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Abstract—The Schalkwijk-Kailath (SK) feedback scheme is a
capacity-achieving coding scheme for the point-to-point white
Gaussian channel with feedback. Recently, it has been shown
that the SK scheme, which is not designed with consideration of
secrecy, already achieves perfect weak secrecy by itself, i.e., the
secrecy capacity of the Gaussian wiretap channel with feedback
equals the capacity of the same model without secrecy constraint.
In this paper, we propose a capacity-achieving SK type feedback
scheme for the two-user Gaussian multiple-access channel with
degraded message sets (GMAC-DMS). Similarly to the inherent
secrecy nature of the classical SK scheme, we show that the
proposed scheme is also secure by itself, which indicates that
the feedback secrecy capacity of the two-user Gaussian multiple-
access wiretap channel with degraded message sets (GMAC-WT-
DMS) equals the capacity of the same model without secrecy
constraint.

Index Terms—Gaussian multiple-access wiretap channel, feed-
back, secrecy capacity region.

I. INTRODUCTION

1 Schalkwijk and Kailath [1] showed that although feed-
back does not increase the capacity of the white Gaussian
channel, it helps to improve the channel encoding-decoding
performance. Recently, [2] found the inherent secrecy nature
of the Schalkwijk-Kailath (SK) feedback scheme [1], i.e.,
the SK scheme, which is not designed with consideration of
secrecy, achieves perfect weak secrecy by itself. The inherent
secrecy nature found in [2] indicates that the secrecy capacity
of the white Gaussian wiretap channel with feedback equals
the capacity of the same model without secrecy constraint, and
it can be achieved by the SK feedback scheme. The follow-up
work of [2] includes:

• For the dirty paper channel with feedback, [4] found the
inherent secrecy nature of a capacity-achieving SK type
feedback scheme proposed in [3].
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work of Z. Ma was supported by U1734209 and Marie Curie Fellowship (no.
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• [5] proposed a capacity-achieving SK type feedback
scheme for the colored Gaussian channel, and showed
that the inherent secrecy nature of this scheme holds.

Although the inherent secrecy nature of SK type feedback
schemes has been found for the point-to-point Gaussian chan-
nels, such a topic is mostly open for multi-user Gaussian
channel models. In this paper, we focus on the two-user
Gaussian multiple-access channel with degraded message sets
(GMAC-DMS), and would like to answer the following two
open questions:
• Does there exist a capacity-achieving SK type feedback

scheme for the two-user GMAC-DMS?
• Does the inherent secrecy nature still hold for

this capacity-achieving scheme, namely, the capacity-
achieving scheme of the two-user GMAC-DMS also
achieves the feedback secrecy capacity region of the
two-user Gaussian multiple-access wiretap channel with
degraded message sets 2(GMAC-WT-DMS)?

We summarize our contributions as follows.
• A capacity-achieving SK type feedback scheme is pro-

posed for the two-user GMAC-DMS.
• This capacity-achieving scheme is shown to be secure

by itself, i.e., the proposed capacity-achieving feedback
scheme for the two-user GMAC-DMS also achieves the
feedback secrecy capacity region of the two-user GMAC-
WT-DMS, which indicates that the feedback secrecy
capacity region equals the capacity region of the same
model without secrecy constraint.

II. PRELIMINARIES: THE SK SCHEME FOR THE WHITE
GAUSSIAN CHANNEL WITH FEEDBACK

For the white Gaussian channel with feedback (see Figure
1), at each time i (i ∈ {1, 2, ..., N}), the channel input-output
relationship is given by

Yi = Xi + η1,i, (2.1)

where Xi is the channel input subject to average power
constraint P , Yi is the channel output, and η1,i ∼ N (0, σ2

1)

2In [6], a sub-optimal feedback scheme has been shown to achieve an inner
bound on the feedback secrecy capacity region of the two-user GMAC-WT-
DMS.
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Fig. 1: The white Gaussian channel with feedback.

is the white Gaussian noise and it is independent identically
distributed (i.i.d.) across the time index i. The message W
is uniformly distributed in W = {1, 2, ..., |W|}. The channel
input Xi is a function of the message W and the feedback
Y i−1 = (Y1, ..., Yi−1). The receiver generates an estimation
Ŵ = ψ(Y N ), where ψ is the receiver’s decoding function,
and the average decoding error probability equals

Pe =
1

|W|
∑
w∈W

Pr{ψ(yN ) 6= w|w sent}. (2.2)

The capacity of the white Gaussian channel with feedback is
denoted by Cfg , and it equals the capacity Cg of the white
Gaussian channel, which is given by

Cfg = Cg =
1

2
log(1 +

P

σ2
1

). (2.3)

In [1], it has been shown that SK scheme achieves Cfg , and
this classical scheme is briefly described below.

Since W takes values in W = {1, 2, ..., 2NR}, divide the
interval [−0.5, 0.5] into 2NR equally spaced sub-intervals, and
the center of each sub-interval is mapped to a message value
in W . Let θ be the center of the sub-interval with respect to
(w.r.t.) the message W (the variance of θ approximately equals
1
12 ). At time 1, the transmitter sends

X1 =
√

12Pθ. (2.4)

The receiver obtains Y1 = X1 + η1,1, and gets an estimation
of θ by computing

θ̂1 =
Y1√
12P

= θ +
η1,1√
12P

= θ + ε1, (2.5)

where ε1 = θ̂1 − θ = η1√
12P

. Let α1 , V ar(ε1) =
σ2
1

12P .
At time 2 ≤ k ≤ N , the receiver obtains Yk = Xk + η1,k,

and gets an estimation of θk by computing

θ̂k = θ̂k−1 −
E[Ykεk−1]

E[Y 2
k ]

Yk, (2.6)

where εk = θ̂k − θ. (2.6) yields that

εk = εk−1 −
E[Ykεk−1]

E[Y 2
k ]

Yk. (2.7)

Meanwhile, for time 2 ≤ k ≤ N , the transmitter sends

Xk =

√
P

αk−1
εk−1, (2.8)

where αk−1 , V ar(εk−1).
In [1], it has been shown that if R < 1

2 log(1 + P
σ2
1
),

the decoding error Pe of the above coding scheme doubly
exponentially decays to zero as N →∞.

III. CAPACITY-ACHIEVING FEEDBACK SCHEME FOR THE
TWO-USER GMAC-DMS

A. Problem formulation

Fig. 2: The two-user GMAC-DMS with noiseless feedback.

For the GMAC-DMS with feedback (see Figure 2), at each
time i (i ∈ {1, 2, ..., N}), the channel input-output relationship
is given by

Yi = X1,i +X2,i + η1,i, (3.1)

where X1,i and X2,i are the channel inputs subject to average
power constraints P1 and P2, respectively, Yi is the channel
output, and η1,i ∼ N (0, σ2

1) is the i.i.d. channel noise across
the time index i. The message Wj (j = 1, 2) is uniformly
distributed in Wj = {1, 2, ..., |Wj |}. The channel input X1,i

is a function of the message W1 and the feedback Y i−1, and
the channel input X2,i is a function of the messages W1, W2

and the feedback Y i−1. The receiver generates an estimation
(Ŵ1, Ŵ2) = ψ(Y N ), where ψ is the receiver’s decoding
function, and the average decoding error probability equals

Pe =
1

|W1| · |W2|
∑
w1,w2

Pr{ψ(yN ) 6= (w1, w2)|(w1, w2) sent}.

(3.2)
A rate pair (R1, R2) is said to be achievable if for any ε and
sufficiently large N , there exist channel encoders and decoder
such that

log |W1|
N

= R1,
log |W2|
N

= R2, Pe ≤ ε. (3.3)

The capacity region Cfgmac−dms of the GMAC-DMS with
feedback is composed of all such achievable rate pairs. In
addition, note that the model of GMAC-DMS is defined almost
in the same fashion as GMAC-DMS with feedback, except that
the channel input X1,i is a function of the message W1 and
X2,i is a function of the messages W1 and W2. The capacity
region of GMAC-DMS is denoted with Cgmac−dms.

B. A SK-type feedback scheme for the two-user GMAC-DMS
with noiseless feedback

In this subsection, we propose a two-step SK type feedback
scheme for the two-user GMAC-DMS with noiseless feedback,
and in the next subsection, we will show that this two-step SK
type scheme achieves the feedback capacity Cfgmac−dms. The
two-step SK type feedback scheme is described below.

The main idea of the two-step SK type feedback scheme
is briefly illustrated by Figure 3. In Figure 3, the common
message W1 is encoded by both transmitters, and the private
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Fig. 3: Feedback coding scheme for GMAC-DMS with feed-
back.

message W2 is only available at Transmitter 2. Specifically,
Transmitter 1 uses power P1 to encode W1 and the feedback
Y N as XN

1 . Transmitter 2 uses power (1 − ρ2)P2 to encode
W2 and Y N as V N , and power ρ2P2 to encode W1 and Y N

as UN , where 0 ≤ ρ ≤ 1 and

XN
2 = UN + V N . (3.4)

Here note that the power of XN
2 equals P2, and it can

be checked by [10, eq. (5.38), p.33] and the properties in
[10, Appendix B]. Since W1 is known by Transmitter 2, the
codeword XN

1 and UN can be subtracted when applying SK
scheme to W2, i.e., for the SK scheme of W2, the equivalent
channel model has input V N , output Y

′N = Y N−XN
1 −UN ,

and channel noise ηN1 .
In addition, since W1 is known by both transmitters and

W2 is only available at Transmitter 2, for the SK scheme of
W1, the equivalent channel model has inputs XN

1 and UN ,
output Y N , and channel noise ηN1 + V N , which is non-white
Gaussian noise since V N is not i.i.d. generated. Furthermore,
observing that

Yi = X1,i + Ui + Vi + η1,i = X∗i + Vi + η1,i, (3.5)

where X∗i = X1,i +Ui, X∗i is Gaussian distributed with zero
mean and variance P ∗i ,

P ∗i = P1 + ρ2P2 + 2
√
P1P2ρρ

′

i

≤ P1 + ρ2P2 + 2
√
P1P2ρ = P ∗, (3.6)

ρ
′

i =
E[X1,iUi]

ρ
√
P1P2

and 0 ≤ ρ
′

i ≤ 1. Hence for the SK scheme of
W1, the input of the equivalent channel model can be viewed
as X∗i . Since X1,i is known by Transmitter 2, let

Ui = ρ

√
P2

P1
X1,i. (3.7)

Then we have ρ
′

i = 1, which leads to P ∗i = P ∗ and X∗i ∼
N (0, P ∗). The encoding and decoding procedure of Figure 3
is described below.

Since Wj (j = 1, 2) takes values in Wj = {1, 2, ..., 2NRj},
divide the interval [−0.5, 0.5] into 2NRj equally spaced sub-
intervals, and the center of each sub-interval is mapped to a
message value in Wj . Let θj be the center of the sub-interval
w.r.t. the message Wj (the variance of θj approximately equals
1
12 ).

Encoding: At time 1, Transmitter 1 sends

X1,1 = 0. (3.8)

Transmitter 2 sends

V1 =
√

12(1− ρ2)P2θ2, (3.9)

and

U1 = ρ

√
P2

P1
X1,1 = 0. (3.10)

The receiver obtains Y1 = X1,1 +X2,1 + η1,1 = X1,1 + V1 +
U1 + η1,1 = V1 + η1,1, and sends Y1 back to Transmitter 2.
Let Y

′

1 = Y1 = V1 + η1,1, Transmitter 2 computes

Y
′

1√
12(1− ρ2)P2

= θ2 +
η1,1√

12(1− ρ2)P2

= θ2 + ε1.

(3.11)

Let α1 , V ar(ε1) =
σ2
1

12(1−ρ2)P2
.

At time 2, Transmitter 2 sends

V2 =

√
(1− ρ2)P2

α1
ε1. (3.12)

On the other hand, at time 2, Transmitters 1 and 2 respectively
send X1,2 and U2 = ρ

√
P2

P1
X1,2 such that

X∗2 = U2 +X1,2 =
√

12P ∗θ1. (3.13)

Once receiving the feedback Y2 = X∗2 + V2 + η1,2, both
transmitters compute

Y2√
12P ∗

= θ1 +
V2 + η1,2√

12P ∗
= θ1 + ε

′

2. (3.14)

and send X1,3 and U3 = ρ
√

P2

P1
X1,3 such that

X∗3 = U3 +X1,3 =

√
P ∗

α
′
2

ε
′

2, (3.15)

where α
′

2 , V ar(ε
′

2). In addition, subtracting X1,2 and U2

from Y2 and let Y
′

2 = Y2−X1,2−U2 = V2 +η1,2, Transmitter
2 computes

ε2 = ε1 −
E[Y

′

2 ε1]

E[(Y
′
2 )2]

Y
′

2 . (3.16)

and sends

V3 =

√
(1− ρ2)P2

α2
ε2, (3.17)
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where α2 , V ar(ε2).
At time 4 ≤ k ≤ N , once receiving Yk−1 = X1,k−1 +

Uk−1 + Vk−1 + η1,k−1, Transmitter 2 computes

εk−1 = εk−2 −
E[Y

′

k−1εk−2]

E[(Y
′
k−1)2]

Y
′

k−1, (3.18)

where

Y
′

k−1 = Yk−1 −X1,k−1 − Uk−1, (3.19)

and sends

Vk =

√
(1− ρ2)P2

αk−1
εk−1, (3.20)

where αk−1 , V ar(εk−1). In the meanwhile, Transmitters 1

and 2 respectively send X1,k and Uk = ρ
√

P2

P1
X1,k such that

X∗k = Uk +X1,k =

√
P ∗

α
′
k−1

ε
′

k−1, (3.21)

where

ε
′

k−1 = ε
′

k−2 −
E[Yk−1ε

′

k−2]

E[(Yk−1)2]
Yk−1, (3.22)

and α
′

k−1 , V ar(ε
′

k−1).
Decoding:
The receiver uses a two-step decoding scheme. First, from

(2.6), we observe that at time k (3 ≤ k ≤ N ), the receiver’s
estimation θ̂1,k of θ1 is given by

θ̂1,k = θ̂1,k−1 −
E[Ykε

′

k−1]

E[(Yk)2]
Yk, (3.23)

where ε
′

k−1 = θ̂1,k−1 − θ1 and it is computed by (3.22), and

θ̂1,2 =
Y2√
12P ∗

= θ1 +
V2 + η1,2√

12P ∗
= θ1 + ε

′

2.(3.24)

The following lemma 1 shows that the decoding error prob-
ability of θ1 can be arbitrarily small if R1 < 1

2 log(1 +
P1+ρ

2P2+2
√
P1P2ρ

(1−ρ2)P2+σ2
1

) is satisfied.
Lemma 1: For the two-step SK type feedback scheme de-

scribed above, let Pe1 be the decoding error probability of W1

(θ1). If R1 <
1
2 log(1 + P1+ρ

2P2+2
√
P1P2ρ

(1−ρ2)P2+σ2
1

), Pe1 tends to 0 as
N →∞.

Proof: See our full paper [10, Appendix B].
Second, after decoding W1 and the corresponding code-

words X1,k and Uk for all 1 ≤ k ≤ N , the receiver subtracts
X1,k and Uk from Yk, and obtains Y

′

k = Vk + η1,k. At time k
(1 ≤ k ≤ N ), the receiver’s estimation θ̂2,k of θ2 is given by

θ̂2,k = θ̂2,k−1 −
E[Y

′

kεk−1]

E[(Y
′
k )2]

Y
′

k , (3.25)

where εk−1 = θ̂2,k−1 − θ2 and it is computed by (3.18), and

θ̂2,1 = θ2 +
η1,1√

12(1− ρ2)P2

= θ2 + ε1. (3.26)

The decoding error probability Pe of the receiver is upper
bounded by Pe ≤ Pe1 + Pe2, where Pej (j = 1, 2) is the
receiver’s decoding error probability of Wj . From the classical
SK scheme [1] (also introduced in Section II), we know that
the decoding error probability Pe2 of W2 tends to 0 as N →∞
if R2 <

1
2 log(1+ (1−ρ2)P2

σ2
1

), and hence we omit the derivation
here.

Now we have shown that if R1 < 1
2 log(1 +

P1+ρ
2P2+2

√
P1P2ρ

(1−ρ2)P2+σ2
1

) and R2 <
1
2 log(1 + (1−ρ2)P2

σ2
1

), the decod-
ing error probability Pe of the receiver tends to 0 as N →∞,
i.e., the following region

Cf−ingmac−dms

=
⋃

0≤ρ≤1

{
(R1, R2) : R2 ≤

1

2
log

(
1 +

P2(1− ρ2)

σ2
1

)
,

R1 ≤
1

2
log

(
1 +

P1 + ρ2P2 + 2
√
P1P2ρ

(1− ρ2)P2 + σ2
1

)}
(3.27)

is achievable.

C. Capacity of the two-user GMAC-DMS with noiseless feed-
back

The following Theorem 1 determines the capacity region
Cfgmac−dms of the two-user GMAC-DMS with feedback.

Theorem 1: Cfgmac−dms = Cf−ingmac−dms, where Cf−ingmac−dms
is given in (3.27).

Proof: The achievability of Cfgmac−dms directly follows
from the two-step SK type feedback scheme proposed in
the preceding subsection. The converse proof of Cfgmac−dms
consists of two parts. First, from the converse proof of the
bounds on R2 and R1 +R2 in GMAC with feedback [9, pp.
627-628], we conclude that Cfgmac−dms is outer bounded by

Cf−outgmac−dms

=
⋃

0≤ρ≤1

{
(R1, R2) : R2 ≤

1

2
log

(
1 +

P2(1− ρ2)

σ2
1

)
,

R1 +R2 ≤
1

2
log

(
1 +

P1 + P2 + 2
√
P1P2ρ

σ2
1

)}
.(3.28)

Next, it is easy to check that the outer bound Cf−outgmac−dms in
(3.28) is exactly the same as the inner bound Cf−ingmac−dms in
(3.27), which completes the proof.

Remark 1: • The capacity region Cgmac−dms of the
GMAC-DMS equals Cf−outgmac−dms in (3.28), and the proof
is briefly explained as follows. First, note that in [7], it
has been shown that the capacity Cmac−dms of the dis-
crete memoryless multiple-access channel with degraded
message sets is given by

Cmac−dms = {(R1, R2) : R2 ≤ I(X2;Y |X1),

R1 +R2 ≤ I(X1, X2;Y )} (3.29)

for some joint distribution PX1X2
(x1, x2). Substituting

X1 ∼ N (0, P1), X2 ∼ N (0, P2) and (3.1) into (3.29),
defining ρ = E[X1X2]√

P1P2
, and applying the encoding-

decoding scheme of [7], an achievable region which
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equals Cf−outgmac−dms is obtained. Next, applying the con-
verse proof of the bounds on R2 and R1 + R2 in
GMAC with feedback [9, pp. 627-628], we can conclude
that Cgmac−dms is outer bounded by Cf−outgmac−dms, which
completes the proof.

• In [8], it has been shown that feedback does not in-
crease the capacity Cmac−dms of the discrete memo-
ryless multiple-access channel with degraded message
sets. Since Cgmac−dms = Cf−outgmac−dms and Cfgmac−dms =

Cf−outgmac−dms, we can conclude that feedback also does not
increase the capacity of the GMAC-DMS.

IV. INHERENT SECRECY NATURE OF THE
CAPACITY-ACHIEVING FEEDBACK SCHEME FOR THE

TWO-USER GMAC-DMS

Fig. 4: The Gaussian multiple-access wiretap channel with
degraded message sets and noiseless feedback.

For the Gaussian multiple-access wiretap channel with
degraded message sets (GMAC-WT-DMS) and noiseless feed-
back (see Figure 4), at each time i (i ∈ {1, 2, ..., N}), the
channel input-output relationships are given by

Yi = X1,i +X2,i + η1,i, Zi = Yi + η2,i, (4.1)

where X1,i and X2,i are the channel inputs subject to average
power constraints P1 and P2, respectively, Yi and Zi are the
channel outputs of the legitimate receiver and the wiretapper,
respectively, and η1,i ∼ N (0, σ2

1), η2,i ∼ N (0, σ2
2) are i.i.d.

channel noises across the time index i. The channel encoders
and decoder are defined in the same fashion as those in Section
III. The wiretapper’s equivocation rate of the messages W1 and
W2 is defined as

∆ =
1

N
H(W1,W2|ZN ). (4.2)

A rate pair (R1, R2) is said to be achievable with perfect weak
secrecy if for any ε and sufficiently large N , there exist channel
encoders and decoder such that

log |W1|
N

= R1,
log |W2|
N

= R2,

∆ ≥ R1 +R2 − ε, Pe ≤ ε. (4.3)

The secrecy capacity region Cfs,gmac−dms of the GMAC-WT-
DMS with feedback is composed of all achievable secrecy
rate pairs (R1, R2) defined in (4.3). The following Theorem
2 establishes that the secrecy constraint does not reduce the
capacity of GMAC-DMS with feedback.

Theorem 2: Cfs,gmac−dms = Cfgmac−dms, where
Cfs,gmac−dms is the secrecy capacity region of the GMAC-
WT-DMS with feedback, and Cfgmac−dms is given in Theorem
1.

Proof: Since Cfs,gmac−dms ⊆ C
f
gmac−dms, we only need

to show that any achievable rate pair (R1, R2) in Cfgmac−dms
satisfies the secrecy constraint in (4.3). In the preceding sec-
tion, we introduce a two-step SK type scheme for the GMAC-
DMS with feedback, and show that this scheme achieves
Cfgmac−dms. In this new scheme, the transmitted codewords
X1,i, Ui and Vi at time i (1 ≤ i ≤ N ) can be expressed as
those in [10, eq. (5.38), p.33]. From these expressions, we can
conclude that for 3 ≤ i ≤ N , θ1 and θ2 are not contained in
the transmitted X1,i, Ui and Vi. Hence following similar steps
in [10, eq. (3.18), p.17] and choosing sufficiently large N ,
we can prove that 1

NH(W1,W2|ZN ) ≥ R1 + R2 − ε, which
completes the proof.

V. CONCLUSION AND FUTURE WORK

In this paper, a capacity-achieving SK type feedback scheme
is proposed for the GMAC-DMS with feedback, and it is also
shown to achieve the secrecy capacity region of the GMAC-
WT-DMS with feedback. One possible future work of this
paper is that whether one can identify dualities of some kind
between the GMAC and the Gaussian broadcast models when
feedback and secrecy constraint are considered.
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