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Abstract—Consider the conditional mean estimator of the
random variable X from the noisy observation Y = X + N
where N is zero mean Gaussian with variance σ2 (i.e., E[X|Y ]).
This work characterizes the probability distribution of E[X|Y ].
As part of the proof, several new identities and results are
shown. For example, it is shown that the k-th derivative of
the conditional expectation is proportional to the (k + 1)-th
conditional cumulant. It is also shown that the compositional
inverse of the conditional expectation is well-defined and is
characterized in terms of a power series.

Index Terms—Conditional mean estimator, Gaussian Noise.

A full version of this paper is accessible at [1].

I. INTRODUCTION

Consider a setting in which a random variable X is
observed through an additive Gaussian noise channel

Y = X +N, (1)

where N ∼ N (0, σ2) and is independent of X . Throughout
the paper, σ2 is assumed to be positive, and we make no
assumptions about X other than E[X2] <∞.

It is well-known that the optimal minimum mean squared
error (MMSE) estimator of X from the observation Y is
given by the conditional expectation

X̂(Y ) = E[X|Y ] =

∫
XdPX|Y . (2)

The quantity E[X|Y ], which is a random variable, has a wide
range of applications in probability, statistics and information
theory. The goal of this work is to study the distribution of
the conditional expectation under the Gaussian noise setting.
The distribution of a given estimator typically contains more
information than measures like variance and is more useful.
For example, such a distribution can be used to obtain
confidence intervals. The difficulty of finding the distribution
X̂(Y ) lies in the fact that the conditional expectation seldom
has a closed-form expression.

The distribution of X̂(Y ) is closely related to PX and
PX|Y . However, while the distributions PX or PX|Y can
be arbitrary (discrete, continuous or singular), the random
variable X̂(Y ) is always continuous. This follows from the
fact that Y is a continuous random variable, and, as will be
shown in what follows, the fact that the function y 7→ X̂(y)
is real-analytic.
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Our starting place for finding the distribution of X̂(Y )
is the following well-known change of variable formulas:
for the random variable V with the cumulative distribution
function (cdf) FV and the probability density function (pdf)
fV , let W = g(V ), then

FW (w) = FV (g−1(w)), (3)

fW (w) = fV (g−1(w))

∣∣∣∣ d

dw
g−1(w)

∣∣∣∣ , (4)

where g−1 the inverse of g. Assuming that these transforma-
tion apply to our setting, we arrive at

FX̂(x) = FY (X̂−1(x)), (5)

fX̂(x) = fY

(
X̂−1(x)

) ∣∣∣∣ d

dx
X̂−1(x)

∣∣∣∣ , (6)

where X̂−1(x) is the inverse of X̂(y) = E[X|Y = y], and
FY and fY are the cdf and the pdf of Y , respectively. It
is important to note that the function y 7→ X̂(y) (and the
inverse X̂−1) depends on the joint distribution PXY .

The program for the rest of the paper is the following.
First, we need to demonstrate that X̂−1(x) exists and is
differentiable. Second, we need to provide a non-trivial
expression for the inverse X̂−1(x). This will enable the
application of formulas in (5) and (6).

The question of finding the distribution of E[X|Y ] is
akin to the information spectrum method [2] where the
objective is to find the distribution of the information density
ιPXY (x; y) = log dPXY

d(PX⊗PY ) (x, y). Indeed, by using the
identity

E[X|Y ] = y + σ2 d

dy
log fY (y), (7)

the derivative of the information density can be expressed as

d

dy
ιPXY (x; y) =

x− E[X|Y = y]

σ2
. (8)

In this paper, however, we do not pursue this connection.
The identity in (7) will be used several times throughout

the paper and was first derived by Robbins in [3] where
he credits Maurice Tweedie for the derivation. The vector
version of the identity in (7) was derived by Esposito in
[4]. Therefore, throughout this paper, we refer to the identity
in (7) as the Tweedie-Robbins-Esposito identity or TRE for
short.

Contribution: The contribution and the outline of the
paper are as follows:
1) Section II provides two examples for which the inverse

and the distribution of the conditional expectation can be
found in closed-form; and



2) Section III discusses connections between the conditional
expectation and the conditional cumulants. In particular,
it is shown that the k-th derivative of the conditional
expectation is proportional to the (k + 1)-th conditional
cumulant;

3) Section IV finds a power series expansion for the con-
ditional expectation. Moreover, the inverse of the con-
ditional expectation is shown to be well-defined and is
characterized in terms of a power series;

4) Section V combines the results of Section III and Sec-
tion IV and provides the characterization of the distri-
bution of X̂(Y ). The distribution of X̂(Y ) is shown
to depend on the joint distribution PXY only through
the marginal fY . Finally, several numerical examples are
shown; and

5) Section VI concludes the paper.
Notation: Deterministic quantities are denoted by low-

ercase letters and random variables are denoted by uppercase
letters. The (n, k)-th partial Bell polynomial is denoted by
Bn,k(x1, . . . , xn−k+1). The pdf and cdf of standard Gaussian
distribution is denoted by φ(x) and Φ(x), respectively.

II. EXAMPLES WITH CLOSED-FORM EXPRESSIONS FOR
THE DISTRIBUTION

In this section, we consider two example in which the
distribution of X̂(y) can be found in closed-form.

Example. Suppose that X is a standard Gaussian random
variable. Then, the conditional expectation is given by

X̂(y) =
1

1 + σ2
y, y ∈ R, (9)

and the inverse is given by

X̂−1(x) = (1 + σ2)x, x ∈ R. (10)

Then, using (6), for x ∈ R

fX̂(x) = fY
(
(1 + σ2)x

) (
1 + σ2

)
=

1√
2π 1

1+σ2

e
− x2

2 1
1+σ2 .

(11)
In other words, X̂ is Gaussian with variance 1

1+σ2 .

Example. Suppose that X uniformly distributed on {−1, 1}.
Then,

X̂(y) = tanh
( y
σ2

)
, y ∈ R (12)

and the inverse is given by

X̂−1(x) =
σ2

2
log

(
1 + x

1− x

)
, x ∈ (−1, 1). (13)

Then, from d
dxX̂

−1(x) = σ2

1−x2 , for x ∈ (−1, 1) we have
that

FX̂(x) = fY (X̂−1(x)), (14)

fX̂(x) = fY

(
X̂−1(x)

) σ2

1− x2
, (15)

where FY (y) = 1
2Φ
(
y−1
σ

)
+ 1

2Φ
(
y+1
σ

)
and fY (y) =

1
2σφ(y−1σ ) + 1

2σφ(y+1
σ ). The plot of the cdf of X̂ is given in

Fig. 1 and is compared to the cdf of X . Because as σ → 0
the pdf of X̂ starts to concentrate on 1 and −1, it is more
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Fig. 1: The cdf and the pdf of X̂ .

convenience to plot log fX̂ instead of fX̂ . The plots of the
log of the pdf of X̂ is given in Fig. 1b.

In the above examples, we had closed-form expressions for
the conditional expectation. Most likely, there other examples
for which closed-form expressions can be found. However,
in the general, we do not have such a luxury. In the next
two sections, we develop auxiliary results needed to find the
inverse and the distribution of the conditional expectation.

III. CONNECTIONS BETWEEN THE CONDITIONAL
CUMULANTS AND THE CONDITIONAL EXPECTATION

In this section, we establish an identity that connects the
conditional expectation and the conditional cumulants. To
that end, recall that the conditional cumulant generating
function is given by

KX(t|Y = y) = log
(
E[etX |Y = y]

)
, y ∈ R, t ∈ R, (16)

and the k-th conditional cumulant is given by

κX|Y=y(k) =
dk

dtk
KX(t|Y = y)

∣∣∣
t=0

, k ∈ N. (17)

Our starting place is the following general derivative
identity shown in [5, Thm. 1].

Lemma 1. Let U → X → Y form a Markov chain. Then,

σ2 d

dy
E[U |Y = y] = Cov(X,U |Y = y), y ∈ R, (18)

where the conditional covariance is given by Cov(X,U |Y =
y) = E[XU |Y = y]− E[X|Y = y]E[U |Y = y].

Using the identity in (18) we arrive at the following
relationship between the conditional cumulant generating
function and the conditional expectation.



Theorem 1. For t, y ∈ R and k ∈ N ∪ {0}

dk+1

dtk+1
KX(t|Y = y)

=σ2(k+1) dk+1

dyk+1
KX(t|Y = y)+σ2k dk

dyk
E[X|Y = y].

(19)

Proof: First, consider the case of k = 0. By setting
U = etX , t ∈ R in (18) we arrive at

d

dy
KX(t|Y = y)

=

d
dyE[etX |Y = y]

E[etX |Y = y]
(20)

=
1

σ2

E[XetX |Y = y]− E[etX |Y = y]E[X|Y = y]

E[etX |Y = y]
(21)

=
1

σ2

d
dtE[etX |Y = y]− E[etX |Y = y]E[X|Y = y]

E[etX |Y = y]
(22)

=
1

σ2

d

dt
log(E[etX |Y = y])− E[X|Y = y] (23)

=
1

σ2

(
d

dt
KX(t|Y = y)− E[X|Y = y]

)
. (24)

The rest of the proof follows by using (24) together with a
simple induction argument.

As a corollary of the above result, we arrive at the
following relationship between the conditional cumulants and
the conditional expectation.

Corollary 1. For y ∈ R and k ∈ N ∪ {0}

κX|Y=y(k + 1) = σ2k dk

dyk
E[X|Y = y]. (25)

Proof: The proof follows from an observation that
dk+1

dyk+1KX(t|Y = y)|t=0 = 0.

Remark 1. It is well-known that the cumulants and the
moments of a random variable U have a one-to-one corre-
spondence with the inverse relationship given by

κU (k) =

k∑
m=1

cmBk,m (µ1, . . . , µk−m+1) , (26)

where µm = E[Um] [6, Example 11.4]. As shown in an
extended version of this work [1], combining (26) together
with (18) leads to an alternative proof of (25).

Remark 2. From Corollary 1 we make the following two
observations:
• For k ∈ N ∪ {0}

σ2 d

dy
κX|Y=y(k + 1) = κX|Y=y(k + 2); and (27)

• Using the TRE identity in (7), we arrive at the representa-
tion of cumulants in terms of fY only

κX|Y=y(1) = y + σ2 d

dy
log fY (y), (28a)

κX|Y=y(2) = σ2 + σ4 d2

dy2
log fY (y), (28b)

κX|Y=y(k) = σ2k dk

dyk
log fY (y), k ≥ 3. (28c)

In other words, this shows that the conditional cumulants
depend on PXY only through the marginal fY .

Example. In the case when X is standard Gaussian the
conditional expectation E[X|Y = y] is a linear function of
y. Therefore, by using (25), we have that

κX|Y=y(1) =
1

1 + σ2
y, κX|Y=y(2) =

σ2

1 + σ2
, (29)

κX|Y=y(k) = 0, k ≥ 3. (30)

Note that this is as expected since PX|Y is Gaussian, and
for the Gaussian distribution only the first and the second
cumulants are non-zero.

Example. Consider X uniformly distributed on {−3, 0, 3}.
Fig. 2 shows plots of κX|Y=y vs. y for several values of k.
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Fig. 2: Plot of κX|Y=y(k) vs. y for k = 1, 2, 3 and 4.
We now show that (25) can be used to produce bounds on

the rate of growth of the conditional expectation.

Proposition 1. For y ∈ R and k ∈ N

|κX|Y=y(k)| ≤ 2k−1kkE[|X|k|Y = y] ≤ ak|y|k + bk, (31)

where

ak = kk2k−1(2max( k2−1,1) + 2), (32)

bk = kk(2max( k2−1,1)+kE
k
2 [X2] + E[|X|k]). (33)

IV. THE POWER SERIES AND THE INVERSE OF THE
CONDITIONAL EXPECTATION

In this section, we find the power series expansion of the
conditional expectation in terms of the conditional cumulants.
Furthermore, this power series representation, together with
the Lagrange inversion theorem, will lead to a representation
of the inverse of the conditional expectation.

A. A Power Series Expansion of E[X|Y = y]

The fact that a power series expansion exists follows from
the next result.

Lemma 2. The functions y → E[X|Y = y] is real-analytic.

Proof: Note that by the TRE identity in (7)

E[X|Y = y] = y + σ2
d
dyfY (y)

fY (y)
. (34)

Hence, since the ratios and sums of analytic functions are
analytic, E[X|Y = y] is analytic provided that fY (y) is
analytic. The analyticity of fY is a known consequence of
convolution with Gaussian measures (see e.g., [7]).



Before studying the Taylor series of the conditional expec-
tation, it is instructive to consider the following example.

Example. For X uniformly distributed on {−1, 1}

E[X|Y = y] = tanh
( y
σ2

)
.

By using the Taylor series of tanh around zero, we have that

E[X|Y = y] =

∞∑
k=1

22k(22k − 1)b2k
(2k)!

( y
σ2

)2k−1
, |y| < σ2π

2
,

where bn is the n-the Bernoulli number.

The key observation here is that even in this simple case,
the Taylor expansion has a finite radius of convergence.
Therefore, in general, we cannot expect to get a power series
representation of E[X|Y = y] that converges for all R (i.e.,
the power series with an infinite radius of convergence).

The next result provides a power series representation for
the conditional expectation.

Theorem 2. Fix some a ∈ R. Then, for every X there exists
an rσ,a > 0 such that

E[X|Y = y]=
∞∑
k=0

κX|Y=a(k + 1)

k!σ2k
(y − a)k, |y − a| ≤ rσ,a.

(35)
In addition, if |X| ≤ A, then rσ,a ≥ σ2

2Ae .

Remark 3. It is important to note that since the conditional
cumulants can be expressed in terms of fY and derivatives
of fY (see (28)), the power series can also be expressed in
terms of fY only.

B. Inverse of the Conditional Expectation

In this section, we find the inverse of the conditional
expectation.

Lemma 3. Suppose that X is non-constant random variable.
Then, X̂(y) has a compositional inverse X̂−1. Moreover, the
inverse X̂−1 is a real-analytic function.

Proof: By choosing U = X in (18) we arrive at1

σ2 d

dy
E[X|Y = y] = Var(X|Y = y), y ∈ R. (36)

From (36) we have that X̂(y) is a strictly increasing function
for non-constant random variables. Therefore, it has a proper
inverse. The proof is concluded by using [9, Thm. 1.5.3]
which states that the inverse of an analytic function with
non-vanishing derivative is also analytic.

In order to find the inverse of the conditional expectation
we use the power series expansion of the conditional expec-
tation in Theorem 2 and the Lagrange inversion theorem [6].

Theorem 3. (Lagrange Inversion Theorem) The Taylor co-
efficients of a formal power series f−1(t) =

∑∞
n=1 bn

tn

n! ,
which is the inverse of f(t) =

∑∞
n=1 an

tn

n! , can be expressed
as a function of the Taylor coefficients of f in the following
manner:

b1=
1

a1
, (37)

1The identity in (36) is not new and was shown previously by Hatsell and
Nolte in [8].

bn= bn1

n−1∑
k=1

(−1)kn(k)Bn−1,k (c1, c2, . . . , cn−k) , n ≥ 2,

(38)

where n(k) is the rising factorial and cn = an+1

(n+1)a1
.

The main result of this section is the following theorem
that characterizes the inverse of the conditional expectation.

Theorem 4. Fix an a ∈ R. Then, for every non-constant X
there exists a τσ,a > 0 such that

X̂−1(x)=a+

∞∑
k=1

bk

(
x− X̂(a)

)k
k!

, |x− X̂(a)| < τσ,a

(39)

where

b1=
σ2

κX|Y=a(2)
, (40)

bn= bn1

n−1∑
k=1

(−1)kn(k)Bn−1,k (c1, c2, . . . , cn−k) , n ≥ 2,

(41)

ck=
κX|Y=a(k + 2)

(k + 1)σ2(k+1)κX|Y=a(2)
, k ≥ 1. (42)

Proof: First, since X̂(y) is real-analytic, it has a power-
series expansion around X̂(a) with some positive radius of
convergence τσ,a. Second, by using (35) we have that

f(y)=X̂(y+ a)− X̂(a)=

∞∑
k=1

κX|Y=a(k + 1)

k!σ2k
yk=

∞∑
k=1

ak
yk

k!
,

(43)
where ak =

κX|Y=a(k+1)

σ2k . Therefore, by the Lagrange inver-
sion theorem, we have that

f−1(x) =

∞∑
k=1

bk
xk

k!
, (44)

where the expression for bk’s are given in (38). Next, by
noting that f−1(x) = X̂−1

(
x+ X̂(a)

)
− a, we arrive at

X̂−1(x) = a+

∞∑
k=1

bk

(
x− X̂(a)

)k
k!

. (45)

This concludes the proof.

Remark 4. We remark that the inverse of the conditional
expectation in (39) depends on the joint distribution PXY
only through the marginal fY . Indeed, by using (28) we have
that the coefficients in (42) can be expressed only in terms
of fY or derivatives of fY

ck =

dk+2

dyk+2 log fY (y)

(k + 1)(1 + σ2 d2

dy2 log fY (y))
|y=a, k ≥ 1. (46)

Remark 5. While the formula for the coefficient in Theo-
rem 4 is algebraically involved, in principle, it is not difficult
to implement numerically.



V. ON THE DISTRIBUTION OF THE CONDITIONAL
EXPECTATION

Combing Theorem 4 with (5) and (6) we arrive at the
expression for the distribution of X̂ . The following theorem
summarizes this result.

Theorem 5. Let FX̂ and fX̂(x) be the cdf and pdf of the
conditional mean estimator X̂(Y ). Then, for a non-constant
X and σ > 0, we have that

FX̂(x) = FY (X̂−1(x)), (47)

fX̂(x) = fY

(
X̂−1(x)

) ∣∣∣∣ d

dx
X̂−1(x)

∣∣∣∣ , (48)

where

• FY and fY are the cdf and the pdf of Y , respectively; and
• the inverse X̂−1(x) is well-defined and given in Theorem 4.

Furthermore, X̂−1(x) can be expressed only in terms fY
and derivatives of fY .

We now consider a few examples. To implement these
examples, we truncate the power series in Theorem 4 such
that the absolute error in the approximation is always below
10−4.

• (Example with a Discrete Distribution) Let X be uniformly
distributed on {−6,−3, 0, 3, 6}. Fig. 3a shows the cdf of
X̂ for several values of σ2.

• (Mismatched Example 1) Let X̂(y;σ2
m) denote the estima-

tor that assumes that the noise variance is σ2
m. Suppose,

however, that X̂(y;σ2
m) is used when the true noise level

is σ2 6= σ2
m. This scenario is known as mismatched

estimation. Fig. 3b show the distribution of X̂(Y ;σ2
m)

where Y = X + N and N ∼ N (0, σ2). Moreover, X
is uniformly distributed on {−6,−3, 0, 3, 6}.

• (Mismatched Example 2) Let X̂(y;QX) denote the es-
timator that assumes that the distribution of X is QX .
Suppose, however, that X̂(y;QX) is used when the true
the distribution is PX 6= QX . In this scenario, we assume
that the noise variance is used correctly. Fig. 3c show the
distribution of X̂(Y ;QX) where Y = X+N and X ∼ PX .
We assume that PX is uniform over {−3, 0, 3} while
QX has the following assignment over the set {−3, 0, 3}:
QX(−3) = QX(3) = 1−p

2 and QX(0) = p.

VI. CONCLUSION

This work has characterized the distribution of the con-
ditional mean estimator of a random variable X based on
a noisy Gaussian observation Y . This distribution has been
shown to depend on the joint distribution PXY only through
the marginal of Y . Several new results have been shown
along the way, such as a new identity between conditional
expectation and conditional cumulants, and an inverse of the
conditional expectation has been characterized in terms of a
power series.

An interesting future direction would be to consider the
distribution of the estimation error X − E[X|Y ]. Moreover,
it would be interesting to see if the distribution of E[X|Y ] can
be used with the I-MMSE relationship [10] to characterize
some features of the mutual information.
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(a) Plots of FX̂ and FX where X uniformly distributed over
the set {−6,−3, 0, 3, 6}.
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Fig. 3: Examples of the cdf of X̂ .
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