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Abstract—Two-user Gaussian multiple-access wiretap channel
models with feedback are investigated. First, we show that the
secrecy capacity regions of both the Gaussian multiple-access
wiretap channel (GMAC-WT) with feedback and the GMAC-
WT with noncausal channel state information at the transmitters
(GMAC-WT-NCSIT) and feedback equal the capacity region of
the Gaussian multiple-access channel (GMAC) with feedback and
without the secrecy constraint and the state corruption. Next, we
derive inner and outer bounds on the secrecy capacity region of
the GMAC-WT with degraded message set and feedback. Our
numerical results show that the perfect secrecy of the private
message can be achieved without loss of any reliable transmission
rate.

The role of channel feedback in physical layer security was
initially investigated in [1], where the secrecy capacity of the
discrete memoryless wiretap channel (WTC) [2] was shown
to be enhanced by a secret key shared between the legitimate
parties, and such a key is generated from channel feedback.
[1] showed that this secret key based feedback coding scheme
is optimal for some degraded discrete memoryless wiretap
channels, but it is not optimal for the general WTC. Very
recently [3] combined the secret key based feedback scheme
[1] with the Wyner-Ziv coding [4], and showed that this hybrid
feedback scheme achieves a higher secrecy rate than [1] does.
Recently, the Gaussian WTC with feedback also attracts a lot
attention. To be specific, [5] showed that even for the degraded
Gaussian WTC, the secret key based feedback scheme [1] is
not optimal. The optimal feedback scheme for the Gaussian
WTC was found in [6], where the classical Schalkwijk-Kailath
(SK) feedback scheme [7] for the Gaussian channel was
shown to achieve the secrecy capacity of the Gaussian WTC
with feedback. Later, [8]- [9] showed that some modified SK
schemes also achieve the secrecy capacities of variations of
the Gaussian WTC with feedback.

Although the impact of feedback has been well studied in
the basic wiretap channels as reviewed above, such a topic is
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mostly open for multi-user wiretap channels. In this paper, we
focus on the Gaussian multiple-access wiretap channel models,
and study how the feedback affects the secrecy capacity region.
We summarize our contributions as follows.

We first study the Gaussian multiple-access wiretap channel
(GMAC-WT) with feedback. [14] studied such a channel
without a wiretapper (GMAC with feedback) and showed that
a generalized SK scheme achieves the capacity region. By
using this generalized SK scheme, we prove that the secrecy
capacity region equals the capacity region of the same model
without secrecy constraint. Such a result is in parallel to that in
[6], which showed that the secrecy capacity of the single user
Gaussian wiretap channel with feedback equals the capacity
of the same model without secrecy constraint.

We then study the GMAC-WT with noncausal channel
state information at the transmitters (GMAC-WT-NCSIT) and
feedback. In [16], a variation of the generalized SK scheme in
[14] was shown to achieve the capacity region of the GMAC-
NCSIT with feedback. By using the feedback scheme in [16],
we prove that the secrecy capacity region of the GMAC-WT-
NCSIT with feedback equals the capacity region of the same
model without secrecy constraint. Numerical results show that
the feedback enhances the secrecy capacity regions of the
GMAC-WT [10]- [11] and the GMAC-WT-NCSIT [18].

We further study the GMAC-WT with degraded message
set and propose a new feedback scheme, which combines the
generalized SK scheme in [14] and the random binning scheme
for the wiretap channel [2]. We show that though this new
scheme cannot achieve the capacity region of the same model
without secrecy constraint, the perfect secrecy of the private
message can be guaranteed without loss of any rate.

I. PRELIMINARIES

A. GMAC with feedback

For the GMAC with noiseless feedback (see Figure 1), the
i-th (i ∈ {1, 2, ..., N}) channel inputs and output are given by

Yi = X1,i +X2,i + ηi, (1.1)

where X1,i and X2,i are the channel inputs subject to the
average power constraints P1 and P2, respectively, Yi is the
channel output, and ηi ∼ N (0, σ2) is the channel noise and is
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Fig. 1. The GMAC with feedback.

i.i.d. across the time index i. For j = 1, 2, the transmitted
message Wj represents the message sent by transmitter j,
and is uniformly distributed over its alphabet {1, 2, ..., 2NRj}
(here Rj is the transmission rate of Wj). At each time i,
Xj,i is a function of the message Wj and the feedback
Y i−1 = (Y1, ..., Yi−1) for j = 1, 2.

The capacity region Cgmac−f of the GMAC with noiseless
feedback was determined in [14] and it is given by

Cgmac−f

=
⋃

0≤ρ≤1

{
(R1, R2) : R1 ≤

1

2
log

(
1 +

P1(1− ρ2)
σ2

)
,

R2 ≤
1

2
log

(
1 +

P2(1− ρ2)
σ2

)
,

R1 +R2 ≤
1

2
log

(
1 +

P1 + P2 + 2
√
P1P2ρ

σ2

)}
. (1.2)

The capacity achieving scheme is described below.
Since Wj (j = 1, 2) takes the values in Wj =

{1, 2, ..., 2NRj}, we divide the interval [−0.5, 0.5] into 2NRj

equally spaced sub-intervals, and the center of each sub-
interval is mapped to a message value in Wj . Let θj be the
center of the sub-interval w.r.t. the message Wj (here note
that for sufficiently large N , the variance of θj approximately
equals 1

12 ). At time 1, transmitter 2 sends no signal and
transmitter 1 sends

X1,1 =
√
12P1θ1. (1.3)

The receiver obtains Y1 = X1,1 + η1, and gets an estimation
of θ1 by computing

θ̂1,1 =
Y1√
12P1

= θ1 +
η1√
12P1

= θ1 + ε1,1, (1.4)

where ε1,1 = θ̂1,1 − θ1 = η1√
12P1

. Let α1,1 , V ar(ε1,1) =
σ2

12P1
.

At time 2, transmitter 1 sends no signal and transmitter 2
sends

X2,2 =
√
12P2θ2. (1.5)

Similarly, the receiver gets an estimation of θ2 by computing

θ̂2,2 =
Y2√
12P2

= θ2 +
η2√
12P2

= θ2 + ε2,2, (1.6)

where ε2,2 = θ̂2,2 − θ2 = η2√
12P2

. Let α2,2 , V ar(ε2,2) =
σ2

12P2
. The receiver sets θ̂1,2 = θ̂1,1, so that ε1,2 = ε1,1 and

α1,2 = α1,1.
At time 3 ≤ k ≤ N , the receiver obtains Yk = X1,k +

X2,k+ηk, and gets an estimation of θj (j = 1, 2) by computing

θ̂j,k = θ̂j,k−1 −
E[Ykεj,k−1]

E[Y 2
k ]

Yk. (1.7)

Define εj,k as θ̂j,k − θj , then (1.7) yields that

εj,k = εj,k−1 −
E[Ykεj,k−1]

E[Y 2
k ]

Yk. (1.8)

Meanwhile, for time 3 ≤ k ≤ N , transmitter 1 sends

X1,k =

√
P1

α1,k−1
ε1,k−1, (1.9)

and transmitter 2 sends

X2,k =

√
P2

α2,k−1
ε2,k−1 · sign(ρk−1), (1.10)

where αj,k−1 , V ar(εj,k−1),

ρk−1 ,
E[ε1,k−1ε2,k−1]√
α1,k−1α2,k−1

, (1.11)

sign(ρk−1) =

{
1, ρk−1 ≥ 0,
−1, ρk−1 < 0.

(1.12)

Here note that [14] showed that for 3 ≤ k ≤ N , we have

ρ1 = 0, ρ2 = 0,

ρk =
ρk−1σ

2 − sign(ρk−1)
√
P1P2(1− ρ2k−1)√

(P1(1− ρ2k−1) + σ2)(P2(1− ρ2k−1) + σ2)
,

α1,2 = α1,1 =
σ2

12P1
, α2,2 =

σ2

12P2
,

α1,k = α1,k−1
P2(1− ρ2k−1) + σ2

P1 + P2 + 2
√
P1P2|ρk−1|+ σ2

,

α2,k = α2,k−1
P1(1− ρ2k−1) + σ2

P1 + P2 + 2
√
P1P2|ρk−1|+ σ2

.

(1.13)

From (1.13), we can conclude that for 1 ≤ k ≤ N , ρk and
αj,k (j = 1, 2) are independent of the transmitted messages.
In [14], it has been shown that the decoding error of the above
coding scheme is arbitrarily small if (R1, R2) ∈ Cgmac−f .

B. GMAC-NCSIT with feedback

For the GMAC-NCSIT with noiseless feedback (see Figure
2), the i-th channel inputs and output are given by

Yi = X1,i +X2,i + Si + ηi, (1.14)

where X1,i, X2,i, ηi and Yi are defined to be the same as
those in Subsection I-A, and Si ∼ N (0, Q) is the independent
Gaussian state interference and is i.i.d. across the time index
i. At time i, Xj,i (j = 1, 2) is a function of the message
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Fig. 2. The GMAC-NCSIT with feedback.

Wj , the feedback Y i−1 and the state SN . The capacity region
Cgmac−s−f of the GMAC-NCSIT with noiseless feedback was
established in [16], which equals Cgmac−f (see (1.2)). This
indicates that the state interference can be perfectly cancelled.
The capacity-achieving scheme of Cgmac−s−f is also similar
to that of Cgmac−f in Subsection I-B, and the details can be
referred to [16].

II. SECRECY CAPACITY REGIONS OF GMAC-WT WITH
FEEDBACK AND GMAC-WT-NCSIT WITH FEEDBACK

A. GMAC-WT with feedback

For the GMAC-WT with feedback, the i-th (i ∈
{1, 2, ..., N}) channel inputs and outputs are given by

Yi = X1,i +X2,i + ηi, Zi = Yi + η2,i, (2.1)

where X1,i and X2,i are the channel inputs subject to average
power constraints P1 and P2, respectively, Yi and Zi are the
channel outputs of the legitimate receiver and the eavesdrop-
per, respectively, and ηi ∼ N (0, σ2), η2,i ∼ N (0, σ2

2) are
the channel noises and are i.i.d. across the time index i. The
channel input Xj,i (j = 1, 2) is a (stochastic) function of the
message Wj and the feedback Y i−1. An achievable secrecy
rate pair (R1, R2) is an achievable rate pair that satisfies an
additional weak secrecy constraint, i.e.,

H(W1,W2|ZN )

N
≥ R1 +R2 − ε. (2.2)

The secrecy capacity region Cgmac−fs of the GMAC-WT with
feedback is composed of all such achievable secrecy rate pairs.
Our first result as given in the following theorem establishes
that the secrecy constraint does not reduce the capacity of
GMAC with feedback.

Theorem 1: Cgmac−fs = Cgmac−f , where Cgmac−f is given
in (1.2).

Proof: First, note that Cgmac−fs cannot exceed the ca-
pacity region of the same model without secrecy constraint,
i.e., Cgmac−fs ⊆ Cgmac−f . Then, it remains to show that any
rate pair (R1, R2) ∈ Cgmac−f is achievable with the secrecy
constraint (2.2). In fact, we show below that the feedback cod-
ing scheme achieving Cgmac−f satisfies the secrecy constraint
(2.2).

From Subsection I-A, we know that at time i (1 ≤ i ≤ N ),
the transmitted codewords Xj,i (j = 1, 2) can be expressed as

X1,1 =
√
12P1θ1, X2,1 = X1,2 = ∅, X2,2 =

√
12P2θ2,

X1,3 =

√
P1

σ2
η1, X2,3 =

√
P2

σ2
η2, ...

X1,N =

√
P1(P1 + P2 + 2

√
P1P2|ρN−2|+ σ2)

α1,N−2(P2(1− ρ2N−2) + σ2)
·

(ε1,N−2 −
√
α1,N−2(

√
P1 +

√
P2|ρN−2|)

P1 + P2 + 2
√
P1P2|ρN−2|+ σ2

(X1,N−1

+X2,N−1 + ηN−1)),

X2,N =

√
P2(P1 + P2 + 2

√
P1P2|ρN−2|+ σ2)

α2,N−2(P1(1− ρ2N−2) + σ2)
·

(ε2,N−2 −
√
α2,N−2(

√
P2 +

√
P1|ρN−2|)sign(ρN−2)

P1 + P2 + 2
√
P1P2|ρN−2|+ σ2

·

(X1,N−1 +X2,N−1 + ηN−1)). (2.3)

From (2.3) and the fact that ρk and αj,k (j = 1, 2 and 1 ≤ k ≤
N ) are independent of the transmitted messages (see (1.13)),
we can conclude that for 3 ≤ k ≤ N , Xj,k is a function of
η1,...,ηk−1, and it is independent of the transmitted messages.
For convenience, define

Xj,k = fj,k(η1, ..., ηk−1), (2.4)

where j = 1, 2 and 3 ≤ k ≤ N . By using (2.3) and (2.4),
1
NH(W1,W2|ZN ) is bounded by

1

N
H(W1,W2|ZN ) =

1

N
H(θ1, θ2|ZN )

≥ 1

N
H(θ1, θ2|ZN , η1, ..., ηN , η2,3, ..., η2,N )

(a)
=

1

N
H(θ1, θ2|

√
12P1θ1 + η1 + η2,1,

√
12P2θ2

+η2 + η2,2,

√
P1

σ2
η1 +

√
P2

σ2
η2 + η3 + η2,3, ...,

f1,N (η1, ..., ηN−1) + f2,N (η1, ..., ηN−1)

+ηN + η2,N , η1, ..., ηN , η2,3, ..., η2,N )

=
1

N
H(θ1, θ2|

√
12P1θ1 + η2,1,

√
12P2θ2 + η2,2)

=
1

N
(H(θ1, θ2)− h(

√
12P1θ1 + η2,1,

√
12P2θ2 + η2,2)

+h(η2,1, η2,2|θ1, θ2))
(b)
=

1

N
(H(θ1, θ2)− h(

√
12P1θ1 + η2,1)

−h(
√
12P2θ2 + η2,2) + h(η2,1) + h(η2,2))

(c)

≥ R1 +R2 − (
1

2N
log(1 +

P1

σ2
2

) +
1

2N
log(1 +

P2

σ2
2

)),

(2.5)

where (a) follows from (2.1) and (2.3), (b) follows from the
fact that θ1, θ2, η2,1 and η2,2 are independent of each other,
and (c) follows because H(θj) = NRj (j = 1, 2), the variance
of θj equals 1

12 as N tends to infinity, and θj is independent
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of η2,j . Choosing sufficiently large N , the secrecy constraint
(2.2) is proved, which completes the proof.

B. GMAC-WT-NCSIT with feedback

For the GMAC-WT-NCSIT with feedback, the i-th (i ∈
{1, 2, ..., N}) channel inputs and outputs are given by

Yi = X1,i +X2,i + Si + ηi, Zi = Yi + η2,i, (2.6)

where X1,i, X2,i, Yi, Zi, ηi, η2,i are defined to be the same
as those in Subsection II-A, the state Si is defined to be the
same as that in Subsection I-B. At time i, Xj,i (j = 1, 2)
is a (stochastic) function of the message Wj , the state SN

and the feedback Y i−1. The secrecy capacity region of the
GMAC-WT-NCSIT with feedback is denoted by Cgmac−s−fs .
Our following result shows that the state corruption as well
as the secrecy constraint do not reduce the capacity region of
the GMAC with feedback.

Theorem 2: Cgmac−s−fs = Cgmac−f , where Cgmac−f is
given in (1.2).

Proof: First, note that Cgmac−s−fs cannot exceed the
capacity region of the same model without secrecy constraint,
i.e., Cgmac−s−fs ⊆ Cgmac−s−f . Next, as explained in Subsec-
tion I-B, [16] has shown that Cgmac−s−f = Cgmac−f . Then,
it remains to show that any rate pair (R1, R2) ∈ Cgmac−f is
achievable with the secrecy constraint (2.2). In fact, we argue
below that the feedback coding scheme in Subsection I-B that
achieves Cgmac−s−f also satisfies the secrecy constraint (2.2).
At time 3 ≤ i ≤ N , the transmitted codewords Xj,i (j = 1, 2)
can be expressed as the functions of η1,...,ηi−1, which are
similar to the expressions in (2.3). Then following the steps
similar to these in (2.5), we can prove the secrecy constraint
(2.2), which completes the proof.
The following Figure 3 compares various capacity results with
P1 = 1, P2 = 1.2, Q = 1, σ2 = 0.1, σ2

2 = 1.5. It can be
seen that feedback enhances the secrecy capacity regions of
GMAC-WT and GMAC-WT-NCSIT.

Fig. 3. Capacity results on GMAC-WT with or without feedback and
noncausal CSI at the transmitters.

III. FEEDBACK SCHEME FOR GMAC-WT WITH
DEGRADED MESSAGE SET

Consider the GMAC-WT with degraded message set and
feedback. The i-th (i ∈ {1, 2, ..., N}) channel inputs and

outputs are given by

Yi = X1,i +X2,i + ηi, Zi = Yi + η2,i, (3.1)

where X1,i, X2,i, ηi, η2,i, Yi and Zi are defined to be the same
as those in Subsection II-A. A common message W1 taking
values in {1, 2, ..., 2NR1} is known by both transmitters, and
a private message W2 taking values in {1, 2, ..., 2NR2} is only
known by the second transmitter. At time i, the channel input
X1,i is a (stochastic) function of W1 and the feedback Y i−1,
and X2,i is a (stochastic) function of W1, W2 and the feedback
Y i−1. The secrecy capacity region of this model is denoted
by Cg−fs , and the following Theorems 3-4 show the inner and
outer bounds on Cg−fs .

Theorem 3: An inner bound Rg−fs on Cg−fs is given by

Rg−fs =
⋃

0 ≤ ρ ≤ 1
0 ≤ α ≤ 1

{(R1, R2) : R1 ≤

1

2
log(1 +

αP2 + P1(1− ρ2)
σ2

)− 1

2
log(1 +

αP2

σ2 + σ2
2

),

R2 ≤
1

2
log(1 +

(1− α)P2(1− ρ2)
σ2 + αP2

),

R1 +R2 ≤
1

2
log(1 +

P1 + P2 + 2
√
P1P2(1− α)ρ

σ2
)

−1

2
log(1 +

αP2

σ2 + σ2
2

)}.

Proof: Split the common message W1 into two sub-
messages W11 and W12, where W1j (j = 1, 2) takes values in
{1, 2, ..., 2NR1j} and R11+R12 = R1. The sub-message W11

is transmitted by Transmitter 1, and W12 together with W2 are
transmitted by Transmitter 2. Transmitter 2 uses power αP2 to
transmit W12, and power (1−α)P2 to transmit W2. Classical
random binning coding scheme [2] for the wiretap channel is
applied to the sub-message W12, and the coding scheme for
W11 and W2 is the same as that for the messages W1 and
W2 in GMAC with feedback (see Subsection I-A), where the
power αP2 for W12 is treated as channel noise. Now applying
the feedback scheme in Subsection I-A, we can conclude that

R11 ≤
1

2
log(1 +

P1(1− ρ2)
σ2 + αP2

), (3.2)

R2 ≤
1

2
log(1 +

(1− α)P2(1− ρ2)
σ2 + αP2

), (3.3)

R11 +R2 ≤
1

2
log(1 +

P1 + (1− α)P2 + 2
√
P1P2(1− α)ρ

σ2 + αP2
), (3.4)

is achievable. Since W11 and W2 can be decoded with high
probability if (3.2)-(3.4) are satisfied, the receiver subtracts
the corresponding terms from received signal, yielding only
the codeword of W12 added to the channel noise. From [2],
we can conclude that if

R12 ≤
1

2
log(1 +

αP2

σ2
)− 1

2
log(1 +

αP2

σ2 + σ2
2

) (3.5)
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is satisfied, W12 is achievable with perfect secrecy. Combining
R11+R12 = R1, (3.2), (3.3), (3.4) and (3.5), the region Rg−fs

is achieved, and the proof is completed.
Theorem 4: An outer bound Cg−f−outs on Cg−fs is given by

Cg−f−outs

=
⋃

0≤ρ≤1

{(R1, R2) : R2 ≤
1

2
log(1 +

P2(1− ρ2)
σ2

),

R1 +R2 ≤
1

2
log(1 +

P1 + P2 + 2
√
P1P2ρ

σ2
)}, (3.6)

where Cg−f−outs is also the capacity region of the GMAC with
degraded message set and feedback.

Proof: First, note that the secrecy capacity region Cg−fs is
upper bounded by the capacity region Cg−f of the same model
without secrecy constraint, namely, the GMAC with degraded
message set and feedback. Next, from [17] and [14], we can
check that feedback does not increase the capacity region of
the GMAC with degraded message set, which equals the region
given in (3.6). Thus the proof is completed.

The following Figure 4 plots the bounds on Cg−fs for P1 =
1, P2 = 1.5, σ2 = 0.9 and σ2

2 = 1.5. From Figure 4, one
can see that the maximum rate R2 of the inner bound equals
the maximum R2 of the outer bound, which indicates that the
perfect secrecy of the private message W2 can be guaranteed
without the loss of any rate.

Fig. 4. Capacity bounds on the GMAC-WT with degraded message set and
feedback.

IV. CONCLUSION AND FUTURE WORK

This paper shows that the Ozarow’s SK type feedback
scheme and its variation for GMAC and GMAC-NCSIT with
feedback (not designed with consideration of secrecy) already
achieve secrecy by themself. Such an inherent secrecy nature
of the SK-type GMAC schemes is a new finding to the
community and thus is the major contribution of this paper.
Another contribution of this paper is the derivation of inner and
outer bounds on the secrecy capacity region of the GMAC-WT
with degraded message set and feedback, and these bounds
indicate that the perfect secrecy of the private message can be
achieved without loss of any reliable transmission rate.

One possible future work of this paper is that whether one
can identify dualities of some kind between the GMAC and the

Gaussian broadcast models when feedback and secrecy con-
straint are considered. Another one is to investigate whether
the generalized feedback approach in [19] can be applied to
the GMAC-WT with feedback. The last one is about the finite
blocklength regime, which deserves attention even in the single
user wiretap case where a modified SK scheme motivated by
[20] might be useful.
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