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ABSTRACT We study communication systems over band-limited Additive White Gaussian Noise
(AWGN) channels in which the transmitter’s output is constrained to be symmetric binary (bipolar).
We improve the available Ozarow-Wyner-Ziv (OWZ) lower bound on capacity which is based on peak-
power constrained pulse-amplitude modulation, by introducing new schemes (achievability) with two
advantages over the studied OWZ schemes. Our schemes achieve a moderately improved information rate
and they do so with much fewer sign transitions of the binary signal. The gap between the known upper
bound, which is based on spectral constrains of bipolar signals, and our new achievable lower bound is
reduced to 0.93 bits per Nyquist interval at high SNR.

INDEX TERMS Information capacity, faster-than-Nyquist signaling, filtered Gaussian channel, unit
process, bipolar input, peak limited signals.

I. INTRODUCTION AND PROBLEM DEFINITION

WESTUDY communication systems over band-limited
Additive White Gaussian Noise (AWGN) channels in

which the transmitter’s output is constrained to be bipolar,
as presented in Figure 1. Such systems arise when the power
efficiency must be high or when the transmitter needs to be of
very low complexity. Those systems are usually implemented
by some form of Pulse Width Modulation (PWM), Pulse
Position Modulation (PPM), or similar schemes, operating
over Gaussian noise channels [1], [2], [3]. Communication
systems with binary transmitted signals are of recent prac-
tical interest in millimeter-wave wide-band applications,
e.g., [4], [5].
In this work, we examine theoretical limits on commu-

nication with binary transmission, not limited to PWM.
We are interested in the reliable information rate sup-
ported by this system focusing mainly on the region of
asymptotically high SNR. This theoretical problem was
addressed by Ozarow, Wyner, Ziv (OWZ) [6] using the
Pulse Amplitude Modulation (PAM) method. OWZ [6]
showed that performance, measured by mutual information,
achievable with a signal peak-limited to ±√

P can also be

achieved with a binary-valued ±√
P signal with a very high

Sign Transition Rate (STR). They applied this finding to
design a PAM scheme with symbols uniformly distributed
in [−√

P,+√
P], which provides an achievable lower bound

on the capacity of the system. As implied by [6], peak-
limited continuous-time signals such as filtered PAM, can
in principle be also band limited [7] and hence represented
by sampling at an appropriate rate, while the equivalent (in
the sense of [6]) bipolar processes cannot be strictly ban-
dlimited [8]. A lower bound exceeding for low SNR that
of [6], was presented in [9], based on improved bounds
for intersymbol-interference Gaussian channels. Additional
results on capacity of systems with binary inputs, some with
additional constraints on average transition rate, minimum
inter-transition time and out of band power, are presented
in [10] and [11]. Systems with limited minimal transition
times were investigated in [12], including systems with mild
filtering, that is, not strictly bandlimited as in [6].
The binary channel input carries information in its tran-

sition times. Sampling the binary input at a Nyquist rate
corresponding to the channel bandwidth would degrade the
performance severely, thus the system in Figure 1 falls in
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FIGURE 1. Communication system with binary-valued transmitted signal.

general into the category of Faster Than Nyquist (FTN)
signaling which is of wide current theoretical and practical
interest. In recent years FTN signaling approaches, forms and
extensions of classical pulse-amplitude modulation strate-
gies have emerged. See overviews of these relevant domains
in [13], [14], [15] and references therein. See also recent
examples of advanced theory and techniques in [16], [17],
[18], [19]. FTN can provide significant advantages in terms
of capacity with prescribed modulation techniques and sig-
naling strategies, though the resultant channel may suffer
significant inter-symbol-interference, which demands higher
complexity detection procedures. Yet, no peak-power restric-
tions are imposed on the resultant time-continuous process,
which is a central part in our scheme. This is motivated by
practical constraints, as was also the case in [6], reflecting
the constraints of magnetic storage media.
In this work, we present new schemes with two advantages

over [6]. They achieve a moderately improved information
rate and do so with much fewer sign transitions of the binary
signal. The new schemes require STR of only up to twice
the Nyquist rate of the channel, while [6] uses STR many
folds higher than the Nyquist rate; if implemented fully, the
STR in [6] is infinite. Low STR is easier to implement in
systems which are already wide-band and in which each sign
transition must pass a power amplifier such as [4], [5]. We
extended the technique of analysis in [6] to the new schemes
in which the transmitted signal is a non-linear function of
the information sequence.
The studied communication system is presented in Figure 1.

It comprises an encoder producing a binary-valued±√
P input

x(t) where P is the transmit power, AWGN channel with noise
Power Spectral Density (PSD) of 1

2 N0 watt/Hz (double-sided)
and a receiver. The channel has a frequency response H(f ),
in our case a unity frequency response at frequencies from
0 to B and zero otherwise. The channel output y is

y(t) = z(t) + n(t), (1)

where z(t) is the filtered desired signal and n(t) is the
Gaussian noise.
We denote by B the bandwidth of the low pass brick-wall

filter in Hz, T = 1/(2B) is the Nyquist sampling period
associated with B, ρ = P

N0B
is the signal to noise ratio

(SNR), log denotes the natural logarithm and bold lower-case
letters denote vectors and sequences.

II. KNOWN PERFORMANCE BOUNDS
Shamai and Bar-David [20], derived an upper bound on the
system capacity, based on the fact that the Power Spectral
Density (PSD) of a binary-valued signal is limited by certain
constraints presented in [21] and [8]. They analyzed limits on
spectral densities of binary signals and then upper bounded

the capacity of the system by Mutual Information (MUI)
when the channel input has the capacity achieving Gaussian
distribution with the same PSD as the binary-valued signal.
For high SNR they proved that relative to the capacity-
achieving frequency-flat Gaussian input there is a power loss
at least by a factor of γ = 0.9337, see definition of γ below.
The same paper considers Random Telegraph Signal (RTS)
as an interesting example rather than a bound and the power
factor there is around γ = 0.63 which is an upper bound
on the performance of RTS. The capacity CG bits/second
of the channel with PSD given as S(f ) used in [20] is the
well-known expression

CG =
∫ B

0
log2

(
1 + S(f )

N0

)
df ,

where CG is achieved with a Gaussian input. In the limit of
asymptotically high S(f )

N0
the capacity CG becomes

ChG =
B∫

0

log2
S(f )

N0
df . (2)

For a frequency-flat Gaussian signal of bandwidth B this
yields

ChG0 = B · log2
P

N0B
.

Multiplying S(f ) in (2) by a factor γ increases ChG by B ·
log2 γ information bits per second which are � = 1

2 log2 γ

bits per Nyquist sampling interval. Consequently, the equiv-
alent SNR gain is defined, for a scheme with bandwidth B,
as a function of difference � in information per Nyquist
interval between the scheme and the AWGN channel with
the same bandwidth and transmit power as,

γ = 22�.

OWZ [6] derived the following achievable lower bound using
the modulation method [6] described in the introduction.

IOWZ ≥ 1

2
log2

(
2P · e
π3N0B

+ 1

)
= 1

2
log2

(
ρ

2e

π3
+ 1

)
(3)

where IOWZ stands for mutual information per Nyquist
interval.
This corresponds to

γ OWZ = 2e

π3
= 0.1753.

The bipolar signal that achieves the performance of the PAM
modulation technique in [6] involves high transition rate of
the binary signal. An improved lower bound in the low SNR
regime is reported in [9].

III. NEW ACHIEVABLE SCHEMES
The main results of this work are the improved lower bounds
on the capacity of the bipolar-input bandlimited AWGN
channel, see Proposition 1. The proposition is proved by
introducing and analyzing new communication schemes.
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FIGURE 2. Binary signals x(t) of type A. The single symbol with a variable transition
time.

FIGURE 3. Binary signals x(t) of type A and B. The dashed line is the impulse
response of the channel filter.

We discuss four schemes, denoted by A,B,C and D. In all
of them the time axis is partitioned into successive intervals
of duration T equal to the Nyquist interval corresponding to
B. In scheme A, the binary signal in each interval n of time
t spanning (n− 0.5)T ≤ t < (n+ 0.5)T is

x(t) =
{

1 (n− 0.5)T ≤ t ≤ (n+ an)T
−1 (n+ an)T < t < (n+ 0.5)T,

(4)

where ans are the information-carrying variables, uni-
formly, independently, and identically distributed (u.i.i.d.)
over [−0.5,+0.5]. Thus, information is conveyed by the
time of sign reversal of the signal, see Figure 2 for an
illustration.
We denote the sequence of all an by a, denote the binary

transmitted signal in interval n as xn(t) and the overall trans-
mission by x(t) or x. Scheme A changes sign twice in each
Nyquist interval T , thus it’s STR is 4B.

Scheme B is derived from scheme A by inverting the
signal in successive intervals of length T to eliminate half
of the sign transitions of the binary signal, reducing it’s STR
to 2B. See Figure 3.

Scheme C is derived from scheme A by inverting the
signal in successive intervals at random where the signs sn
valued as ±1 are used as additional information inputs. The
signs sn are equi-probable and independent. The signaling
in scheme C comprises an and sn, thus the signaling rate is
twice the Nyquist rate. The STR of scheme C is 3B, since
the random sign reversal related to sn occurs in half of the
transmission intervals.

FIGURE 4. Time diagram of scheme D, the solid blue line is the transmitted signal,
the dotted blue line is another possible transmitted signal.

TABLE 1. Upper bounds using Gaussian inputs with the same spectra.

Denote by s the sequence of the sign inversions sn in
schemes A, B and C, so that sn = −1 for the inverted
symbols and sn = 1 otherwise.

Scheme D is derived from scheme B. It eliminates pairs
of consecutive sign-transitions with exceptionally short inter-
transition time, which we found detrimental to our lower
bound. Scheme D improves upon scheme B by introducing a
minimal inter-transition interval Tg = 0.2T and by extending
the range in which each sign-transition time can occur. In
particular, as in scheme B, each transmission interval of
duration T is associated with one sign transition. However,
the transition time specified in (4) as uniformly distributed
over the nth transmission interval spanning (n−0.5)T ≤ t <

(n+0.5)T in scheme B, is, in the new scheme D, distributed
uniformly over a window Ws(n), which starts Tg after the
previous sign-transition and ends, as in scheme B, at the end
of the current interval. This is illustrated in Figure 4. Note
that the sign transition associated with the nth transmission
interval may occur in the nth interval or in one of the few
intervals preceding it. The STR of scheme D is 2B, identical
to scheme B.
Computing the exact capacity of the four schemes, that is,

the MUI between the binary input x(t) and the channel output
y(t), seems intractable. We therefore resorted to deriving
upper and lower bounds. The lower bound on performance
of each scheme applies to the scheme itself and it is also
a lower bound on the channel capacity. Each upper bound
applies only to the specific scheme while the upper bound
on the capacity of the system is the upper bound on binary
schemes in Table 1.
To compute upper bounds on the communication rates

of schemes A,B and C, we first evaluate the PSD of the
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FIGURE 5. Spectrum of the three schemes and of the frequency-flat AWGN. The
continuous parts of the scheme A and scheme B curves overlap.

signals. We assume that the signal is randomly shifted as a
whole by a delay distributed uniformly over (0,T) to render
it stationary. The autocorrelations of the signals in the three
schemes are derived in the Appendix and summarized in (5),
shown at the bottom of the page.
The PSD was obtained by numerical Fourier transform of

the autocorrelations, see Figure 5, and verified by simulation.
The PSD is obtainable analytically from the autocorrelations.
For example for scheme C with T = 1 we have the one-sided
PSD:

Sc(f ) = 3π f − 2 sin(2π f ) + π f cos(2π f )

(π f )3
.

The AWGN line in Figure 5 is the PSD of the standard
bandlimited capacity-achieving signal without the binary
constraint. As well-known from the water-pouring theory,
it spreads the available power uniformly over the available
bandwidth B. The PSDs of our three schemes suffer the dis-
advantage of wasting some of the transmitted power out of
the channel bandwidth and of not spreading the remain-
ing power uniformly. Scheme C is evidently better than
schemes A and B. Indeed the schemes A, B and C are
constrained to bipolar transmitted signals and therefore can-
not possess a strictly bandlimited spectrum, as we know

from [8]. The spectra of schemes A and B are identical
except for the discrete frequency components (tones) which
do not influence the outcome of (2). There are no discrete
tones in scheme C since it decorrelates the pulses by random
sign inversions, limiting the support of the autocorrelation
to [−T,T].

Based on the PSD, we compute the upper bounds on
performance at high SNR of the three schemes using (2)
and compare them to the optimal input which is a Gaussian
signal with power P and a flat PSD from 0 to B. The results
are presented in Table 1.
We proceed to derive lower bounds on communication

rates of the new schemes. As shown in Figure 1, x(t)
passes through the channel filter and is then contaminated by
AWGN. The receiver filters the signal by the same low pass
filter, which is clearly an information-lossless operation. We
sample the filtered channel output at the Nyquist rate 1/T
producing an infinite sequence y of samples yn. We denote
the signal without the noise component by a sequence z of
samples zn, see Figure 1.
We lower-bound the capacity I(x; y) = H(y) −H(y|x) by

adapting the approach presented in OWZ [6]. Since H(y|x)
is the known entropy of the noise, the main term to eval-
uate is H(y). OWZ lower-bounded H(y) as a function of
the entropies of its components H(z) and H(n) using the
Entropy-Power Inequality (EPI) presented in [22]. OWZ
evaluated H(z) using the fact that the channel was an Inter
Symbol Interference (ISI) channel representable by a Toeplitz
matrix the determinant of which is computable using the
Szegö theorem [24].
We begin by determining the entropy of z. The required

differential entropy is

hz = 1

N
h(z1 . . . zN).

In schemes A and B, each an determines one symbol xn and
those symbols are linearly filtered to produce z. The sequence
a, treated as a vector in the next equation, comprises u.i.i.d.
components, and therefore its differential entropy is:

ha
�= 1

N
h(a) = h(ai) = log(1). (6)

RA(τ ) =
{(

1 − 2|τ |
T

)(
1 − |τ |

T

)
+

(
− 2

3

∣∣ τ
T

∣∣3 + 2
∣∣ τ
T

∣∣2 − ∣∣ τ
T

∣∣); |τ |
T < 1

1
3 + 2τ 2

n − 2τn; otherwise
(5a)

where τn = |τ |modT
T and |τ |mod T denotes the modulo T operation.

RB(τ ) =
{(

1 − 2|τ |
T

)(
1 − |τ |

T

)
−

(
− 2

3

∣∣ τ
T

∣∣3 + 2
∣∣ τ
T

∣∣2 − ∣∣ τ
T

∣∣); |τ |
T < 1

1
3

(
4τ 3

n − 6τn + 1
) · (−1)�| τ

T |�; otherwise
(5b)

where �τ� is the largest integer smaller than τ

RC(τ ) =
{(

1 − 2|τ |
T

)(
1 − |τ |

T

)
; |τ |

T < 1

0; otherwise
(5c)
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FIGURE 6. Difference signal x1 − x2.

The noiseless sampled output z is a function of a, which
we denote by z = m(a). To derive h(z) using the Jacobian
formula (7) similarly to [6], we need our transformation
z = m(a) to be a bijection and a and z must have identical
dimensions.
Lemma 1: For every ε > 0, if the channel’s bandwidth

is B = 1
2T + ε, where T is the signaling period, then the

transformation z = m(a) in schemes A and B is a bijection.
Proof: The modulation scheme in Figure 1 is determin-

istic, therefore each sequence a can produce only a single
sequence z. It remains to prove that there are no two dis-
tinct sequences a producing the same z. If this would happen,
then there would exist a pair of transmitted signals x1 �= x2

such that z(x1) = z(x2), implying d def= z(x1) − z(x2) = 0.
Since the low-pass filter is linear, such a d would be the
low-pass filtered signal x1 −x2. By the construction of x, for
schemes A and B, not C, the difference x1 − x2 would be
a sequence of pulses as depicted in Figure 6 in which each
pulse is assigned a symbol interval T during which it has a
zero value except for some contiguous duration in which it
is ±2 , see Figure 6.
So it is sufficient to prove that such a nonzero signal

x1 − x2 cannot have zero spectra in 0 ≤ f ≤ B + ε. This
follows directly from [23, Th. 1], which proved that signals
with zero spectra in 0 ≤ f ≤ B+ε, which are denoted in [23]
as high-pass signals or signals with a zero gap, change sign
at average rates higher than 1/T = 2B, which is the highest
possible rate of sign changes of the function x1 − x2 =
x1(t) − x2(t) in Figure 6. Thus, such a nonzero x1 − x2
cannot exist and z = m(a) is a bijection. The asymptotically
small change in B is immaterial in this work by the problem
definition.
Since z = m(a) is a bijection, the entropy hz is

hz
�= 1

N
h(z) = 1

N
h(a) + 1

N

∫
p(a) log

∣∣∣∣ ∂zi
∂aj

∣∣∣∣da
= 1

N
h(a) + 1

N
Ea

(
log

∣∣∣∣ ∂zi
∂aj

∣∣∣∣
)

, (7)

where | ∂zi
∂aj

| denotes the determinant of the Jacobian matrix of
z = m(a), p(a) is the probability density function of a and Ea
denotes expectation with respect to a. The Jacobian matrix

is denoted ( ∂zi
∂aj

)
�= J. Unlike OWZ [6], in our scheme A,

the Jacobian matrix is not Toeplitz since here ∂zi
∂aj

depends
on each aj. Therefore, we could not follow OWZ using the
Szegö theorem [24]. Instead, we evaluated the expectation
in (7) numerically by generating the signals z with random
sequences a, computing J for each z and averaging hz. The
Jacobian matrix J is evaluated by

∂zi
∂aj

= ±2
sin(π tij/T)

π tij/T
, (8)

where tij is the time elapsed from the time of transition ai to
the sample zi. The sign is positive for transitions from 1 to −1
and negative otherwise. The computation was executed on
cyclic sequences 500 and 1000 symbols long and verifying
identical result in both cases.
Denote

hd = hz − ha = 1

N

∫
p(a) log

∣∣∣∣ ∂zi
∂aj

∣∣∣∣ da.
The result of numerical evaluation of scheme A is hd =
0.5197 nats for T = 1 and P = 1 and is invariant with T ,
see (4), (6) and (8).
The entropy (7) is identical in scheme A and in scheme B

with its alternate sign inversions. This is because ∂zi
∂aj

changes
sign when sj = −1, so for scheme B we can create a new
auxiliary vector

â = (a1s1, . . . aisi . . .) (9)

in which (
∂zi
∂ âj

) is identical to (
∂zi
∂aj

) in scheme A and h(â) =
h(a) yielding the same hz in schemes A and B.
The true entropy of z is larger by 0.5 log(P) due to mul-

tiplication by
√
P and, a has a unity support, so ha = 0,

see (6). Thus,

hz = 1

N
h(z) = hd + 0.5 logP.

The entropy of the sampled noise at filter output is

hn = 0.5 log (2πeBN0).

By EPI [22], the entropy of the sum is upper bounded in
terms of entropies of its components:

e2hy ≥ e2hz + e2hn

e2hy ≥ e2(hd+0.5 log(P)) + 2πeBN0

hy ≥ 0.5 log
(
e2hd+log(P) + 2πeBN0

)
(10)

Iya
�= 1

N
I(y; a) = hy − hy|a

≥ 0.5 log
(
e2hd+log(P) + 2πeBN0

)
− 0.5 log(2πeBN0)

Iya ≥ 0.5 log

(
e2hd+log(P) + 2πeBN0

2πeBN0

)

Iya ≥ 0.5 log

(
1

2πe P · e2hd + BN0

BN0

)
(11)

The AWGN capacity is

CAWGN = 0.5 log

(
P+ BN0

BN0

)
.
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So the power gain at all SNRs over the AWGN channel is
lower-bounded by

γ = 1

2πe
e2hd = 0.1656.

OWZ [6] reported a better result, γOWZ = 0.1753, see (3)
above; our software reconstructs this result as a verification.
The same analysis technique used here for the brickwall

channel response is applicable to a general channel frequency
response H(f ). To extend the technique to a more general
H(f ), the sinc pulse used in (8) to compute the Jacobian
matrix and shown in Figure 3 would be replaced by the new
channel impulse response. Furthermore, H(f ) would need
to be non-zero over 0 < f < B to fulfill the conditions of
Lemma 1.
Next we show an improved performance in scheme C. To

increase h(z), the polarity of each pulse is inverted at random.
As seen in Figure 5 this also removes the wasted discrete
tones from the signal spectra. The analysis above cannot be
applied directly since now x(t) −→ z(t) is not a bijection
as demonstrated by construction of pairs of signals x(t) the
difference of which have period of T and a zero mean, thus
zero PSD in the 0 to B frequency band. For scheme C the
system mutual information between the modulator inputs a, s
and the channel output is:

I(a, s; y) = I(s; y) + I(a; y|s). (12)

The second term on the r.h.s. is equal to schemes A and
B, the signs s on which this term is conditioned are treated
by the auxiliary vector â as defined in (9) for scheme B.
The first term on the r.h.s. is the improvement achieved by
scheme C relative to schemes A and B. We lower-bound
it as follows. Denote the sequence of derivatives of y(t) at
times nT by ẏ = {ẏn}.
Now

I(s; y) ≥ I(s; ẏ)
=

∑
n

I
(
sn; ẏ|sn−1

1

)
; sn−1

1 = s1 . . . , sn−1

≥
∑
n

I(sn; ẏ)

≥
∑
n

I(sn; ẏi). (13)

The first line is since ẏ is a function of y. The second line
is by the standard mutual information decomposition [22].
The third line is since sn is independent of sn−1

1 , the fourth
line is since ẏi is a subset of the sequence ẏ. The last
term was evaluated by simulation of scheme C while esti-
mating the symbol-wise probability densities P(ẏn|sn = 1),
P(ẏn|sn = −1) and P(ẏn) as plotted in Figure 7. It adds
0.136 bits per symbol at asymptotically high SNR which
is equivalent to a power gain of γ = 1.207. Scheme C
achieves γ = 0.20, moderately better than OWZ. We expect
that better detectors would improve upon this lower bound.

FIGURE 7. Probability density functions of signal derivatives conditioned on
signs sn .

Next we evaluate lower bound on performance of
scheme D. Lemma 1 holds for scheme D in which the differ-
ence signal is as in Figure 6 with the same average number
of pulses except for not confining each pulse to its own
T-interval. That is, in both the schemes B and D, the total
number of all the negative and positive pulses in the differ-
ence signal is half of the total number of sign transitions in
x1 and x2.
The entropy of a in (6) is now calculated numerically as

ha
�= 1

N

∑
n

h
(
an|an−1

1

)

= 1

N

∑
n

log(Ws(n)). (14)

It is larger by 0.4095 nats than that of scheme B, contributing
to the performance. Scheme D achieved the best performance
among the four schemes, see Table 2.
With scheme D, the achievable lower bound has an advan-

tage of a power factor of 1.47 at all SNRs and of 0.28 bits per
Nyquist interval T at high SNR over the scheme reported
in [6]. Comparing to Table 1, the gap between the upper
and the lower bounds specific to the schemes is 0.43 and
0.438 bits per Nyquist interval for schemes A and C respec-
tively. The gap between the upper bound in [20], entry 6 in
Table 2, and the best achievable lower bound, scheme D in
the table, is 0.93 bits per Nyquist interval.
The four schemes have distinct attributes. Schemes A and

B serve to build up the theoretical base and they provide a
lower bound on capacity valid for all SNRs. Scheme C is an
extension providing an improved lower bound at high SNR
and an improved spectra. Scheme D provides the best lower
bound at all SNRs.
Proposition 1: The capacity loss incurred by imposing a

constraint of a symmetric binary bipolar input on the AWGN
frequency-flat low-pass channel with a given average input
power is limited to 0.976 bits per Nyquist interval at high
SNR. The equivalent power loss ratio is no less than 0.2586
at all SNR.
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TABLE 2. Comparison of different approaches.

Proof: Compare scheme D in Table 2 to the first entry in
the table.

IV. CONCLUSION AND OUTLOOK
We studied communication systems over the band-limited
AWGN channel in which the transmitter output is con-
strained to be binary bipolar. We presented new schemes
which provide an improved lower bound on the capacity
of this channel. The gap between the known upper bound
and our new achievable lower bound is reduced to 0.93 bits
per Nyquist interval at high SNR. Furthermore, the schemes
operate at a much lower rate of sign transitions than the
bipolar signaling that achieves the PAM based bounds in [6].
There is a room for future work attempting to improve the

achievable lower bound. For this purpose signals with spectra
more concentrated in the lower frequency regions than our
scheme C, see Figure 5, should be investigated. Interestingly,
the maximal power factor γ of the Random Telegraph Signal
(RTS) is achieved with average transition rate of about 0.67
per Nyquist interval, less than the 1.5 average transition rate
of our scheme C leading to a narrower PSD, thus a future
analysis of performance of the RTS signaling might reduce
the gap between the upper and lower bounds further.
The lower bound on performance presented here might be

improved in future work based on techniques that consider
PWM and also RTS in terms of lower bounding the fil-
tered minimum mean square error, and incorporating the
Information Estimation relations [27]. Further interesting
useful techniques developed for ISI channels [25], [26]
should also be considered.
In this paper the signals are designed for good performance

in the high SNR regime while the results for schemes A, B
and D hold for all SNRs, see (11). Future work may address
the non-asymtotic low and intermediate SNR region based
on new schemes adapted to SNR and on advanced FTN
techniques listed in the introduction for which the Shamai-
Ozarow-Wyner [9] bound is of direct relevance.

FIGURE 8. Autocorrelation functions for schemes A, B and C.

APPENDIX—AUTOCORRELATIONS
Denote the autocorrelation of x(t) as

R(τ ) = Ex,t[x(t) · x(t + τ)],

where Ex,t denotes expectation over x and over −T < t < T .
For scheme C we have

Rc =
{(

1 − 2|τ |
T

)(
1 − |τ |

T

)
; |τ |

T < 1

0; otherwise.
(15)

The first parenthesis is the correlation given that t and +t are
in the same symbol interval, the second parenthesis is the
probability of this occurrence. The expression for cases A
and B is a little more involved. For |τ |

T > 1, x(t), and x(t+τ)

are independent, thus

R(τ ) = Et{Ex[x(t)] · Ex[x(t + τ)]}; |τ |
T

> 1; (16)

For scheme A, E[x(t)] = 1 − 2/T . It follows by a
straightforward integration for scheme A:

RA(τ ) = 1

3
+ 2τ 2

n − 2τn; |τ |
T

> 1,

where τn = |τ |mod T
T and |τ |modT denotes the modulo T

operation. For scheme B:

RB(τ ) = 1

3
(4τ 3

n − 6τ 2
n + 1) · (−1)�|

τ
T |�; |τ |

T
> 1,

where �τ� is the largest integer smaller than τ .
For |τ |

T < 1, the expectation over t is the sum over
the events in which t and τ + t are in the same symbol
interval which yields (15) and of a term contributed by the
events where t and τ + t fall into successive symbol intervals
where (16) applies. The result is:

RAB(τ ) =
(

1 − 2|τ |
T

)(
1 − |τ |

T

)

±
(

−2

3

∣∣∣ τ
T

∣∣∣3 + 2
∣∣∣ τ
T

∣∣∣2 −
∣∣∣ τ
T

∣∣∣
)

; |τ |
T

< 1 (17)

where the sign is positive for A and negative for B. Collecting
the equations above yields (5) and Figure 8.
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