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Abstract—The classic wiretap channel (WTC) problem is
concerned with a transmitter (Alice) that wants to send a
message W to the intended receiver (Bob) while keeping it
secret from a passive eavesdropper (Eve). However, under certain
communication scenarios, the user may not be interested in
hiding the entire message from the eavesdropper, but rather in
hiding its most sensitive attributes. While classic wiretap coding
is capable of hiding these salient message attributes, it may be
too stringent and better communication rates may be achievable.

Motivated by the above, in this paper, we introduce and study
the latent variable wiretap channel (LV-WTC) problem. Under
this setting, the transmitter is interested in sending the message
W to the intended receiver while keeping a correlated latent
variable S (which models privacy sensitive attributes) secret
from the eavesdropper. We present a message splitting based
achievable scheme for the LV-WTC problem, which adapts to the
structure of the conditional distribution PS|W to achieve higher
rates compared to the classical WTC. Several open problems and
future directions that originate from this new communication
problem are also discussed.

I. INTRODUCTION

The problem proposed herein is based on the observation
that, in certain communication scenarios, the user may be
interested in transmitting the information message while only
keeping its sensitive attributes secret from the eavesdropper
(rather than hiding the entire message). Under the communi-
cation theory paradigm, a naive solution to this problem is
to use the classic wiretap channel (WTC) coding [1], [2] or
its variants, e.g., [3]–[12]. In the classic WTC problem, the
transmitter is interested in sending the message to its intended
receiver while keeping it secret from a passive eavesdropper.
However, keeping the entire message (modeled by W ) hidden
from the eavesdropper, rather than just hiding its sensitive
attributes (modeled by a correlated latent variable S), may
be costly in terms of achievable transmission rates.

The framework of relaxed notions of privacy (including
latent-variable privacy) has been explored in various other
problems. For instance, within the context of privacy preserv-
ing data release, several works [13], [14] have proposed new
privacy definitions and mechanisms with bounded leakage for
latent (secret) attributes. The problem of latent-variable private
information retrieval (PIR) was recently introduced in [15],
where the goal is to retrieve content while satisfying perfect
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Fig. 1. Wiretap channel with latent variable secrecy (LV-WTC).

privacy for latent attributes. This can allow a reduction in the
download cost compared to conventional PIR protocols (such
as [16]–[18]) which hide the identity of the desired content.

Motivated by the above, in this paper, we introduce and
study a variant of the WTC that we name the latent variable
wiretap channel (LV-WTC) problem. Under LV-WTC, the
transmitter (Alice) wants to send the message W to its
intended receiver (Bob) while keeping the latent variable S
secret from the eavesdropper (Eve). That is, we are no longer
interested in hiding the entire message as is done in the
classic WTC setting, but rather its sensitive attributes. Due to
the relaxed secrecy requirements, solutions to the LV-WTC
problem can lead to transmission rate gains compared to
classic WTC solutions. Another related problem is the so-
called privacy funnel [19], where there is no eavesdropper
and non-privacy-sensitive data attributes are revealed to a third
party cooperative analyst. This set up also differs from LV-
WTC in that it does not consider a communication problem
with a need to bound the rates and its performance is measured
in terms of both utility and privacy through a non-asymptotic
mapping from data to its disclosed attributes.

In this work, we propose a coding scheme for the LV-WTC
that can achieve higher secure transmission rates compared to
classic wiretap coding. The scheme employs rate splitting that
adapts to the structure of the conditional distribution PS|W ,
which captures the correlation between S and W . Based on
the properties of PS|W , the rate splitting interpolates between
the capacity of the classic WTC and the (nonsecure) point-to-
point channel [20]. We further show that our LV-WTC scheme
is related to the WTC with partial secrecy (PS-WTC) problem,
a relaxed secrecy variant of the classic WTC, where only a
portion of the transmitted message needs to be kept secret
from the eavesdropper. Examples that highlight the key ideas
behind the scheme are also provided.

II. LV-WTC PROBLEM FORMULATION

The latent variable wiretap channel (LV-WTC) problem is
depicted in Fig. 1. Under this setting, the transmitter (Alice)
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wishes to send a message W , uniformly selected from the
alphabetW = {1, 2, . . . , |W| = 2nR}, to the intended receiver
(Bob) while keeping a latent variable S, selected from the
alphabet S = {s1, s2, . . . , s|S|}, secret from the eavesdropper
(Eve). The conditional distribution PS|W is described by an
|S| × |W| matrix, denoted as Hn whose entries are given
as hij = Pr(S = si|W = j), for i ∈ {1, 2, . . . , |S|} and
j ∈ {1, 2, . . . , |W|}. We focus on the case that the conditional
distribution PS|W is fixed, and known to all parties.

The transmitter uses an encoding function f (n)
E :W → Xn

which maps the message W into an n-length signal vector Xn

belonging to the alphabet Xn. She then transmits Xn over the
discrete memoryless channel channel (DMC) described by the
transition probability PY |X . Upon transmission, Bob receives
the signal Y n belonging to the alphabet Yn, on which he
applies a decoding function f

(n)
D : Yn → W to recover W .

Eve receives the signal vector Zn which takes value in Zn.
The eavesdropper’s DMC channel is described by PZ|X . A rate
R is achievable for the LV-WTC, if there exists a sequence of
encoding/decoding functions

{
(f

(n)
E , f

(n)
D )

}∞
n=1

such that, as
n→∞, the following constraints are satisfied:

Decodability Constraint:

Pr(W 6= Ŵ )→ 0, (1)

where Ŵ = f
(n)
D (Y n).

Latent Variable Secrecy Constraint:
1

n
I(S;Zn)→ 0. (2)

Definition 1. (LV-WTC Secrecy Capacity): The secrecy ca-
pacity for LV-WTC is denoted by C(LV )

WTC and defined as:

C
(LV )
WTC = sup{R : R is achievable}. (3)

Remark 1. In this paper, we focus on weak secrecy as defined
in (2). Other notions of secrecy such as strong secrecy (defined
as limn→∞ I(S;Zn)) or semantic security (maxPS

I(S;Zn))
are left as candidates for future work. We also note that
when |S| grows sub-exponentially with n, then the LV-secrecy
constraint as defined in (2) is always trivially satisfied for any
PS|W because 1

nI(S;Z
n) ≤ H(S)/n ≤ log(|S|)/n. Thus, in

this paper, we restrict our attention to the case where |S| grows
exponentially with n. To account for slower growth rates or
when |S| does not depend on n, a different constraint should
be investigated. We leave that exploration for future work.

III. MAIN RESULTS AND DISCUSSION

A. Extreme Cases and Motivating Example

Before presenting our main results, we discuss special
cases of the LV-WTC problem. On one extreme, consider the
scenario if S is independent of W (in other words, the columns
of the matrix Hn describing PS|W are identical), then the
latent-variable secrecy constraint is trivially satisfied for any
encoder/decoder. In this case, C(LV )

WTC = C = maxPX
I(X;Y ),

i.e., capacity of LV-WTC reduces to the conventional (Shan-
non) capacity of the channel between Alice and Bob. On the

Fig. 2. Sample realization of the matrix Hn relating the latent variable
S and the message W via Pr(S = si|W = j), where i ∈ {1, 2, 3, 4},
j ∈ W = {1, 2, . . . , 8}, and P = {P1,P2} such that {P1 ∩ P2} = ∅ and
{P1 ∪ P2} = W .

other extreme, consider the scenario when S and W are in one-
to-one correspondence. In this case, I(S;Zn) = I(W ;Zn),
and the latent-variable secrecy constraint is equivalent to the
message secrecy constraint. For this extreme, LV-WTC is
equivalent to the conventional WTC, and thus C

(LV )
WTC =

CWTC = maxPU,X
I(Y ;U) − I(Z;U), i.e., capacity of LV-

WTC is same as the capacity of the general WTC between
Alice, Bob and Eve [2]. For an arbitrary PS|W , a trivial
scheme is to use a conventional capacity achieving wiretap
code (which satisfies I(W ;Zn)/n→ 0) for the latent-variable
WTC. Due to the Markov chain S →W → Xn → (Y n, Zn),
the latent-variable secrecy constraint I(S;Zn)/n→ 0 is also
satisfied. Hence, from the above arguments, we obtain the
following bounds on the capacity of the LV-WTC:

CWTC ≤ C(LV )
WTC ≤ C.

Example 1. We next present an illustrative example to
highlight the main idea behind our scheme. Consider a
scenario where a message W is uniformly distributed over
W = {1, 2, . . . , 8}, and the conditional distribution PS|W is
described by the 4 × 8 matrix H shown in Fig. 2. Here, the
latent variable S takes four possible values (i.e., |S| = 4).
Our main idea is the following: We take the message W and
split it into two independent messages, W =

(
W

(P)
1 ,W

(P)
2

)
so that W (P)

1 is independent of the latent variable S, while
W

(P)
2 may or may not be independent of S. Since W (P )

2 is
the only part of the message W that can be correlated with
S, one can use wiretap coding to conceal W (P )

2 . No secrecy
constraint is imposed on W (P )

1 (since it is independent of S).
In order to achieve this message splitting, we take the set

of messages and create a partition (denoted by P). For this
example, we choose the partition of W = {1, 2, . . . , 8} as
P = {P1,P2}, where P1 = {1, 2, 3, 4} and P2 = {5, 6, 7, 8}.
Any message W ∈ W is then represented as follows: W (P)

1 =

`, if W ∈ P`, i.e., W (P)
1 represents the partition subset in

which the message W falls. W (P)
2 represents the index of the

message within the partition subset P`. As an example, the
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message W = 7 is represented as W = 7 = (2, 3). The main
constraint in choosing the partition P is that the resulting sub-
message W

(P )
1 should be independent of the latent variable

S. For this example, the proposed partition P = {P1,P2}
satisfies this constraint, which can be readily checked by
verifying that P (S = si|W (P)

1 = `) = P (S = si) for all
i = 1, . . . , 4, and all ` = 1, 2. One can then optimize over all
such partitions (such that the message W (P)

1 is independent
of S) to yield the largest achievable rate for the LV-WTC.
Building upon this intuition, we present our main result in the
next section.

B. General Scheme for LV-WTC

In this section, we present an achievable scheme satisfying
the reliability (1) and secrecy (2) for the general LV-WTC
problem. To this end, we first define the capacity region of the
WTC with partial secrecy (PS-WTC) as depicted in Fig. 3. For
this problem, Alice wishes to transmit two messages (W1,W2)
to an intended receiver (Bob), while ensuring secrecy con-
straint only on W2 at Eve, i.e., we require I(W2;Z

n)/n→ 0
as n→∞. The capacity region of PS-WTC is given next.

Proposition 1. (PS-WTC Capacity Region): The capacity
region for the PS-WTC problem (denoted by C(CP )

WTC) is

C(PS)
WTC = (4)

⋃
PUPV |UPX|V

(R1, R2) :

R1 ≤ I(U ;Y )

R2 ≤ I(V ;Y |U)− I(V ;Z|U)

R1 +R2 ≤ I(V ;Y )− I(V ;Z|U)

 ,

where U → V → X → (Y,Z) and R1 and R2 are
respective transmission rates for the public and secret message
components W1 and W2.

Here, we summarize the achievability of Proposition 1. De-
tailed achievability and converse proofs can be obtained from
a direct generalization of the conventional wiretap coding,
e.g., [2], [10]–[12]. Consider a superposition coding using
the auxiliary random variables U (distributed as PU ) and V
(generated from U according to transition probability PV |U ),
which respectively represent the public and secret components
of the source message, with an outer layer wiretap coding with
a randomizer of rate R̃ (which corresponds to the introduction
of a dummy message W̃ to confuse Eve about W2). This leads
to the stated below rate bounds, from which we can directly
deduce the region in (4) through elimination of the dummy
message rate R̃:

R1 ≤ I(U ;Y ) (5)

R2 + R̃ ≤ I(V ;Y |U) (6)

R1 +R2 + R̃ ≤ I(V ;Y ) (7)

R̃ ≥ I(V ;Z|U), (8)

where (5) follows from the fact that, by design of wiretap
code, Bob is able to decode W1, (6) is due to the fact that,
given U , Bob should be able to decode W2 and W̃ , (7) is the
sum of (5) and (6), and (8) follows from the coding design

Fig. 3. Wiretap channel with partial secrecy (PS-WTC).

requirement that, given U , Eve should not be able to decode
anything beyond the dummy message W̃ .

The following definition provides sufficient conditions for
a partition P to satisfy LV-WTC secrecy and decodability.

Definition 2. (Feasible Partition Set): A partition set P of W
is said to be feasible if it belongs to the set PLV of all feasible
partitions that is defined as follows:

PLV =

{
P : P = {P1,P2, . . . ,Pr},

r⋃
`=1

P` =W,

r⋂
i=1

P` = ∅,

1

|P`|
HnB` =

1

|W|
Hn1W ∀` = 1, 2, . . . , r

}
, (9)

where the |W| × 1 vector B` is defined as B`(j) = 1, if
j ∈ P` and B`(j) = 0, otherwise, and 1W is the all-one
column vector of size |W|.

Our main result is a lower bound on the capacity of the
general LV-WTC.

Theorem 1. The following rate is achievable for LV-WTC:

C
(LV )
WTC ≥ sup

P∈PLV

{
R

(P)
1 +R

(P)
2 :

(
R

(P)
1 , R

(P)
2

)
∈ C(PS)

WTC

}
,

(10)

where, for a given partition P ∈ PLV ,

R
(P)
1 , lim

n→∞

log(r)

n
and

R
(P)
2 , lim

n→∞

log(max`∈{1,2,...,r} |P`|)
n

.

From this Theorem, we remark the following.

Remark 2. On one extreme, if rank(Hn) = 1 (i.e., all
columns of Hn are identical), then S and W are inde-
pendent. In this case, the following is a valid partition:
P = {{1}, {2}, . . . , {|W|}} which satisfies (9). In this case,
R

(P)
2 = 0, and we have C(LV )

WTC = C, where C is the capacity
of the classic point-to-point channel. On the other extreme,
if rank(Hn) = |W| = 2nR, the only valid partition P
satisfying (9) is P = {{1, 2, . . . , |W|}}, which implies that
R

(P)
1 = 0, and our scheme becomes equivalent to the classical

WTC. The above can be readily proved by contradiction:
Assume there exists a partition with a set |P`| < |W|, then
the condition (9) is equivalent to the statement that some
columns of Hn are linearly dependent, directly contradict-
ing with rank(Hn) = |W|. For the intermediate cases, if
1 < rank(Hn) < 2nR, then, for a given partition P ∈ PLV ,
R

(P)
1 and R

(P)
2 are nontrivial if r and max`∈{1,2,...,r} |P`|
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grow exponentially with n, respectively. In this case, we have
CWTC < C

(LV )
WTC < C.

C. Proof of Theorem 1

Consider any P ∈ PLV . In order to prove Theorem 1, it
suffices to show that if

(
R

(P)
1 , R

(P)
2

)
∈ C(PS)

WTC , then a rate of

R
(P)
1 +R

(P)
2 is achievable for LV-WTC. We take the message

W and split it into W =
(
W

(P)
1 ,W

(P)
2

)
as follows:

W
(P)
1 = `, if W ∈ P` (11)

W
(P)
2 = m, if W = P`(m), (12)

where ` ∈ {1, 2, . . . , r}, m ∈ {1, 2, . . . , |P`|}, and P`(m)
denotes the mth element of P`. We now show that for any
P ∈ PLV , the first sub-message W (P)

1 is independent of the
latent variable S. This is equivalent to showing that, for any
i ∈ {1, 2, . . . , |S|}, ` ∈ {1, 2, . . . , r},

Pr(S = si) = Pr(S = si|W (P)
1 = `). (13)

Suppose that W =
(
W

(P)
1 ,W

(P)
2

)
∈ P`, where P` ∈ P and

P ∈ PLV . By Definition 2 of PLV , the following condition
holds:

1

|P`|
HnB` =

1

|W|
Hn1W . (14)

Thus, to prove (13), it suffices to show that the right hand side
of (14) is equivalent to the prior of S and the left hand side is
equivalent to the posterior of S. Let Pj = Pr(W = j) = 1

|W| ,
j ∈ {1, 2, . . . , |W|}, be the probability of randomly picking
the message W from W . Hence, since all messages in W are
equiprobable, we have PW = [P1, P2, . . . , P|W|]

> = 1
|W|1W .

We derive the prior distribution of S from Hn and PW as:

Pr(S = si) =

|W|∑
j=1

Pr(W = j)Pr(S = si|W = j) (15)

= Hn(i, :)PW (16)

=
1

|W|
Hn(i, :)1W , (17)

where Hn(i, :) is the ith row of Hn. Moreover, (17) equates
to stating that PS = 1

|W|Hn1W . Define a random variable L
such that L = `, if W ∈ P`, and L = 0, otherwise. We use
PW |L to denote the probability of identifying W inside P`
after W (P)

1 has been revealed to the receiver, and define it as
PW |L = 1

|P`| , if j ∈ P` and 0, otherwise. We can thus deduce
the posterior of S from (15) as follows:

Pr(S = si|W (P)
1 = `) =

∑
j∈P`

Pr(W = j)Pr(S = si|W = j)

=
1

|P`|
Hn(i, :)B`, (18)

where (18) follows from the definitions of Hn, B`, and
PW |L. Furthermore, (18) equates to stating that P

S|W (P)
1

=
1
|P`|HnB`. Therefore, the equivalence (13) directly follows.

Next, we need to show that the latent variable secrecy
constraint (2) holds. This can be inferred from the construction
of our scheme by making use of constraint (13) and invoking
the capacity region of the PS-WTC as follows:

I(S;Zn) ≤ I
(
S;Zn,W

(P)
1

)
(19)

= I
(
S;W

(P)
1

)
+ I

(
S;Zn|W (P)

1

)
(20)

= I
(
S;Zn|W (P)

1

)
(21)

≤ I
(
S,W

(P)
2 ;Zn|W (P)

1

)
(22)

= I
(
W

(P)
2 ;Zn|W (P)

1

)
+ I

(
S;Zn|W (P)

1 ,W
(P)
2

)
(23)

= I
(
W

(P)
2 ;Zn|W (P)

1

)
(24)

≤ nε, (25)

where (19) follows from the fact that introducing a new
random variable Zn cannot reduce the mutual information,
(20) is due to the chain rule of mutual information, and (21) is
due to the fact that S is independent of W (P)

1 as proven in (13).
Equation (22) follows from the fact that introducing a new
random variable W (P)

2 cannot reduce the mutual information,
(23) follows from the the chain rule of mutual information,
whereas (24) follows from the fact that S is independent of
Zn given W

(P)
1 and W

(P)
2 , according to the Markov chain

S →
(
W

(P)
1 ,W

(P)
2

)
→ Zn. To prove step (25) and complete

the proof, it suffices to design a partial secrecy scheme that
allows Bob to decode

(
W

(P)
1 ,W

(P)
2

)
, whereas the message

W
(P)
2 must be kept secret from Eve. This directly follows from

Proposition 1. Therefore, if
(
R

(P)
1 , R

(P)
2

)
∈ C(PS)

WTC , then the

sum rate R(P)
1 + R

(P)
2 is achievable for partition P ∈ PLV .

Optimizing over all partitions in PLV leads to Theorem 1. �

D. Achievable Rate for a Special Class of Hn

In this section, we provide an example to further highlight
key ideas behind Theorem 1. First, we consider the case where
the columns of Hn can be partitioned into exclusive groups
with equal cardinality along with specified linear independence
properties. Then, we evaluate the corresponding numerical
rate when the channels PY |X and PZ|X are binary symmetric
channels (BSCs) with specified crossover probabilities.

Example 2. Consider the |S| × |W| matrix Hn relating the
latent variable S ∈ S = {s1, s2, . . . , s|S|} to the message
W ∈ W = {1, 2, . . . , 2nR}. For the current example, we focus
on the class of matrices Hn satisfying the following properties:
(i) The |W| columns of Hn can be partitioned into |G|
exclusive groups G1,G2, . . . ,G|G| with equal cardinality. That
is
⋂G
q=1 |Gq| = ∅,

⋃|G|
q=1 |Gq| = |W|, and |G1| = |G2| = · · · =

|G|G||. (ii) All |Gq| columns in Gq , for q ∈ {1, 2, . . . , |G|}, are
equal to an |S| × 1 unique vector Vq , for q ∈ {1, 2, . . . , |G|}
such that |G| ≤ |S| and the vectors V1, V2, . . . , V|G| are linearly
independent. Here, we assume that |G| = 2nRg such that |W|
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Fig. 4. Achievable rate Rach as a function of Rg under the proposed LV-
WTC scheme for an Hn whose columns are partitioned into |G| = 2nRg

exclusive groups with equal cardinality. When Hn is full column rank, Rg

increases and Rach approaches CWTC , whereas when it is of rank one, Rg

decreases and Rach approaches C.

is divisible by |G|. Our goal is to characterize the achievable
rate under the proposed scheme for partition P ∈ PLV .

Since there are |G| independent columns in the considered
matrix Hn, we get that the largest partition subset P` ∈ P ,
` ∈ {1, 2, . . . , r}, is of cardinality |G|. This is done by picking
a single column vector (or its corresponding message thereof)
from each of the |G| groups in order to satisfy the latent
variable constraint (13). Thus, by Theorem 1, we obtain:

R
(P )
1 = lim

n→∞

log(r)

n
= lim
n→∞

log
(

2nR

2nRg

)
n

= R−Rg.

R
(P )
2 = lim

n→∞

log(max` |P`|)
n

= lim
n→∞

log(2nRg )

n
= Rg.

An example matrix satisfying the above structure can be
obtained from the following. Consider the case when the latent
variable S is a deterministic function of the message W and
denote this as S = µ(W ). Thus, by definition of Hn, we get
that Pr(S = si|W = j) = 1, if µ(j) = si and 0, otherwise,
for all i ∈ S = {s1, s2, . . . , s|S|}, j ∈ W = {1, 2, . . . , 2nR} .
In this case, all columns of Hn are |S|×1 vectors which take
values from the set of vectors of the form {~e1, ~e2, . . . , ~e|S|},
i.e., each vector ~ei, i ∈ {1, 2, . . . , |S|}, takes value 1 in the
ith position, and 0 elsewhere. If we additionally assume that
S is uniformly distributed over S = {s1, s2, . . . , s|S|}, we can
follow the same analogy as the above and partition the columns
of Hn into |G| = |S| exclusive groups with equal cardinality
such that all |Gi| columns in group Gi, for i ∈ {1, 2, . . . , |S|},
are equal to an |S|×1 unique vector ~ei, for i ∈ {1, 2, . . . , |S|}.
Since there are |S| independent columns in this new matrix,
then the largest subset P` ∈ P , for P ∈ PLV is of size |S|,
which, by Theorem 1, leads to the following rates:

R
(P )
1 = lim

n→∞

log(r)

n
= lim
n→∞

nR− log |S|
n

= R− lim
n→∞

H(S)

n
= R−RS .

R
(P )
2 = lim

n→∞

log(max` |P`|)
n

= lim
n→∞

log(|S|)
n

= lim
n→∞

H(S)

n
= RS .

Thus, Rg becomes equal to the rate RS , limn→∞
H(S)
n . By

definition, log(|S|) = H(S) when S is uniform over S.
Recall that, according to Theorem 1, an achievable rate pair(
R

(P )
1 , R

(P )
1

)
belongs to the capacity region C(PS)

WTC of the PS-
WTC as given by Proposition 1. Thus, by substitution into (4):

R−Rg ≤ I(U ;Y )

Rg ≤ I(V ;Y |U)− I(V ;Z|U)

R ≤ I(V ;Y )− I(V ;Z|U).

(26)

From (26), we obtain the the following bound:

R ≤ max
U→V→X→(Y,Z)

min{Rg + I(U ;Y ),

I(V ;Y )− I(V ;Z|U)} (27)
such that Rg ≤ I(V ;Y |U)− I(V ;Z|U). (28)

Assume that X = Y = Z = {0, 1} and that PY |X and PZ|X
are BSCs with crossover probabilities ε1 and ε2, where ε1 < ε2
(hence the channel is degraded in Alice’s favor). Moreover, let
U be Bernoulli distributed and V = X . Hence, by applying
(27), we write the achievable rate Rach for the BSC model as

Rach = max
0≤α≤1

min{Rg + h(α ? ε1),

1− h(ε1)− h(α ? ε1 ? ε2) + h(ε1 ? ε2)} (29)
s.t. Rg ≤ h(α ? ε1)− h(ε1)− h(α ? ε1 ? ε2) + h(ε1 ? ε2),

where a ? b ∆
= a(1 − b) + b(1 − a) for 0 ≤ (a, b) ≤ 1 and

h(a)
∆
= −a log a− (1− a) log(1− a).

Fig. 4 depicts the achievable rate Rach (in bits per second)
as a function of Rg (in bits per second) for the crossover proba-
bilities ε1 = 0.3 and ε2 = 0.4. It also shows that the achievable
rate approaches the capacity C of the (nonsecure) point-to-
point channel as Rg gets closer to zero, which occurs when
all the columns of Hn are linearly dependent (hence S and W
are independent). Moreover, it shows that Rach approaches the
capacity CWTC of the WTC as Rg increases, which occurs
when all columns of Hn are linearly independent.

IV. CONCLUSION

In this paper, we introduced and studied the LV-WTC
problem, where the transmitter wants to send the information
message W to the intended receiver while keeping the latent
variable S (which contains its salient attributes) secret from
the eavesdropper. We proposed an achievable scheme which
is based on message set partition and seeks to exploit the
structure of the conditional distribution PS|W . We focused on
the case where the alphabet of S grows with the transmis-
sion blocklength n. Various interesting research trajectories
arise from the LV-WTC problem–including finding the exact
secrecy capacity of the proposed model and its extension to
multi-antenna and multi-user networks. In our future work,
we also intend to look at the case when |S| grows sub-
exponentially with n or does not depend on n at all.
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