
⎦

=
⎛

⎝
√

γ c

1
2 +

�
1
4 + γ c2

⎞

⎠

2

. (60)

Therefore, the condition for optimality is given by
� 1

0

γ c2

�
1
2 +

�
1
4 +γ c2

�2 + γ c2(1 + γ c2)
�

1
2+
�

1
4 +γ c2(1 + γ c2)

�2 dγ =1.

(61)

The integral in (61) does have a closed form expression
given by,

log
�√

4c2+1+1
�
−log

�
c2+1

�−log (2)−√
4c2+1+2 c2+1

c2 =1

(62)

however, the resulting equation must be solved numerically.
Using numerical methods it is not difficult to verify that the
solution to the equation in (61) is given by c ≈ 1.860935682.
This concludes the proof.

B. Proof of Theorem 3

First we compute the difference i(x, PX ) − i(0, PX ) where
we take x = [x1, 0, ..., 0]
i(x, PX ) − i(0, PX )

=
�

Rn

�
1

(2π)
n
2

e− �y−x�2

2 − 1

(2π)
n
2

e− �y�2

2

�
log

1

fY (y)
dy.

(63)

Next considering only the integral with respect to y1, we have

−
�

R

�
1√
2π

e− (y1−x1)2

2 − 1√
2π

e− y2
1
2

�
log fY (y)dy1 (64)

a)=
�

R

(Q(y1) − Q(y1 − x1))

d
dy1

fY (y)

fY (y)
dy1

b)=
�

R

(Q(y1) − Q(y1 − x1)) (E[X1 | Y = y] − y1) dy1

c)=
�

R

(Q(y1) − Q(y1 − x1))E[X1 | Y = y]dy1 + x2
1

2
,

(65)

where the labeled equalities follow from: a) using integration
by parts; b) using the identity in (28); and c) using the integral

�

R

y (Q(y1) − Q(y1 − x1)) dy = − x2
1

2
. (66)
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Next, observing that Q(y1)−Q(y1−x1)
−x1

is a pdf since
�

R

Q(y1) − Q(y1 − x1)

−x1
dy1 = 1, (67)

and putting (63) and (65) together we have that

i(x, PX ) − i(0, PX ) = −x1E[E[X1 | Y = W ]] + x2
1

2
,

(68)

where W is a random vector such that W1 ∼ Q(y1)−Q(y1−x1)−x1
and Wi ∼ N (0, 1) for 2 ≤ i ≤ n.

Combining (65) with the conditional expectation of X R in
(23) and choosing x1 = R the difference in (63) is given by

i(R, PX R ) − i(0, PX R ) = −R2
E

�
W1

�W�h n
2
(R�W�)

�
+ R2

2
.

(69)

The proof is concluded by applying (69) to the sufficient and
necessary condition in (33).

VI. AN ALTERNATIVE PROOF OF THE

LOWER BOUND
√

n ≤ R̄n

In this section we give an alternative proof of the lower
bound

√
n ≤ R̄n . The main idea is to show that x 
→ i(x, PX )

is a subharmonic function where the notion of subharmonic
functions is defined next.

Definition 2 (Subharmonic Function): Suppose that the
function f is twice continuously differentiable on an open set
G ∈ R

n. Then f is subharmonic if ∇2 f ≥ 0 on G where ∇2

is the Laplacian.1

We will use an important property that a subharmonic
function always attains its maximum on the boundary of a
set as shown in the following theorem.

Theorem 5 (Maximum Principle of Subharmonic Func-
tions): Suppose that G is a connected open set. If f is
subharmonic and attains a global maximum value in the
interior of G, then f is constant in G.

To show the desired bound we will use Theorem 5 together
with yet another identity that relates estimation and informa-
tion measures [20, Property 3].

Lemma 4: Denote the likelihood function by

�(y) := fY (y)

1

(2π)
n
2

e− �y�2
2

. (70)

Then,

∇2 log �(y) = E[�X − E[X | Y ]�2 | Y = y]
:= Var(X | Y = y). (71)

The next result shows that the function x 
→ i(x, PX ) is
subharmonic if X is contained in a small enough neighbor-
hood.

Theorem 6: Suppose that X ∈ B0(R). Then, for R ≤ √
n

and all x ∈ B0(R) the function x 
→ i(x, PX ) is subharmonic.

1If f is twice differentiable its Laplacian is given by by ∇2 f =
�n

i=1
∂2 f
∂x2

i
.

Proof: Observe that i(x, PX ) can be written in terms of
the log-likelihood function as follows:

i(x, PX )

= −E
#
log fY (x + Z)

$− h(Z)

= −E
#
log �(x + Z)

$− E

�
log

1

(2π)
n
2

e− �x+Z�2

2

�
− h(Z)

= −E
#
log �(x + Z)

$+ �x�2

2
. (72)

Therefore, using (70) we have that

∇2i(x, PX ) = −E [Var(X | Y ) | X = x] + n

≥ −R2 + n, (73)

where in the last step we have used X ∈ B0(R) and the bound
Var(X | Y ) ≤ R2. This concludes the proof.

As a consequence of Theorem 5 and Theorem 6 we have
the following corollary.

Corollary 1: For R ≤ √
n

max
X∈B0(R)

I (X; X + Z) = I (X R; X R + Z), (74)

or, alternatively,
√

n ≤ R̄n .
The proof of Theorem 6 gives yet another example of

the utility of identities between estimation and information
measures. Finally, the result in Theorem 6 can also be extended
to a degraded Gaussian wiretap channel [21].

VII. DISCUSSION

In this work we have characterized conditions under which
an input distribution uniformly distributed over a single sphere
achieves the capacity of a vector Gaussian noise channel with
a constraint that the input must lie in the n-ball of radius R.
We have also shown that the largest radius R̄n for which it is
still optimal to use a single sphere grows as

√
n. Moreover,

the exact limit of R̄n√
n

as n → ∞ is found to be ≈ 1.861.
A number of methods that we have used throughout the

paper relied on using estimation theoretic representations of
information measures such as the I-MMSE relationship. The
path via estimation theoretic arguments allows us to contrast
optimization of the mutual information with that of a similar
problem of optimizing the MMSE, that is

max
X∈B0(R)

mmse(X |Y ). (75)

Distributions that maximize (75) are referred to as least
favorable prior distributions and have been shown to have
a spherical structure similar to that of the distributions that
maximize the mutual information; an interested reader is
referred to [22] and [23] and references therein. Moreover,
the conditions for the optimality of a single sphere distribution
(i.e., the maximum radius R̄MMSE

n ) in (75) have been found
in [22] and [24] and are given by a solution to the following
equation:

E

	
h2

n
2
(R�Z�)



+ E

	
h2

n
2
(R�x + Z�)



= 1, (76)

where �x� = R. It is pleasing to see the similarity between
the optimality condition for the MMSE in (76) and the
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Fig. 7. Comparison of R̄n , R̄MMSE
n and

√
n. For R ≤ R̄MMSE

n the least
favorable distributions (LFD’s) are capacity achieving (optimal for short) and
not capacity achieving for R > R̄MMSE

n .

optimality condition for the mutual information in (14a). Note,
however, that (14a) could not have been derived directly from
(76) or vice versa. The values of R̄MMSE

n are shown in Table I.
The code for the numerical computation of R̄MMSE

n and R̄n can
be found at [25].

It is also interesting to point out that that R̄MMSE
n is always

lagging behind R̄n as we increase n as shown in Fig. 7.
Notably this behavior persists even as n → ∞ since for the
MMSE2

lim
n→∞

R̄MMSE
n√

n
= cMMSE ≈ 1.151, (77)

where cMMSE is the solution of the following equation:

c2

�
1
2 +

�
1
4 + c2

�2 + c2(1 + c2)
�

1
2 +

�
1
4 + c2(1 + c2)

�2 = 1, (78)

while for the mutual information according to Theorem 2

lim
n→∞

R̄n√
n

≈ 1.861. (79)

Again, note the similarity between (78) and (14c).
The lagging of R̄MMSE

n behind R̄n also points out that the
following bounding technique, which relies on the I-MMSE,
results in a tight bound if R ≤ R̄MMSE

n and is not tight if
R̄MMSE

n ≤ R ≤ R̄n :

max
X∈B0(R)

I (X; Y ) = max
X∈B0(R)

1

2

� 1

0
mmse(X |Yγ )dγ (80)

≤ 1

2

� 1

0
max

X∈B0(R)
mmse(X |Yγ )dγ, (81)

2The exact limit is given by limn→∞ R̄MMSE
n√

n
= cMMSE =

�
3√

9−√
69+ 3√

9+√
69

6√2 3√3
≈ 1.15096; see [22] and [26] for the details.

Such a condition for tightness of the bound via the I-MMSE
relation was already pointed out in [27] for n = 1. Interest-
ingly for several multiuser problems [28]–[30], with a second
moment constraint on the input instead of an amplitude
constraint, such lagging vanishes as n → ∞ and bounds via
the I-MMSE of the type in (81) (i.e., where the maximum
and the integral are interchanged) are tight. The fundamental
difference is that in the aforementioned works the Gaussian
distribution is optimal in the limit of n, while in (2) and (75)
Gaussian inputs are not optimal even as n → ∞.

The optimality of an input distribution on a single sphere
also has important practical implications as it suggests that
phase modulation is optimal. Note that in practice, however,
the continuous sphere would have to be discretized. The
accuracy of such a discretization can potentially be evaluated
by using the fact that the mutual information is continuous in
the Wasserstein metric over a set of distributions with compact
support [31, Corollary 4].

An ambitious future direction is to consider an extension
of the result in this paper to a general MIMO channel. For
a recent survey on discrete inputs in MIMO systems the
interested reader is referred to [32].

Another interesting direction is to consider an input average
power constraint (i.e., E[�X�2] ≤ P) together with the input
amplitude constraint analyzed in this paper.

Finally, we have recently found another application of
Lemma 2. In particular, in [33] and [34] we have shown that
Lemma 2 can be used to provide a first firm upper bound on
the number of spheres in (12c).

APPENDIX A
ON THE NUMERICAL EVALUATION OF THE

INTEGRALS IN (15) AND (76)

Evaluation of the expectations in (15) and (76) for any given
R may be performed using Monte-Carlo methods. The ratios
of Bessel functions in the expectations can be evaluated pre-
cisely thanks to the known continued fraction expansion [35]

hn(x) = In(x)

In−1(x)
= 1

b1 + 1
b2+···

, (82)

where

bk = 2(n + k − 1)

x
. (83)

The continued fraction can be evaluated via
Steed’s or Lentz’s algorithm [36], either of which gives
stable and accurate results, whereas the direct evaluation
of the ratio of Bessel functions may lead to floating-point
overflows at high values of x . An example of the overflow
for double precision values is shown on Fig. 8. Note that
in Fig. 8a the zero values of the function hn(x) = In(x)

In−1(x)
around n = 38 correspond to denominator overflows while
the one values for smaller values of n correspond to both
numerator and denominator overflows. Moreover, observe that
neither Steed’s or Lentz’s algorithm experiences this issue.

Since hn(x) is a monotonically increasing function of x ,
the integrands in (15) and (76) are monotonically increasing
functions of R. Hence, given lower and upper bounds on R,
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Fig. 8. Comparison of values of hn(x) obtained via Steed’s algorithm, Lentz’s
algorithm and direct evaluation of the ratio of Bessel functions. (a) Plot of
hn(x) vs. x for n = 33. (b) Plot of hn(x) vs. n for x = 705.

the zeroes of (15) and (76) may be obtained via binary
searches. In our simulations, we set the lower and upper
bounds to

√
n and 3

√
n, respectively. Note that this interval

includes both the set [1.6659
√

n, 1.8609
√

n] for the maximum
mutual information setting, and the set [1.0567

√
n, 1.151

√
n]

for the maximum MMSE setting.
We sampled 108 chi-square samples while evaluating the

expectations for the binary searches. During the evaluation
of (15), we integrated directly over the distribution of W1,
and we distributed the chi-square samples uniformly across
the effective domain of W1, which was set as [−7, R + 7] to
capture all but a negligible amount of the probability mass.
During the evaluation of (76), we sampled evenly from the
central and non-central chi-square distributions.3

3Alternatively, more samples can be taken from the non-central chi-square
due to its higher variance.

The R̄n and R̄MMSE
n values reported in Table I have consis-

tently led to residuals well below 10−4 during the Monte-Carlo
evaluations of the integral equations. In our experience, multi-
ple binary searches in this setting do not lead to changes in R̄n

and R̄MMSE
n values beyond the fourth digit after the decimal

point. Interested readers may refer to our implementation and
simulation data found at [25].

APPENDIX B
CONVERTING TO SPHERICAL COORDINATES IN (36)

Using that

ρ(y) =
�

−�y� + RI n
2
(�y�R)

I n
2 −1(�y�R)

�
y1

�y� = M(�y�) y1

�y� ,

we have

−g�(x1) = �
Rn

1

(2π)
n
2

e−
�n

i=2 y2
i +(y1−x1)2

2 M(�y�) y1
�y�dy.

Transforming y1, y2, . . . , yn to the spherical coordinates
r, φ1, . . . , φn−1 where r ≥ 0, 0 < φ1 ≤ 2π and 0 < φi ≤ π
for i = 2, . . . , n − 1 we have that

y1 = r cos(φ1), (84a)

yi = r cos(φi )

i−1%

k=1

sin φk, i = 2, . . . , n − 1, (84b)

yn = r
n−1%

k=1

sin φk, (84c)

and the Jacobian is given by

dy = rn−1
n−1%

k=1

(sin φk)
n−1−k drdφ1 . . . dφn−1. (84d)

Therefore, the derivative can be written as follows:

−g�(x1)

a)=
n−1%

k=2

� π

0
(sin φk)

n−1−k dφk

� 2π

0

� ∞

0

e− r2−2rx1 cos(φ1)+x2
1

2

(2π)
n
2

·M(r) cos(φ1)r
n−1 (sin φ1)

n−1 drdφ1

b)= Sn−2

� ∞

0

e− r2+x2
1

2

(2π)
n
2

M(r)2
n
2
√

π�
� n−1

2

�

(x1 r)
n−2

2

I n
2
(x1 r)rn−1dr

c)= x
� ∞

0
e− r2+x2

1
2 M(r)

� r

x

� n
2

I n
2
(x1 r)dr

= 2 x
� r

0
M(r)e− r2+x2

1
2

1

2

� r

x

� n
2

I n
2
(x1 r)dr

d)= 2 xE

	
M
��

V 2
�


,

where the labeled equalities follow from: a) using spherical
coordinates in (84); b) using that

n−1%

k=2

� π

0
(sin φk)

n−1−k dφk = Sn−2,
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and that
� 2π

0
erx1 cos(φ1) cos(φ1) (sin φ1)

n−1 dφ1

= 2
n
2
√

π�
� n−1

2

�

(x1 r)
n−2

2

I n
2
(x1 r)rn−1;

c) using that Sn−22
n
2
√

π�
� n−1

2

� = (2π)
n
2 ; and observing

that 1
2 e− r2+x2

1
2
� r

x

� n
2 I n

2
(x1 r) is the pdf of a chi-square random

variable of degree n+2 with non-centrality x2
1 . This concludes

the proof.
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