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Abstract—We consider a two-terminal variant (double-sided)
of the information bottleneck problem, which is related to biclus-
tering. In our setup, X and Y are dependent random variables
and the problem is to find two independent channels PU|X and
PV|Y (setting the Markovian structure U → X → Y → V)
that maximize I(U;V) subject to constraints on the relevant
mutual information expressions: I(U;X) and I(V;Y). For jointly
Gaussian X and Y, we show that Gaussian channels are optimal
in the low-SNR regime, but not for general SNR. Similarly, it
is shown that for a doubly symmetric binary source, binary
symmetric channels are optimal when the correlation is low, and
are suboptimal for high correlation. We conjecture that Z and S
channels are optimal when the correlation is 1 (i.e., X = Y), and
provide supporting numerical evidence.

I. INTRODUCTION

Let (X,Y) be a bivariate source characterized by a fixed
joint probability law PXY and consider all Markov chains
U→ X→ Y → V. The Double-Sided Information-Bottleneck
(DSIB) function is defined as [1]

RPXY
(Cu, Cv) , max I(U;V), (1)

where the maximization is over all PU|X and PV|Y satisfying
I(U;X) ≤ Cu and I(V;Y) ≤ Cv . This problem is illustrated
in Figure 1. In our study we aim to determine the maximum
value and the achieving conditional distributions (PU|X,PV|Y)
(test channels) of I(U;V) for various fixed sources PXY, and
constraints Cu, Cv .

The problem we consider originates from the domain of
clustering. Clustering is applied to organize similar entities in
unsupervised learning [2]. It has numerous practical applica-
tions in data science, such as joint word-document clustering,
gene expression [3], and pattern recognition. The data in
those applications is arranged as a contingency table. Usually,
clustering is performed on one dimension of the table, but
sometimes it is useful to apply clustering on both dimensions
of the contingency table [4]. For example, when there is a

Stochastic
Encoder
PU|X

Bivariate
Source
PXY

Stochastic
Encoder
PV|Y

I(U;X) ≤ Cu I(V;Y) ≤ Cv
max I(U;V)

U
X Y

V

Fig. 1. Block diagram of the Double-Sided Information-Bottleneck function.

strong correlation between the rows and the columns of the
table or when high-dimensional sparse structures are handled.

An information-theoretic approach to biclustering was initi-
ated by Dhillon et al. [5]. They have regarded the normalized
nonnegative contingency table as a joint probability distribu-
tion matrix of two random variables. Mutual information was
proposed as a measure for optimal co-clustering. An optimiza-
tion algorithm was presented that intertwines both row and
column clustering at all stages. Distributed Clustering from
a formal information-theoretic perspective was first explicitly
considered by Pichler et al. [1], [6]. Consider a bivariate
memoryless source with joint law PXY. This source generates
n i.i.d. copies (Xn,Yn), of (X,Y). Each sequence is observed
at two different encoders, and each encoder generates a
description of the observed sequence, f(Xn), and respectively,
g(Yn). The objective is to construct the mappings f and
g such that the normalized mutual information between the
descriptions would be maximal, while the description coding
has bounded rate constraints. Single-letter inner and outer
bounds for a general PXY were derived. An example of a
Doubly Symmetric Binary Source (DSBS) source was given,
and several converse results were established. Furthermore,
connections to the standard Information Bottleneck [7] and
the Multiple Description CEO problems [8] were given. It was
also shown that an information-theoretic biclustering problem
is equivalent to hypothesis testing against independence with
multiterminal data compression [9] and a pattern recognition
problem [10].

The DSIB problem addressed in our paper is, in fact, a
single letter version of the Distributed Clustering problem.
The inner bound in [1] coincides with our definition of the
problem. Moreover, if the Markov condition U→ X→ Y → Z
is imposed on the multiletter variant, then those problems
coincide.

A similar setting with a maximal correlation criterion be-
tween the reconstructed random variables has been consid-
ered in [11], [12]. Furthermore, it is sometimes the case
that the optimal biclustering problem is easier to solve then
the standard single-sided clustering problem. For example,
Courtade-Kumar conjecture [13] for the standard single-sided
clustering setting was ultimately proved for the biclustering
setting [14]. A particular case, where (X,Y) are drawn from
DSBS distribution, and the mappings f and g are restricted
to be boolean function, was addressed in [14]. The bound
I(f(Xn); g(Yn)) ≤ I(X;Y) was established, which is tight if
and only if f and g are dictator functions. There are many
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other variations of multi-user IB in the literature [15], [16],
[17], [18], [19], [20], [21], [22], [23], [24], [25].

A recent comprehensive tutorial on the Information Bottle-
neck method and related problems is given in [26]. Applica-
tions of Information Bottleneck problem in Machine Learning
are detailed in [17], [27], [28], [29], [30], [31], [32].

II. PROBLEM FORMULATION AND BASIC PROPERTIES

The DSIB function is closely related to the standard Single-
Sided Information Bottleneck (SSIB) [7].

Definition 1 (SSIB): Let (X,V) be a pair of random variables
with |X | = n, |V| = m and fixed PXV. Denote by qx the
marginal probability vector of X, and let T be the transition
matrix from X to V, i.e.,

Tij , P (V = i|X = j) , 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Consider all random variables U satisfying the Markov chain
U→ X→ V. The SSIB function is defined as

R̂T (qx, C) , maximize
PU|X

I(U;V)

subject to I(X;U) ≤ C.
(2)

The following tight cardinality bound in the single-sided
counterpart of our problem was established in [33].

Lemma 1 ([33, Th. 9]): The optimization over U in (2) can
be restricted to |U| ≤ n.
This bound was actually already proved for the corresponding
dual problem, namely, the IB Lagrangian, in [34]. But since
R̂T (qx, C) is generally not a strictly convex function of C, it
cannot be directly applied for the primal problem (2).

Definition 2 (DSIB): Let (X,Y) be a pair of random vari-
ables with |X | = n, |Y| = m and fixed PXY. Consider all
the random variables U and V satisfying the Markov chain
U → X → Y → V. The DSIB function, R : [0, H(X)] ×
[0, H(Y)]→ R+ is defined as

RPXY
(Cu, Cv) , maximize

PU|X,PV|Y
I(U;V)

subject to I(X;U)≤Cu, I(Y;V)≤Cv.
(3)

Occasionally we will drop the subscript denoting the particular
choice of the bivariate source PXY.

An equivalent form of (3) is

R(Cu, Cv) , maximize
PV|Y

maximize
PU|X

I(U;V).

subject to subject to
I(Y;V) ≤ Cv I(X;U) ≤ Cu

(4)

Fix PV|Y that satisfies I(Y;V) ≤ Cv . Denote by Tv the
transition matrix from Y to V and respectively by W the
transition matrix from X to Y. Since PV|Y and PXY are
fixed, PXV =

∑
y PV|Y(·|y)PXY(·, y) is also fixed. Denote

by T , TvW the transition matrix from X to V. Therefore,
the inner maximization term in (4) is just the SSIB function
with parameters T and Cu, namely, R̂T (qx, Cu). Hence, our

problem can also be defined in the following two equivalent
ways:

R(Cu, Cv) , maximize
Tv

R̂TvW (qx, Cu)

subject to I(qy, Tv) ≤ Cv
, (5)

or
R(Cu, Cv) , maximize

Tu

R̂TuW̄ (qy, Cv)

subject to I(qx, Tu) ≤ Cu.
, (6)

where Tu is the transition matrix from X to U, and W̄ is the
transition matrix from Y to X. This representation gives us a
different perspective on our problem as an optimal channel for
the SSIB setting.

The bound from Lemma 1 can be utilized to give cardinality
bound for the double sided problem.

Proposition 2.1: For the DSIB optimization problem defined
in (3) it suffices to consider random variables U and V with
cardinalities |U| ≤ n and |V| ≤ m.
Proof. Let Tu and Tv be two arbitrary transition matrices. By
Lemma 1, there exists Tũ with |Ũ | ≤ n such that I(Ũ;V) ≥
I(U;V) and I(X; Ũ) ≤ Cu. Similarly, Tv can be replaced with
Tṽ , |Ṽ| ≤ m such that

I(Ũ; Ṽ) ≥ I(Ũ,V) ≥ I(U;V),

and I(Y; Ṽ) ≤ Cv . Therefore, there exists an optimal solution
with |U| = n and |V| = m.

III. MAIN RESULTS

In this section we will present the main analytical outcomes
of our study. First we consider the scenario where our bivariate
source is binary, and specifically DSBS. Then we treat the case
where X and Y are jointly Gaussian.

A. Doubly Symmetric Binary Source (DSBS)

Let (X,Y) be a DSBS with parameter p, i.e., PXY(x, y) =
1
2 (p · 1(x 6= y) + (1 − p)1(x = y)). Here we emphasize the
dependence of the DSIB on the parameter p as R(Cu, Cv, p).

A special case where we have a complete analytical solution
is when p tends to 1/2. Let h2(p) : [0, 1]→ [0, 1] be the binary
entropy function and h−1

2 (·) its inverse, restricted to [0, 1/2].
Throughout this paper all logarithms are taken to base 2 unless
stated otherwise.

Theorem 1: Suppose p = 1
2 − ε, and consider ε→ 0. Then

R(Cu,Cv,ε)=2ε2loge·(1−2h-1
2 (1−Cu))2(1−2h-1

2 (1−Cv))2+o(ε2).
(7)

This theorem is proved in Appendix A. For the lower bound
we take PU|X and PV|Y to be Binary Symmetric Channels
(BSCs). In the following section we will give a numerical
evidence that BSC test-channels are in fact optimal provided
that p is sufficiently large. However, for small p this is no
longer the case and we believe the following holds.

Conjecture 1: Let X = Y, i.e., p = 0. The test channels
PU|X and PV|X that achieve R(Cu, Cv, 0) are Z-channel and
S-channel respectively.
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Remark 1: Our results in the numerical section strongly
support this conjecture. In fact they prove it within the
resolution of the experiments, i.e., for optimizing over a dense
set of test-channels rather then all test-channels. Nevertheless,
we were not able to find an analytical proof for this result.

Remark 2: Suppose X = Y, I(X;U) = Cu, and I(X;V) =
Cv . Since I(U;V) = I(U;X) + I(V;X) − I(X;U,V) (as
U → X → Y → V form a Markov chain in this order) then
maximizing I(U;V) is equivalent to minimizing I(X;U,V),
namely, minimizing information combining as in [35], [22].
Therefore, Conjecture 1 is equivalent to the conjecture that
among all channels with I(X;U) ≥ Cu and I(Y;V) ≥ Cv , Z
and S are the worst channels for information combining.
This observation leads us the following additional conjecture.

Conjecture 2: The test channels PU|X and PV|X that maxi-
mize I(X;U,V) are both Z channels.

Remark 3: Suppose now that p is arbitrary and assume that
one of the channels PU|X or PV|Y is restricted to be a Binary
Memoryless Symmetric (BMS) channel [36, Ch. 4], then the
maximal I(U;V) is attained by BSC channels, as those are
the symmetric channels minimizing I(X;U,V) [35]. It is not
surprising that once the BMS constraint is removed, symmetric
channels are no longer optimal (see the discussion in [35, Sec.
VI.C]).

B. Gaussian Double-Sided Information Bottleneck (GDSIB)

In this subsection we consider a specific setting where
(X,Y) is a Gaussian bivariate source, namely,(

X
Y

)
∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
. (8)

We establish achievability schemes and show that Gaussian
test-channels PU|X and PV|Y are optimal for vanishing SNR.
Furthermore we show an elegant representation of the problem
through Hermite polynomials. We denote the Gaussian DSIB
function with explicit dependency on ρ as R(Cu, Cv, ρ).

Proposition 3.1: Let Hn(·) be the nth order probabilistic
Hermite polynomial, then,

I(U;V)=EUV

[
log

( ∞∑
n=0

ρn

n!
E [Hn(X)|U]E [Hn(Y)|V]

)]
. (9)

This representation follows by considering I(U;V) =
D(PUV||PU · PV) and expressing PUV

PU·PV
using Mehler Kernel

[37]. Mehler Kernel decomposition is a special case of a much
richer family of Lancaster distributions [38].

Now we give two lower bounds on R(Cu, Cv, ρ). Our first
lower bound is established by choosing PU|X and PV|Y to be
additive Gaussian channels, satisfying the mutual information
(MI) constraints with equality.

Proposition 3.2: A lower bound on R(Cu,Cv, ρ) is given by

R(Cu, Cv, ρ)≥−1

2
log
(
1−ρ2

(
1−2−2Cu

) (
1−2−2Cv

))
. (10)

Although it was shown in [17] that choosing the test channel
to be Gaussian is optimal for the single-sided variant, it is not
the case for its double-sided extension. We will show this by
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Fig. 2. Comparison of the lower bounds from Proposition 3.2 and Proposi-
tion 3.3.

examining a specific set of values for the rates constraints,
(Cu, Cv) = (1, 1). Furthermore, we choose the test channels
PU|X and PV|Y to be deterministic quantizers.

Proposition 3.3: Let (Cu, Cv) = (1, 1), then

R(1, 1, ρ) ≥ 1− h2

(arccos ρ

π

)
. (11)

The proof of this bound is developed in Appendix B.
We compare the bounds from Proposition 3.2 and Propo-

sition 3.3 with (Cu, Cv) = (1, 1) in Figure 2. The most un-
expected observation here is that the deterministic quantizers
lower bound outperform the Gaussian test-channels for high
values of ρ. The crossing point of those bounds is

ρcros =
e√

1 + e2
→
√
SNRcros =

ρcros√
1− ρ2

cros

= e. (12)

For ρ→ 0, the exact asymptotic behavior of the Gaussian and
deterministic test-channels, respectively, for Cu = Cv = 1 bit
is

lim
ρ→0
−1

2
log
(
1−ρ2(1−2−2Cu)(1−2−2Cv)

)
=

9 log e

32
ρ2+o(ρ2),

lim
ρ→0

1− h2

(arccos ρ

π

)
=

2 log e

π2
ρ2+o(ρ2).

Hence, the Gaussian choice outperforms the second lower
bound for vanishing SNR.

Theorem 2: For small ρ, the GDSIB function is given by

R(Cu,Cv,ρ) =
ρ2 loge

2
(1−2−2Cu)(1−2−2Cv)+o(ρ2). (13)

The lower bound follows from Proposition 3.2. The upper
bound is established by considering the kernel representation
from Proposition 3.1 in the limit of vanishing ρ. The detailed
proof is given in Appendix C.

IV. NUMERICAL RESULTS

In this section we consider the case where PXY is a DSBS
with parameter p. Since V is binary, we can describe PV|Y
using the following transition matrix

Tv ,

(
α β

1− α 1− β

)
. (14)
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Now, let Fv be the set of all feasible PV|Y, i.e.,

Fv(Cv),
{
(α, β): h

(
α+ β

2

)
− 1

2
(h(α)+h(β)) =Cv

}
(equality constraint follows since we maximize a convex
function over a convex set). This set defines a curve β(α) ,
β(α,Cv). Examples of such curves for various values of Cv
are shown in Figure 3.

Fix (α, β(α)) ∈ Fv and consider R̂T (q, Cu) = R̂(Cu, α, p)
from (2), where x̄ , 1− x and

T = TvW =

(
αp̄+ β(α)p αp+ β(α)p̄
ᾱp̄+ β̄(α)p ᾱp+ β̄(α)p̄

)
. (15)

Since SSIB is equivalent to the problem that was studied in
[39] (as was shown in [40, Sec. 3]), we can utilize the recipe
from [39, Sec. IV] to evaluate R̂(Cu, α, p). With that tool in
hand, we can compute R̂(Cu, α, p) for every α ∈ Fv and then
find α? that maximizes R̂(Cu, α, p). This is equivalent to

R(Cu, Cv, p) , maximize
α∈Fv

R̂(Cu, α, p). (16)

The graph of R̂(Cu, α, p) for Cu = Cv = 0.3 bit and
various values of p is shown in Figure 4. For p = 0 (X = Y)
we see that α? = 1, in such case PV|Y and PU|X are Z and
S channels, respectively. For small but increasing values of p
we observe a smooth transition from Z-channel, α?(p = 0),
points on the curve β(α), towards the point α = 1−β, which
corresponds to a BSC. The graphs of R(Cu, Cv, ·), α?(·),
β?(α?(·)) and α?(·) + β(α?(·)) are shown in Figure 5. As
expected R(Cu, Cv, ·) is a decreasing function of p. Further-
more, the channel transition probability has a threshold value,
θ, which depends on Cu and Cv . If p > θ(Cu, Cv) then PV|Y
is a BSC (and thus also PU|X [39, Sec. IV.A]).

V. CONCLUDING REMARKS

In this paper we have considered the Double-Sided
Information-Bottleneck problem. Tight cardinality bounds on
the auxiliary random variables were obtained for an arbitrary
discrete bivariate source. For DSBS we have shown that BSC
test-channel are optimal when p→ 0.5. Furthermore, we have
shown numerical simulation for arbitrary p, indicating that Z
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and S channels are optimal for p = 0. As for the Gaussian
bivariate source, representation of I(U;V) utilizing Hermite
polynomials was given. Also, the optimality of Gaussian test-
channel was demonstrated for vanishing SNR. Moreover, we
have constructed a lower bound attained by deterministic
quantizers that outperforms the jointly Gaussian choice at
high SNR. Note that the solution for the n-letter problem
max 1

nI(U;V) for U → Xn → Yn → V under constraints
I(U;Xn) ≤ nCu and I(V;Yn) ≤ nCv , does not tensorize in
general. For Xn = Yn ∼ Ber⊗n(0.5), we can easily achieve
the cut-set bound I(U;V)/n = min{Cu, Cv}. In addition, if
time sharing is allowed, the results change drastically.
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APPENDIX

A. Proof of Theorem 1

Fix PU|X and PV|Y that satisfy I(X;U) ≤ Cu and I(Y;V) ≤
Cv . Denote αu , P (X = 1|U = u), βv , P (Y = 1|V = v) .
Using this notation we have

I(U;V) =
∑
u,v

PU(u)PV(v)K(u, v, p) logK(u, v, p), (17)

where K(u, v, p) , PUV(u,v)
PU(u)PV(v) , and satisfies

K(u,v,p)=2(ᾱup̄β̄v+αupβ̄v+ᾱupβv+αup̄βv)=2αu∗βv∗p̄. (18)

Denoting ε , 1
2 − p (p = 1

2 − ε), we obtain

K(u, v, ε) = 1 + 2ε(1− 2αu)(1− 2βv). (19)

Now we rewrite I(U;V) with explicit dependency on ε as
I(ε) =

∑
u,vPU(u)PV(v)K(u, v, ε) logK(u, v, ε). We would

like to expand I(ε) with Taylor series around ε = 0. Note
that I(0) = 0 = I ′(ε)|ε=0. Furthermore, the second derivative
is given by

I ′′(ε)|ε=0=4loge·
(∑

u

PU(u)(1−2αu)2

)(∑
v

PV(v)(1−2βv)
2

)
.

Hence,

I(ε)=2ε2 loge·
(∑
u

PU(u)(1−2αu)2

)(∑
v

PV(v)(1−2βv)
2

)
+o(ε2).

Now, note that

αu =

{
h−1

2 (H(X|U = u)) αu ≤ 1
2

1− h−1
2 (H(X|U = u)) αu >

1
2

(20)

with similar relation for βv . Therefore,

I(ε)=
2ε2

ln2
·Eu
[
(1−2h2

−1
(H(X|U=u)))

2
]
·Ev
[
(1−2h2

−1
(H(Y|V=v)))

2
]
+o(ε

2
)

≤2ε2 loge·(1−2h−1
2 (H(X|U)))2(1−2h−1

2 (H(Y|V)))2+o(ε2)

≤2ε2 loge·(1−2h−1
2 (1−Cx))2(1− 2h−1

2 (1−Cy))2 +o(ε2),

where the first inequality follows since the function f : x 7→
(1 − 2h−1

2 (x))2 is concave and applying Jensen’s inequality
(the proof is omitted due to space limitation), and the second
inequality follows from rate constraints.

B. Proof of Proposition 3.3

We choose U and V to be deterministic functions of X
and respectively Y, i.e., U = sign(X) and V = sign(Y). In
such case the rate constraints are met with equality, namely,
I(U;X) = 1 = I(Y;V). We proceed to evaluate the achievable
rate,

I(U;V)=1−P(U=0)h2(P(V=1|U=0))−P(U=1)h2(P(V=0|U=1))

(a)
= 1− h2(P (U 6= V)),

where equality in (a) follows since P (V = 1|U = 0) =
P (V = 0|U = 1) by symmetry. We therefore obtain the fol-
lowing formula for the “error probability”:

P(V6=U)=1−P(X<0,Y<0)−P(X>0,Y>0)
(a)
=1−2P(X<0,Y<0),

where (a) also follows from symmetry. Utilizing Sheppard’s
Formula [41, Ch. 5, p.107], we have 1−2P (X < 0,Y < 0) =
arccos ρ

π . This completes the proof of the proposition.

C. Proof of Theorem 2
We assume U and V are continuous RVs. The proof for the

discrete case is identical. The joint density fUV(u, v) can be
expressed with explicit dependency on ρ as follows:

f(u,v;ρ), fU(u)fV(v)

∫∫
R2

fX|U(x|u)M(x, y; ρ)fY|V(y|v)dxdy,

where M(x, y; ρ) =
∑∞
n=0

ρn

n!Hn(x)Hn(y) [37]. Similarly,
I(U;V) can also be written with explicit dependency on ρ

I(ρ) , Iρ(U;V) =

∫ ∫
f(u, v; ρ) log

f(u, v; ρ)

fU(u)fV(v)
dudv.

We would like to approximate I(ρ) in the limit ρ → 0 using
a Taylor series up to a second order in ρ. As a first step we
evaluate the first two derivatives of f(u, v; ρ) at ρ = 0. Note
that M(x, y; 0) = 1 and

dM

dρ

∣∣
ρ=0

= xy,
d2M

dρ2

∣∣
ρ=0

= (x2 − 1)(y2 − 1). (21)

Thus, f(u, v; 0) = fU(u)fV(v),

df

dρ

∣∣∣∣
ρ=0

= fU(u)fV(v)E [X|U = u]E [Y|V = v] ,

and d2f
dρ2

∣∣
ρ=0

=fU(u)fV(v)
(
E[X2|U = u]−1

)(
E[Y2|V = v]−1

)
.

Expanding I(ρ) in Taylor series around ρ = 0 gives us
I(0) = 0 = dI(ρ)

dρ

∣∣
ρ=0

and

d2I(ρ)

dρ2

∣∣
ρ=0

= log e · E
[
(E [X|U])

2
]
E
[
(E [Y|V])

2
]
.

Thus

I(ρ) =
ρ2 log e

2
E
[
(E [X|U])2

]
E
[
(E [Y|V])2

]
+ o(ρ2). (22)

Note that E [X] = E [E [X|U]] and

1=E[X2]=E
[
E[X2|U]

]
=E [var [X|U]]+E

[
(E [X|U])2

]
. (23)

Also, by [42, Corollary to Theorem 8.6.6], E [var [X|U]] ≥
1

2πee
2h(X|U). Moreover, from MI constraint, we have

I(X;U) = h(X)− h(X|U) =
1

2
log(2πe)− h(X|U) ≤ Cu,

and therefore h(X|U) ≥ log(2πe)− Cu. Thus we get

−Cu ≤
1

2
log(E [var [X|U]])→ E [var [X|U]] ≥ 2−2Cu . (24)

Combining (23) and (24), we obtain E
[
(E [X|U])2

]
≤

1 − 2−2Cu . In a very similar method one can show that
E
[
(E [Y|V])2

]
≤ 1− 2−2Cv . Thus, for ρ→ 0

I(ρ) ≤ ρ2 log e

2
(1− 2−2Cu)(1− 2−2Cv ) + o(ρ2). (25)
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Angew. Math., vol. 66, pp. 161–176, 1866.

[38] H. O. Lancaster, “The Structure of Bivariate Distributions,” Ann. Math.
Statist., vol. 29, no. 3, pp. 719–736, 1958.

[39] H. S. Witsenhausen and A. D. Wyner, “A Conditional Entropy Bound for
a Pair of Discrete Random Variables,” IEEE Trans. Inf. Theory, vol. 21,
no. 5, pp. 493–501, Sep. 1975.

[40] R. Gilad-Bachrach, A. Navot, and N. Tishby, “An information theoretic
tradeoff between complexity and accuracy,” in Proc. 16th Conf. Comput.
Theory (COLT), ser. Lecture Notes in Computer Science, B. Schölkopf
and M. K. Warmuth, Eds., vol. 2777. Springer, 2003, pp. 595–609.

[41] R. O’Donnell, Analysis of Boolean Functions, 1st ed. New York, NY,
USA: Cambridge Univ. Press, Jun. 2014.

[42] T. M. Cover and J. A. Thomas, Elements of Information Theory.
Hoboken, NJ, USA: Wiley, 2006.

2500
Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on October 14,2021 at 10:25:15 UTC from IEEE Xplore.  Restrictions apply. 


		2021-08-30T16:20:39-0400
	Certified PDF 2 Signature




