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Abstract—This paper considers the information bottleneck
(IB) problem of a Rayleigh fading multiple-input multiple-
out (MIMO) channel. Due to the bottleneck constraint, it is
impossible for the oblivious relay to inform the destination node
of the perfect channel state information (CSI) in each channel
realization. To evaluate the bottleneck rate, we provide an upper
bound by assuming that the destination node can get the perfect
CSI at no cost and two achievable schemes with simple symbol-
by-symbol relay processing and compression. Numerical results
show that the lower bounds obtained by the proposed achievable
schemes can come close to the upper bound on a wide range of
relevant system parameters.

Index Terms—information bottleneck (IB), oblivious relay,
Rayleigh fading, source coding, quantization.

I. INTRODUCTION

For a Markov chain X → Y → Z and an assigned
joint probability distribution pX,Y , consider the following
information bottleneck (IB) problem

max
pZ|Y

I(X;Z) (1a)

s.t. I(Y ;Z) ≤ C, (1b)

where C is the bottleneck constraint parameter and the
optimization is with respect to the conditional probability
distribution pZ|Y of Z given Y . Formulation (1) was intro-
duced by Tishby in [1], and has been used to interpret the
behavior of deep learning neural networks [2]. From a more
fundamental information theoretic viewpoint, the IB arises
from the classical remote source coding problem [3], [4] under
logarithmic distortion [5].

An interesting application of the IB problem in communi-
cations consists of a source node, an oblivious relay, and a
destination node, which is connected to the relay via an error-
free link with capacity C. The source node sends codewords
over a communication channel and an observation is made at
the relay. X and Y are respectively the channel input from
the source node and output at the relay. The relay is oblivious
in the sense that it cannot decode the information message of
the source node itself. This feature can be modeled rigorously
by assuming that the source and destination nodes make use
of a codebook selected at random over a library, while the
relay is unaware of such random selection. For example, in a
cloud radio access network (C-RAN), each remote radio head
(RRH) acts as a relay and is usually constrained to implement
only radio functionalities while the baseband functionalities

are migrated to the cloud central processor, particularly as the
network size gets large [6].

Due to the oblivious feature, the relaying strategies which
require the codebooks to be known at the relay, e.g., decode-
and-forward, compute-and-forward, etc. [7]–[9] cannot be
applied. Instead, the relay has to perform oblivious processing,
i.e., employ strategies in forms of compress-and-forward [10]–
[13]. In particular, the relay must treat X as a random process,
produce some useful representation Z, and convey it to the
destination node subject to the link constraint C. Then, it
makes sense to find Z such that I(X;Z) is maximized.

The IB problem for this kind of communication scenario
has been studied in [14]–[17]. In [14], the IB method was
applied to reduce the fronthaul data rate of a C-RAN network.
References [15] and [16] respectively considered Gaussian
scalar and vector channels with IB constraint, and investigated
the optimal trade-off between the compression rate and the
relevant information. However, all references [14], [15], and
[16] considered block fading channels, and assumed that the
perfect channel state information (CSI) was known at both
the relay and the destination node. In [17], the IB problem
of a scalar Rayleigh fading channel was studied. Due to the
bottleneck constraint, it is impossible to inform the destination
node of the perfect CSI in each channel realization. An upper
bound and two achievable schemes were provided in [17].

In this paper, we extend the work in [17] to the multiple-
input multiple-out (MIMO) channel with independent and
identically distributed (i.i.d.) Rayleigh fading. To evaluate the
bottleneck rate, we first obtain an upper bound by assuming
that the channel matrix is also known at the destination node
with no cost. Then, we provide two achievable schemes where
the first scheme transmits the compressed noisy signal as well
as the quantized noise levels to the destination node, while
the second scheme only transmits a compressed estimate.
Numerical results show that with simple symbol-by-symbol
relay processing and compression, the lower bounds obtained
by the proposed achievable schemes can come close to the
upper bound on a wide range of relevant system parameters.

II. PROBLEM FORMULATION

We consider a system with a source node, an oblivious relay,
and a destination node. For convenience, we call the source-
relay channel, ‘Channel 1’, and the relay-destination channel,
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‘Channel 2’. For Channel 1, we consider the following Gaus-
sian MIMO channel with i.i.d. Rayleigh fading

y = Hx+ n, (2)

where x ∈ CK×1 and n ∈ CM×1 are respectively zero-
mean circularly symmetric complex Gaussian input and noise
with covariance matrices IK and σ2IM , i.e., x ∼ CN (0, IK)
and n ∼ CN (0, σ2IM ). H ∈ CM×K is a random matrix
independent of both x and n, and the elements of H are i.i.d.
zero-mean unit-variance complex Gaussian random variables,
i.e., H ∼ CN (0, IK ⊗ IM ). Let ρ = 1

σ2 denote the signal-to-
noise ratio (SNR). Let z denote a useful representation of y
produced by the relay for the destination node. x → (y,H) →
z thus forms a Markov chain. We assume that the relay node
has a direct observation of the channel matrix H , while the
destination node does not. Then, we consider the following IB
problem

max
p(z|y,H)

I(x; z) (3a)

s.t. I(y,H; z) ≤ C, (3b)

where C is the bottleneck constraint, i.e., the link capacity
of Channel 2. In this paper, we call I(x; z) the bottleneck
rate and I(y,H; z) the compression rate. Obviously, for a
joint probability distribution p(x,y,H) determined by (2),
problem (3) is a slightly augmented version of IB problem
(1). In our problem, we aim to find a conditional distribution
p(z|y,H) such that bottleneck constraint (3b) is satisfied and
the bottleneck rate is maximized, i.e., as much as information
of x can be extracted from representation z.

III. INFORMED RECEIVER UPPER BOUND

As stated in [17], an obvious upper bound to problem (3)
can be obtained by letting both the relay and the destination
node know the channel matrix H . We call the bound in this
case the informed receiver upper bound. The IB problem in
this case takes on the following form

max
p(z|y,H)

I(x; z|H) (4a)

s.t. I(y; z|H) ≤ C. (4b)

From the definition of H in (2), it is known that when
K ≤ M (resp., when K > M ), HHH (resp., HHH )
is a central complex Wishart matrix with M (resp., K)
degrees of freedom and covariance matrix IK (resp., IM ), i.e.,
HHH ∼ CWK(M, IK) (resp., HHH ∼ CWM (K, IM ))
[18]. Let λ denote the unordered positive eigenvalue of HHH
or HHH . Its probability density function (pdf) is then given
by [18, Theorem 2.17], [19]

fλ(λ) =
1

T

T−1∑
i=0

i!

(i+ S − T )!

[
LS−T
i (λ)

]2
λS−T e−λ, (5)

where T = min{K,M}, S = max{K,M}, and the Laguerre
polynomials are

LS−T
i (λ) =

eλ

i!λS−T

di

dλi

(
e−λλS−T+i

)
. (6)

In [15], the IB problem for a scalar Gaussian channel with
block fading has been studied. In the following theorem, we
show that for the considered MIMO channel with Rayleigh
fading, (4) can be decomposed into a set of parallel scalar
IB problems, and the informed receiver upper bound can be
obtained based on the result in [15].

Theorem 1. For the considered MIMO channel with Rayleigh
fading, the informed receiver upper bound is

Rub = T

∫ ∞

ν
ρ

[log (1 + ρλ)− log(1 + ν)] fλ(λ)dλ, (7)

where ν is chosen such that the following bottleneck constraint
is met ∫ ∞

ν
ρ

(
log

ρλ

ν

)
fλ(λ)dλ =

C

T
. (8)

Lemma 1. When M → +∞ or ρ → +∞, upper bound Rub

tends asymptotically to C. When C → +∞, Rub approaches
the capacity of Channel 1, i.e.,

Rub → I(x;y,H)

= T

∫ ∞

0

log (1 + ρλ) fλ(λ)dλ. (9)

IV. ACHIEVABLE SCHEMES

In this section, we provide two achievable schemes where
each scheme satisfies the bottleneck constraint and gives a
lower bound to the bottleneck rate.

A. Quantized channel inversion (QCI) scheme when K ≤ M

In our first achievable scheme, the relay first gets an estimate
of the channel input using channel inversion and then transmits
the quantized noise levels as well as the compressed noisy
signal to the destination node.

In particular, we apply the pseudo inverse matrix of H , i.e.,
(HHH)−1HH , to y, and get the zero-forcing estimate of x
as follows

x̃ = (HHH)−1HHy

= x+ (HHH)−1HHn

, x+ ñ. (10)

For a given channel matrix H , ñ ∼ CN (0,A), where
A = σ2(HHH)−1. Let A = A1 + A2, where A1 and A2

respectively consist of the diagonal and off-diagonal elements
of A, i.e., A1 = A⊙IK and A2 = A−A1. If H can be per-
fectly transmitted to the destination node, the bottleneck rate
could be obtained by following similar steps in Appendix A in
[20]. However, since H follows a non-degenerate continuous
distribution and the bottleneck constraint is finite, this is not
possible. To reduce the number of bits per channel use required
for informing the destination node of the channel information,
we only convey a compressed version of A1 and consider a
set of independent scalar Gaussian sub-channels.

Specifically, we force each diagonal entry of A1 to belong
to a finite set of quantized levels by adding artificial noise,
i.e., by introducing physical degradation. We fix a finite grid
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of J positive quantization points B = {b1, · · · , bJ}, where
b1 ≤ b2 ≤ · · · ≤ bJ−1 < bJ , bJ = +∞, and define the
following ceiling operation⌈

a
⌉
B = argmin

b∈B
{a ≤ b}. (11)

Then, by adding a Gaussian noise vector ñ′ ∼ CN (0,
diag

{⌈
a1
⌉
B − a1, · · · ,

⌈
aK
⌉
B − aK

})
, which is independent

of everything else, to (10), a degraded version of x̃ can be
obtained as follows

x̂ = x̃+ ñ′

= x+ ñ+ ñ′

, x+ n̂, (12)

where n̂ ∼ CN (0,A′
1 +A2) for a given H and A′

1 ,
diag

{⌈
a1
⌉
B, · · · ,

⌈
aK
⌉
B

}
. Obviously, due to A2, the ele-

ments in noise vector n̂ are correlated.
To evaluate the bottleneck rate, we consider a new variable

x̂g = x+ n̂g, (13)

where n̂g ∼ CN (0,A′
1). Obviously, (13) can be seen as K

parallel scalar Gaussian sub-channels with noise power
⌈
ak
⌉
B

for each sub-channel. Since each quantized noise level
⌈
ak
⌉
B

only has J possible values, it is possible for the relay to
inform the destination node of the channel information via
the constrained link. Note that from the definition of A in
(10), it is known that ak, ∀ k ∈ K , {1, · · · ,K} are
correlated. The quantized noise levels

⌈
ak
⌉
B, ∀ k ∈ K are

thus also correlated. Hence, we can jointly source-encode⌈
ak
⌉
B, ∀ k ∈ K to further reduce the number of bits used

for CSI feedback. However, since the joint entropy of the
quantization indices is difficult to obtain (even numerically,
since it is a discrete joint distribution over JK possible values),
in this work we consider the (slightly) suboptimal, but far more
practical, entropy coding of each sub-channel quantization
index separately. The resulting optimization problem becomes

max
p(ẑg|x̂g)

I(x; ẑg|A′
1) (14a)

s.t. I(x̂g; ẑg|A′
1) ≤ C −

K∑
k=1

Hk, (14b)

where Hk denotes the entropy of
⌈
ak
⌉
B. Since we as-

sume K ≤ M in this subsection, as stated in Section III,
HHH ∼ CWK(M, IK). The matrix (HHH)−1 thus follows
a complex inverse Wishart distribution and ak, ∀k ∈ K are
marginally identically inverse chi squared distributed with
M − K + 1 degrees of freedom [21]. Let a denote a new
variable with the same distribution as ak. Its pdf is given by 1

fa(a) =
(2/σ2)−(M−K+1)/2

Γ
(
M−K+1

2

) a−(M−K+1)/2−1e−σ2/(2a).

(15)

1In Appendix C of the long version of this paper, i.e., [20], we provide
more details about the derivation of this pdf.

Then, Hk = H0 , −
∑J

j=1 Pj logPj , where the probability
mass function (pmf) Pj can be calculated as follows

Pj = Pr
{⌈

a
⌉
B = bj

}
= Pr {bj−1 < a ≤ bj}

=

∫ bj

bj−1

fa(a)da. (16)

In the following theorem, we give a lower bound to the
bottleneck rate by solving IB problem (14).

Theorem 2. If A′
1 is conveyed to the destination node for each

channel realization, by solving IB problem (14), the following
lower bound to the bottleneck rate can be obtained

Rlb1 =
J−1∑
j=1

KPj

[
log (1 + ρj)− log(1 + ρj2

−cj )
]
. (17)

where ρj =
1
bj

, cj =
[
log

ρj

ν

]+
, and ν is chosen such that the

following bottleneck constraint is met

J−1∑
j=1

KPjcj = C −KH0. (18)

Since (13) can be seen as K parallel scalar Gaussian sub-
channels, according to [15, (16)], the representation of x̂g,
i.e., ẑg, can be constructed by adding independent fading and
Gaussian noise to each element of x̂g. Denote

ẑg = Φx̂g + n̂′
g

= Φx+Φn̂g + n̂′
g, (19)

where Φ is a diagonal matrix with positive and real diagonal
entries, and n̂′

g ∼ CN (0, IK). Note that x̂g in (13) and its
representation ẑg in (19) are only auxiliary variables. What
we are really interested in is the representation of x̂ and the
corresponding bottleneck rate. Hence, we also add fading Φ
and Gaussian noise n̂′

g to x̂ in (12) and get its representation
as follows

z = Φx̂+ n̂′
g

= Φx+Φn̂+ n̂′
g. (20)

In the following lemma we show that by transmitting quantized
noise levels

⌈
ak
⌉
B, ∀k ∈ K and representation z to the

destination node, Rlb1 is an achievable lower bound to the
bottleneck rate and the bottleneck constraint is satisfied.

Lemma 2. If A′
1 is forwarded to the destination node for each

channel realization, with signal vectors x̂ and x̂g in (12) and
(13), and their representations z and ẑg in (20) and (19), we
have

I(x̂; z|A′
1) ≤ I(x̂g; ẑg|A′

1), (21)
I(x; z|A′

1) ≥ I(x; ẑg|A′
1), (22)

where (21) indicates that I(x̂; z|A′
1) ≤ C − KH0 and (22)

gives I(x; z|A′
1) ≥ Rlb1.
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Lemma 3. When M → +∞ or ρ → +∞, we can always
find a sequence of quantization points B = {b1, · · · , bJ} such
that Rlb1 → C. When C → +∞,

Rlb1 → KE
[
log

(
1 +

1

a

)]
≤ I(x;y,H), (23)

where the expectation can be calculated by using the pdf of a
in (15) and I(x;y,H) is the capacity of Channel 1.

For the sake of simplicity, we may choose the quantization
levels as quantiles such that we obtain the uniform pmf Pj =
1
J . The lower bound (17) can thus be simplified as

Rlb1 =

J−1∑
j=1

K

J

[
log (1 + ρj)− log(1 + ρj2

−cj )
]
, (24)

and the bottleneck constraint (18) becomes
J−1∑
j=1

[
log

ρj
ν

]+
=

JC

K
− JB, (25)

where B = log J can be seen as the number of bits required
for quantizing each diagonal entry of A1. Since ρ1 ≥ · · · ≥
ρJ−1, from the strict convexity of the problem, we know that
there must exist a unique integer 1 ≤ l ≤ J − 1 such that

l∑
j=1

log
ρj
ν

=
JC

K
− JB,

ρj ≤ ν, ∀ l + 1 ≤ j ≤ J − 1. (26)

Hence, ν can be obtained from

log ν =

l∑
j=1

log ρj
l

− JC

lK
+

JB

l
, (27)

and Rlb1 can be calculated as follows

Rlb1 =

l∑
j=1

K

J
[log (1 + ρj)− log(1 + ν)] . (28)

Then, we only need to test the above condition for l =
1, 2, 3, · · · till (26) is satisfied. Note that to ensure Rlb1 > 0,
JC
K − JB in (25) has to be positive, i.e., B < C

K . Moreover,
though choosing the quantization levels as quantiles makes
it easier to calculate Rlb1, the results in Lemma 3 may not
hold in this case since the choice of quantization points
B = {b1, · · · , bJ} is restricted.

B. MMSE estimate at the relay
In the second achievable scheme, we assume that the relay

first produces the MMSE estimate of x given (y,H), and then
source-encode this estimate.

Denote
F =

(
HHH + σ2IM

)−1
H. (29)

The MMSE estimate of x is thus given by

x̄ = FHy

= FHHx+ FHn. (30)

Then, we consider the following modified IB problem

max
p(z|x̄)

I(x; z) (31a)

s.t. I(x̄; z) ≤ C. (31b)

Note that since matrix HHH + σ2IK in (29) is always
invertible, the results obtained in this subsection always hold
no matter K ≤ M or K > M .

To evaluate the bottleneck rate I(x; z), we define an aux-
iliary Gaussian vector x̄g ∼ CN

(
0,E

[
x̄x̄H

])
, let z̄g denote

its representation, and choose p(z|x̄) as well as p(z̄g|x̄g) to
be conditionally Gaussian distribution, i.e.,

z = x̄+ q,

z̄g = x̄g + q, (32)

where q ∼ CN (0, DIK) is independent of everything else.
Let

I(x̄g; z̄g) = log det

(
IK +

E
[
x̄x̄H

]
D

)
= C. (33)

Then, rate I(x̄g; z̄g) is achievable and D can be calculated
from (33). Since I(x̄; z) ≤ I(x̄g; z̄g), I(x̄; z) is thus also
achievable.

In the following, we obtain a lower bound to I(x; z) by
evaluating h(z|H) and h(z|x) separately, and then using

I(x;z) =h(z)− h(z|x)
≥h(z|H)− h(z|x). (34)

First, since z is conditionally Gaussian given H , we have

h(z|H)=E
[
log(πe)K det

(
FHHHHF+σ2FHF+DIK

)]
.

(35)
Next, using the fact that conditioning reduces entropy and
Gaussian distribution maximizes the entropy over all distri-
butions with the same variance [22, Theorem 8.6.5], we have

h(z|x) = h (z − E(z|x)|x)
= h

((
FHH − E

[
FHH

])
x+ FHn+ q|x

)
≤ h

((
FHH − E

[
FHH

])
x+ FHn+ q

)
≤ log(πe)K det(G), (36)

where

G = E
[(
FHH − E

[
FHH

]) (
HHF − E

[
HHF

])
+σ2FHF

]
+DIK

= E
[
FHHHHF

]
− E

[
FHH

]
E
[
HHF

]
+ σ2E

[
FHF

]
+DIK . (37)

Combining (34), (35), and (36), we can get a lower bound to
I(x; z) as shown in the following theorem.
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Theorem 3. With MMSE estimate at the relay, a lower bound
to I(x; z) can be obtained as follows

Rlb2 = TE [log (ϑ+D)] + (K − T ) logD

−K log

{
T

K
E [ϑ]− T 2

K2
(E [ϑ])

2
+D

}
, (38)

where ϑ = λ
λ+σ2 , λ is defined in Section III,

D =
T
KE [ϑ]

2
C
K − 1

, (39)

and the expectations can be calculated by using pdf (5).

Lemma 4. When M → +∞ or when K ≤ M and ρ → +∞,
lower bound Rlb2 tends asymptotically to C. When K ≤ M
and C → +∞,

Rlb2 → KE [log (ϑ)]−K log
{
E [ϑ]− (E [ϑ])

2
}
. (40)

V. NUMERICAL RESULTS

In this section, we investigate the lower bounds obtained by
the proposed achievable schemes and compare them with the
upper bound. When performing the QCI scheme, we choose
the quantization levels as quantiles for the sake of convenience.

In Fig. 1, the upper and lower bounds are depicted versus
SNR ρ. It can be found that when ρ is small and 4 or 8
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Fig. 3. Upper and lower bounds to the bottleneck rate versus M with K = 2,
ρ = 40dB, and C = 40 bits/complex dimension.

bits are applied to quantize the noise levels, the QCI scheme
outperforms the MMSE scheme. As ρ grows large, Rlb2

obtained by the MMSE scheme approaches C and is larger
than Rlb1. This is because when ρ is small, the bottleneck
rate is mainly limited by the capacity of channel 1, and the
QCI scheme works well in this case since partial CSI, i.e., the
noise level of each sub-channel, is conveyed to the destination
node. When ρ is large, the MMSE scheme can get an accurate
estimate and it does not require CSI feedback. The MMSE
scheme thus performs better when ρ is large.

The effect of the bottleneck constraint C is investigated in
Fig. 2. It can be found that as C increases, all bounds grow and
converge to different constants, which can be calculated based
on Lemma 1, Lemma 3, and Lemma 4, respectively. Fig. 2
also shows Rlb2 virtually achieves the upper bound when C
is small, while when C is large, the QCI scheme outperforms
the MMSE scheme thanks to CSI feedback.

Fig. 3 depicts the bounds versus the number of relay
antennas M . As M increases, Rlb2 quickly approaches Rub.
It is also shown that the result for the limit case in Lemma 3,
i.e., when M → +∞, we can always find suitable quantization
points B = {b1, · · · , bJ} such that Rlb1 → C, does not hold
here. This is because when performing the QCI scheme, we
choose the quantization levels as quantiles. The choice of
quantization points B = {b1, · · · , bJ} is thus restricted.

VI. CONCLUSIONS

This work extends the IB problem of the scalar case in
[17] to the case of MIMO Rayleigh fading channels. Due
to the information bottleneck constraint, the destination node
cannot get the perfect CSI from the relay. Our results show
that with simple symbol-by-symbol oblivious relay processing
and compression, we can get bottleneck rate close to the upper
bound on a wide range of relevant system parameters.
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[18] A. M. Tulino, S. Verdú et al., Random matrix theory and wireless
communications. Now Publishers, 2004.

[19] E. Telatar, “Capacity of multi-antenna gaussian channels,” Europ. Trans.
Telecommun., vol. 10, no. 6, pp. 585–595, Nov.-Dec. 1999.

[20] H. Xu, T. Yang, G. Caire, and S. S. Shitz, “Information bottleneck for an
oblivious relay with channel state information: the vector case,” https:
//arxiv.org/abs/2101.09790, Jan. 2021.

[21] L. E. Brennan and I. S. Reed, “An adaptive array signal processing
algorithm for communications,” IEEE Trans. Aerosp. Electron. Syst.,
no. 1, pp. 124–130, Jan. 1982.

[22] T. M. Cover and J. A. Thomas, Elements of information theory. John
Wiley & Sons, 2012.

2488
Authorized licensed use limited to: Technion Israel Institute of Technology. Downloaded on October 14,2021 at 10:25:15 UTC from IEEE Xplore.  Restrictions apply. 


