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LTCI, Télécom Paris, Institut Polytechnique de Paris
{homa.nikbakht, michele.wigger}@telecom-paris.fr

Shlomo Shamai (Shitz)
Technion

sshlomo@ee.technion.ac.il

Abstract—This paper analyses the multiplexing gain (MG)
achievable over a general interference network with random user
activity and random arrival of mixed-delay traffic. The mixed-
delay traffic is composed of delay-tolerant traffic and delay-
sensitive traffic where only the former can benefit from receiver
cooperation since the latter is subject to stringent decoding
delays. Two setups are considered. In the first setup, each active
transmitter always has delay-tolerant data to send and delay-
sensitive data arrival is random. In the second setup, both delay-
tolerant and delay-sensitive data arrivals are random, and only
one of them is present at any given transmitter. The MG regions
of both setups are completely characterized for Wyner’s soft-
handoff network. For Wyner’s symmetric linear and hexagonal
networks inner bounds on the MG region are presented.

I. INTRODUCTION

This paper presents coding schemes for the transmission of
heterogeneous traffic with delay-sensitive and delay-tolerant
data over interference networks with random user activity
and random data arrivals. Delay-sensitive data, called “fast”
messages, are subject to stringent delay constraints and their
encoding and decoding processes cannot be delayed. Delay-
tolerant data, called “slow” messages, are subject to softer
delay constraints and can benefit from receivers cooperation.
Such mixed-delay constraints have been studied in [1]–[6].

This paper further takes into account random activities of
the users. Specifically, in each transmission block only a subset
of the users has a message to convey to its corresponding Rxs.
The impact of random user activity on cellular networks has
been previously studied in [7]–[9].

In this work, we combine random user activity with such
mixed-delay constraints. We specifically consider two setups.
In both setups, receivers (Rxs) can cooperate to decode their
desired “slow” messages but not to decode “fast” messages.
Each transmitter (Tx) is active with probability ρ ∈ [0, 1], and
the goal is to maximize the average expected “slow” rate of
the network, while the rate of each “fast” message is fixed
to a target value. In the first setup, each active Tx transmits a
“slow” message, and with probability ρf ∈ [0, 1] also transmits
an additional “fast” message. In the second setup, each active
Tx sends either a “fast” message with probability ρf or a
“slow” message with probability 1− ρf .

For both setups, we propose general coding schemes and
characterize their achievable multipleing gain (MG) regions
for three networks: Wyner’s soft-handoff network, Wyner’s
symmetric network and the hexagonal network. The achievable
MG region is shown to be optimal for Wyner’s soft-handoff
network. In both setups, the obtained MG regions show that

the average “slow” MG decreases i) with increasing number
of interfering links, and ii) with increasing activity parameter
ρ. The obtained MG regions also show that in the first setup,
the maximum sum-MG is always attained at 0 “fast” MG,
and increasing the “fast” MG decreases the sum-MG by
a penalty that roughly speaking increases with the number
of interference links in the network and with the activity
parameter ρ. In contrast, in the second setup, for certain
parameters the sum-MG is achieved at maximum “fast” MG
and thus increasing the “fast” MG provides a gain in sum-MG,
where we observe that the gain decreases with the number of
interferers and the activity parameter ρ.

II. RANDOM “FAST” ARRIVALS ONLY

Consider a cellular network with K Tx-Rx pairs k =
1, . . . ,K. Each Tx k ∈ K , {1, . . . ,K} is active with
probability ρ ∈ [0, 1], in which case it sends a so called
“slow” message M (S)

k to its corresponding Rx k. Here, M (S)
k

is uniformly distributed overM(S)
k , {1, . . . , b2nR

(S)
k c}, with

n denoting the blocklength and R
(S)
k the rate of message

M
(S)
k . Given that Tx k is active, with probability ρf ∈ [0, 1], it

also sends an additional “fast” message M (F )
k to Rx k. These

“fast” messages are subject to stringent delay constraints, as
we describe shortly, and uniformly distributed over the set
M(F ) , {1, . . . , b2nR(F )c}. “Fast” messages are thus all of
same size and same rate R(F ).

We introduce the i.i.d Bernoulli-ρ random variables
A1, . . . , AK and the i.i.d Bernoulli-ρf random variables
B1, . . . , BK and define the active Tx-set as

Tactive , {k ∈ K : Ak = 1}, (1)

and the “fast” Tx-set as

Tfast , {k ∈ K : Ak ·Bk = 1}. (2)

Then, for each k ∈ K, Tx k computes its channel inputs Xn
k ,

(Xk,1, . . . , Xk,n) ∈ Rn as

Xn
k =


f
(B)
k

(
M

(F )
k ,M

(S)
k

)
, if k ∈ Tfast

f
(S)
k

(
M

(S)
k

)
, if k ∈ Tactive\Tfast

0, if T cactive.

(3)

for some encoding functions f (B)
k and f

(S)
k on appropriate

domains satisfying the average block-power constraint

1

n

n∑
t=1

X2
k,t ≤ P, ∀ k ∈ K, almost surely. (4)
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To describe the interference network, let Xn
k denote Tx k’s

input signal and Y nk , (Yk,1, . . . , Yk,n) Rx k’s output signal
and define the interference sets

IRx,k , {k̃ ∈ K\{k} : Xn
k interferes Y n

k̃
},

ITx,k , {k̃ ∈ K\{k} : Xn
k̃

interferes Y nk }.

The input-output relation of the network is then described as

Yk,t = AkXk,t +
∑

k̃∈ITx,k

Ak̃hk̃,kXk̃,t + Zk,t, (5)

where {Zk,t} are independent and identically distributed
(i.i.d.) standard Gaussians for all k and t and independent
of all messages; hk̃,k > 0 is the channel coefficient between
Tx k̃ and Rx k and is a fixed real number smaller than 1; and
X0,t = 0 for all t.

Each Rx k ∈ Tfast decodes the “fast” message M (F )
k based

on its own channel outputs Y nk . So, it produces:

M̂
(F )
k = g

(n)
k

(
Y nk
)
, (6)

for some decoding function g
(n)
k on appropriate domains. It

is assumed that receivers can fully cooperate on all receive
signals when decoding their “slow” messages. So,

M̂
(S)
k = c

(n)
k

(
Y n1 , . . . , Y

n
K

)
, (7)

where c(n)k is a decoding function on appropriate domains.
Given P > 0, a pair (R(F )(P), R̄(S)(P)) is said achievable,

if for each K > 0, there exist rates {R(S)
k }Kk=1 satisfying

R̄(S) ≤ lim
K→∞

1

K
E

[ ∑
k∈Tactive

R
(S)
k

]
, (8)

and encoding, cooperation, and decoding functions satisfying
constraint (4) and so that the probability of error

P
[ ⋃
k∈Tfast

(
M̂

(F )
k 6= M

(F )
k

)
or
⋃

k∈Tactive

(
M̂

(S)
k 6= M

(S)
k

)]
(9)

goes to 0 as n → ∞. An MG pair (S(F ),S(S)) is called
achievable, if for all powers P > 0 there exist achievable
average rates {R(F )(P), R̄(S)(P)}P>0 satisfying

S(F ) , lim
P→∞

R(F )(P)
1
2 log(P)

· ρρf , (10)

S(S) , lim
P→∞

E
[
R̄(S)(P)
1
2 log(P)

]
. (11)

The closure of the set of all achievable MG pairs (S(F ),S(S))
is called fundamental MG region and is denoted S?(ρ, ρf ).

The MG in (11) measures the average expected “slow” MG
on the network. Since the “fast” rate is fixed to R(F ) at all
Txs in Tfast, we multiply the MG in (10) by ρρf to obtain the
average expected “fast” MG of the network.

A. Achievable MG Region and Coding Schemes

In this section, we propose two schemes, one with large
“fast” MG and the other with zero “fast” MG.

1) Transmitting at large S(F ): Since we wish to transmit at
maximum “fast” MG, each “fast” transmission should not be
interfered (except for signals up to noise level) by any other
(“fast” or “slow”) transmission. Therefore, we partition K into
δ subsets K1, . . . ,Kδ , for some positive integer δ, in a way
that all the signals sent by Txs in a given subset Ki do not
interfere, i.e., for each i ∈ {1, . . . , δ}:

k′ /∈ IRx,k′′ and k′′ /∈ IRx,k′ , ∀k′, k′′ ∈ Ki. (12)

We divide the total transmission time into δ equally-sized
phases. In the i-th phase,
• each Tx k in Ki ∩ Tfast sends its entire “fast” message
M

(F )
k but no part of the “slow” message M (S)

k ;
• each Tx k ∈ K\(Ki ∩ Tfast) sends a part of its “slow”

message M (S)
k if

IRx,k ∩ Tfast ∩ Ki = ∅; (13)

otherwise it does not send anything.
Condition (13) ensures that transmissions of “fast” messages
are not interfered at all. By (12), the condition is in particular
satisfied for all k ∈ Ki ∩ (Tactive\Tfast).

The described scheme achieves a “fast” rate of R(F ) =
1
δ
1
2 log(1 + P), and thus by (10), a “fast” MG of

S(F )
max =

ρρf
δ
. (14)

It also achieves an expected “slow” MG of

S̄(S)coop(K) (15)

=
1

K

δ∑
i=1

1

δ

( ∑
k∈Ki

P{k ∈ Tactive\Tfast}

+
∑

k∈K\Ki

P{k ∈ Tactive}P{IRx,k ∩ Tfast ∩ Ki = ∅}
)

(16)

=
ρ

δK

δ∑
i=1

(
(1− ρf )|Ki|+

∑
k∈K\Ki

(1− ρρf )|IRx,k∩Ki|}
)
. (17)

2) Transmitting at S(F ) = 0: Each Tx k ∈ Tactive sends
only a “slow” message but no “fast” message. Since perfect
cooperation is assumed at the Rxs, each of the “slow” mes-
sages can be transmitted with MG 1. The average expected
“slow” MG over the network is therefore

S̄(S)max = ρ, (18)

while S(F ) = 0.
Time sharing the two schemes establishes the following:
Proposition 1 (Achievable MG Region): The inner bound

on S?(ρ, ρf ) contains the region:

convex hull
(

(0, 0), (0, S̄(S)max), (S(F )
max , S̄

(S)
coop), (S(F )

max , 0)

)
. (19)

In the following three sections we specialize this proposition
to different interference networks. As we will see, for our first
network, we can also prove a corresponding converse result,
and thus Proposition 1 exactly characterizes S?(ρ, ρf ).
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+ + + + ++ + + + +

Fig. 1. An illustration of Wyner’s soft-handoff network where the Tx/Rx pairs
in K1 are colored in gray and the Tx/Rx pairs in K2 in pink. The interference
graph is depicted by black dashed lines.

+ + + + ++ + + + +

Fig. 2. An illustration of Wyner’s symmetric network where the Tx/Rx pairs
in K1 are colored in gray and the Tx/Rx pairs in K2 in pink. The interference
graph is depicted by black dashed lines.

B. Wyner’s soft-handoff network

Consider Wyner’s soft-handoff network shown in Figure 1.
Interference is short-range in the sense that the signal sent
by Tx k is observed only by Rx k and by the neighbouring
Rx k + 1. Thus IRx,k = {k + 1}. For this network, we can
exactly characterize the fundamental MG region S?(ρ, ρf ):

Theorem 1: The fundamental MG region S?(ρ, ρf ) of
Wyner’s soft-handoff network is the set of all nonnegative pairs
(S(F ),S(S)) satisfying

S(F ) ≤ ρρf
2
, (20)

(1 + ρ)S(F ) + S(S) ≤ ρ. (21)

Proof: The achievability part follows by specializing
Proposition 1 to δ = 2 and to

K1 = {1, 3, . . . ,K − 1} and K2 = {2, 4, . . . ,K}. (22)

For this choice |IRx,k ∩ Ki| = 1. The proof of the converse
bound (20) is straightforward. The converse bound (21) is
proved in Appendix A.
By above theorem, the fundamental MG region S?(ρ, ρf ) is a
quadrilateral, see also Fig. 4, and it is mostly determined by
the activity parameter ρ; the “fast” arrival probability ρf only
determines the vertical maximum-S(F ) =

ρρf
2 boundary of

the region. The maximum-S(S) boundary, which characterizes
the maximum achievable “slow” MG S(S) in function of the
“fast” MG S(F ), is fully characterized by ρ: it’s a line segment
with slope −(1 + ρ). In general, this slope determines the
penalty that the maximum “slow” MG S(S) incurrs when one
increases the “fast” MG. This penalty increases with increasing
ρ because with more active Txs in the network the probability
increases that a given active “fast” Tx is interfered by other
active transmitters, which then have to be forced to send at
“slow” MG 0 in order not to harm the achievable “fast” MG.

C. Wyner’s symmetric network

Consider Wyner’s symmetric network in Figure 2, where
the signal sent by Tx k is observed by Rxs k and k + 1, and
also by Rx k−1. Thus IRx,k = {k−1, k+1} for each k ∈ K.

Fig. 3. An illustration of the hexagonal network where the Tx/Rx pairs in
K1 are colored in gray, the Tx/Rx pairs in K2 in blue and the Tx/Rxs in K3

in pink. The interference graph is depicted by black dashed lines.

Corollary 1: The fundamental MG region S?(ρ, ρf ) of
Wyner’s symmetric model includes all nonnegative pairs
(S(F ),S(S)) satisfying

S(F ) ≤ ρρf
2
, (23)

(1 + ρ(2− ρρf ))S(F ) + S(S) ≤ ρ. (24)

Proof: Specialize Proposition 1 to δ = 2 and to the sets
K1 and K2 in (22). For this choice |IRx,k ∩ Ki| = 2.
The region in above corollary is again a quadrilateral, but
the maximum-S(S) boundary is now determined by both
parameters ρ and ρf as its slope is − (1 + ρ(2− ρρf )). The
dependency on ρf however vanishes as ρ · ρf → 0 in
which case the slope approaches −(1 + 2ρ). Interestingly, this
asymptotic slope shows a factor 2 compared to the slope of
the maximum-S(S) boundary in Wyner’s soft-handoff network.
The reason is that in Wyner’s symmetric network |ITx,k| = 2
whereas in Wyner’s soft-handoff network |ITx,k| = 1. In the
next subsection, we will see that in the hexagonal network
where |ITx,k| = 6, this asymptotic slope is −(1 + 6ρ).

D. Hexagonal network

Consider the hexagonal network in Figure 3 with K hexag-
onal cells and each cell including one Tx and one Rx. The
signals of Tx/Rx pairs that lie in a given cell interfere with
the signals sent in the 6 adjacent cells. The interference pattern
is depicted by the dashed black lines in Fig. 3.

Corollary 2: The multiplexing gain region S?(ρ, ρf ) in-
cludes all nonnegative pairs (S(F ),S(S)) satisfying

S(F ) ≤ ρρf
3
, (25)(

1 + 2ρ(3− 3ρρf + ρ2ρ2f )
)
S(F ) + S(S) ≤ ρ. (26)

Proof: Follows by specializing Proposition 1 to δ = 3
and to appropriate sets K1, K2 and K3 shown in Fig. 3.
Figure 4 evaluates the regions in Theorem 1 and in Corollar-
ies 1 and 2 for ρ = 0.8 and ρf either 0.3 or 0.6. We observe
the quadrilateral shapes of all three regions.

III. RANDOM “FAST” AND “SLOW” ARRIVALS

The setup considered in this section differs from the previ-
ous setup only in that Txs in Tfast only send a “fast” message
but no “slow” message. Thus, defining

Tslow , {k ∈ K : Ak · (1−Bk) = 1}, (27)
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Fig. 4. MG Region S?(ρ, ρf ) of different networks with ρ = 0.8 and
different values of ρf .

we have

Xn
k =


f
(F )
k

(
M

(F )
k

)
, if k ∈ Tfast

f
(S)
k

(
M

(S)
k

)
, if k ∈ Tslow

0 if k ∈ T cactive.

(28)

for some function f
(F )
k and f

(S)
k on appropriate domains

that satisfy the average block-power constraint (4). All other
definitions are as in the previous Section II. We denote the
fundamental MG region for this setup by S∗2 (ρ, ρf ).

A. Achievable MG Region and Coding Schemes

We again propose two schemes, one for large “fast” MG
and the other for zero “fast” MG.

1) Transmitting at large S(F ): Similar to the scheme
presented in Subsection II-A1, we partition K into sets
K1, . . . ,Kδ and divide the total transmission time into δ
equally-sized phases. In the i-th phase, each Tx k in Ki∩Tfast
sends its “fast” message and each Tx k ∈ Tslow sends its “slow”
message if IRx,k ∩ Tfast ∩ Ki = ∅; otherwise it does not send
any message. The described scheme achieves a “fast” MG of
S
(F )
max =

ρρf
δ , and an expected “slow” MG of

S̄
(S)
coop,2(K)

=
1

K

δ∑
i=1

1

δ

( ∑
k∈Ki

P{k ∈ Tslow} (29)

+
∑

k∈K\Ki

P{k ∈ Tslow}P{IRx,k ∩ Tfast ∩ Ki = ∅}
)

=
ρ(1− ρf )

δK

δ∑
i=1

(
|Ki|+

∑
k∈K\Ki

(1− ρρf )|IRx,k∩Ki|}
)
. (30)

2) Transmitting at S(F ) = 0: Each Tx k ∈ Tslow sends a
“slow” message with MG 1. The average expected “slow” MG
over the network is therefore

S̄
(S)
max,2 = ρ(1− ρf ). (31)

Each Tx k ∈ Tfast remains silent and thus S(F ) = 0.

3) General Achievable MG Region:
Proposition 2: The set S?2 (ρ, ρf ) contains the region:

convex hull
(

(0, 0), (0, S̄
(S)
max,2), (S(F )

max , S̄
(S)
coop,2), (S(F )

max , 0)

)
. (32)

We specialize this result to the interference networks intro-
duced in Sections II-B, II-C and II-D using the same choices
for δ and the sets {Ki}δi=1. For Wyner’s soft-handoff network
this inner bound is again tight.

4) Wyner’s Soft-Handoff Network:
Theorem 2: The fundamental MG region S?2 (ρ, ρf ) is the

set of all nonnegative pairs (S(F ),S(S)) satisfying

S(F ) ≤ ρρf
2
, (33)

ρ(1− ρf )S(F ) + S(S) ≤ ρ(1− ρf ). (34)

Proof: Achievability follows by specializing Proposi-
tion 2 to δ = 2 and to the sets K1 and K2 in (22). For this
choice |IRx,k ∩Ki| = 1. The proof of the converse is omitted.

Like in the previous setup, the fundamental MG region
S?2 (ρ, ρf ) is a quadrilateral. Interestingly, now all boundaries
depend on both activity parameters ρ and ρf , in particular
the maximum “slow” MG equals ρ(1 − ρf ). Moreover, the
maximum sum-rate is not achieved for this maximum “slow”
MG anymore. Formally, this holds because the slope of the
maximum-S(S) boundary is −ρ(1 − ρf ) and thus larger than
−1. So, the maximum sum-rate point is obtained for maximum
“fast” MG S(F ) =

ρρf
2 . The underlying intuition is that

for ρ(1 − ρf ) < 1 it may occur that a “fast” MG can be
accommodated without the need to sacrifice a “slow” MG
when the single interferer is not active anyways.

Figure 5 illustrates S?2 (ρ, ρf ) for Wyner’s soft-handoff net-
work as well as the inner bounds we obtain for Wyner’s
symmetric network and the hexagonal network under activity
parameters ρ = 0.8 and ρf is either 0.3 or 0.6.

5) Wyner’s Symmetric Network:
Corollary 3: The MG region S?2 (ρ, ρf ) includes all nonneg-

ative pairs (S(F ),S(S)) satisfying

S(F ) ≤ ρρf
2
, (35)

ρ(1− ρf )(2− ρρf )S(F ) + S(S) ≤ ρ(1− ρf ). (36)

Proof: Specialize Proposition 2 to δ = 2 and to K1 and
K2 as in (22). For this choice |IRx,k ∩ Ki| = 2.
Here the slope of the maximum-S(S) boundary is −ρ(1 −
ρf )(2− ρρf ) and can be larger or smaller than −1 depending
on the activity parameters. So, depending on these parameters,
the maximum sum-MG is either achieved for zero “fast” MG
or for maximum “fast” MG. Typically, for large values of ρf ,
i.e., when most of the “active” Txs send “fast” messages, the
maximum sum-MG is achieved at maximum “fast” MG. When
ρf is small and ρ sufficiently large, then most of the users
are active and intend to send “slow” messages. In this case,
scheduling “fast” messages most likely comes at the expense
of silencing active neighbours that wishing to send “slow”
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Fig. 5. Fundamental MG Region S?
2 (ρ, ρf ) of the three networks with ρ =

0.8 and ρf equal to 0.3 or 0.6.

messages. It is further interesting to notice that in the limiting
regime ρρf → 0, the slope of the maximum-S(S) boundary
approaches −2ρ(1 − ρf ) and is thus 2 times the slope in
Wyner’s soft-handoff network. As we will see, the hexagonal
model treated next shows a factor 6. For all three networks,
the asymptotic slope in the limit ρρf → 0 is thus given by
−|ITx,k|ρ(1− ρf ).

6) The Hexagonal Model:
Corollary 4: The MG region S?2 (ρ, ρf ) includes all nonneg-

ative pairs (S(F ),S(S)) satisfying

S(F ) ≤ ρρf
3
, (37)

2ρ(1− ρf )(3− 3ρρf + ρ2ρ2f )S(F ) + S(S) ≤ ρ(1− ρf ). (38)

IV. CONCLUSIONS

We considered two different setups to simultaneously trans-
mit delay-sensitive and delay-tolerant traffic over interference
networks with randomly activated users. Under both setups,
we characterized the multiplexing gain region of Wyner’s soft-
handoff network and derived an inner bound on the MG region
of any general interference network.

Our results show that in the first setup, where each active
Tx always has “slow” (delay-tolerant) data to send, the sum-
MG is decreased with increasing “fast” (delay-sensitive) MG.
The corresponding penalty mostly depends on the activity
parameter ρ and the interference set size |ITx,k| of the network.
It increases with both parameters, intuitively because more Txs
have to be silent when accommodating “fast” transmissions.

In contrast, in the second setup where each active Tx has
either a “slow” or a “fast” message to send, depending on the
values of the activity parameters ρ and ρf , the sum-MG is
either achieved at maximum “fast” MG or at 0 “fast” MG.
The former holds for small values of ρ where only few Txs
in the network are active and thus “fast” transmissions often
can be accommodated without silencing active “slow” Txs.

An interesting line of future work consideres buffers to store
not yet transmitted “slow” messages similar to [11].
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APPENDIX A
PROOF OF THE CONVERSE PART TO THEOREM 1

Fix K and realizations of the sets Tactive and Tfast. Following
the steps in [4, Section V], we prove that for each k ∈ Tactive:

R
(F )
k +R

(S)
k +R

(F )
k+1

≤ 1

2
log(1 + (1 + |hk,k+1|2)P) +

1

2
log(1 + |hk,k+1|2)

+ max{− log |hk,k+1|, 0}+
εn
n
, (39)

where R(F )
k+1 is the rate of the “fast” message at Rx k+1, which

is either 0 or equal to R(F ). For simplicity, we abbreviate the
RHS of (39) by ∆, and we sum up this bound for all values
of k ∈ Tactive:∑

k∈Tactive

(
R

(F )
k +R

(S)
k +R

(F )
k+1

)
≤ |Tactive| ·∆. (40)

Taking expectation over (39) and dividing by K, we obtain:

E[R̄(S)] +R(F )(ρρf + ρ2ρf ) ≤ ρ ·∆, (41)

because the expected number of indices k ∈ Tactive for which
R

(F )
k = R(F ) equals ρ·ρf and the expected numbers of indices

k ∈ Tactive for which R
(F )
k+1 = R(F ) equals ρ2 · ρf . Dividing

by 1
2 logP and letting P→∞ proves (21).
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