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Abstract— A communication link aided by a reconfigurable
intelligent surface (RIS) is studied in which the transmitter can
control the state of the RIS via a finite-rate control link. Channel
state information (CSI) is acquired at the receiver based on pilot-
assisted channel estimation, and it may or may not be shared
with the transmitter. Considering quasi-static fading channels
with imperfect CSI, capacity-achieving signalling is shown to
implement joint encoding of the transmitted signal and of the
response of the RIS. This demonstrates the information-theoretic
optimality of RIS-based modulation, or “single-RF MIMO”
systems. In addition, a novel signalling strategy based on separate
layered encoding that enables practical successive cancellation-
type decoding at the receiver is proposed. Numerical experiments
show that the conventional scheme that fixes the reflection
pattern of the RIS, irrespective of the transmitted information,
as to maximize the achievable rate is strictly suboptimal, and is
outperformed by the proposed adaptive coding strategies at all
practical signal-to-noise ratio (SNR) levels.

Index Terms— RIS, imperfect CSI, single-RF MIMO, capacity.

I. INTRODUCTION

IN THE context of wireless communications, a reconfig-
urable intelligent surface (RIS) usually acts as an “anom-

alous mirror” or a “focusing lens” that can be configured
to reflect or refract impinging radio waves towards arbitrary
angles by applying appropriate phase shifts to the incident
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Fig. 1. Illustration of the network under study consisting of a single-RF
transmitter (TX), a receiver (RX) with N antennas, and an RIS with K
elements (in the figure, N = 2 and K = 16). The transmitter jointly encodes
a message w into a codeword of n symbols, sent on the wireless link, and
into a control action, sent on the control link to the RIS at a rate of one
action every m channel symbols. There is a strong line-of-sight between the
transmitter and the RIS, whereas the reflected signal undergoes a multi-path
channel.

signals [1], [2]. Due to these desirable properties, RISs are
being considered for future wireless networks as means to
shape the wireless propagation channel for signal, interference,
security, and scattering engineering [3]–[7].

Most prior work, to be reviewed below, proposed to use the
RIS as a fixed passive beamformer in order to control the SNR
levels at the receivers. However, by altering the amplitude or
phase of the incident signal, the RIS reflection pattern can also
be jointly encoded with the transmitted signals as a function of
the information message, thus enlarging the modulation space.
One instantiation of this idea is the “single-RF MIMO” system
introduced in [8] that encodes multiple information streams
using the RIS reflection pattern and a single radio frequency
(RF) chain [9].

While practical RIS-based modulation schemes exist
[8]–[14], their information-theoretic properties have not been
studied. This paper addresses this knowledge gap by studying
the capacity of RIS-aided communication links in which a
single-RF transmitter can control the state of an RIS via a
finite-rate control link (see Fig. 1). The optimal configuration
of the RIS requires knowledge of the CSI. The acquisition
of CSI is made complicated by the fact that the RIS is a
nearly-passive device, and hence it cannot process and transmit
pilot signals. To account for this practical constraint, in this
paper, the information-theoretic analysis is based on a model
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in which the CSI is estimated at the receiver via pilot-assisted
transmission [15], and it may or may not be shared with the
transmitter.

Related Work: The optimization of a fixed RIS reflection
pattern has been studied in various scenarios. A comprehensive
survey of the state-of-the-art is available in [1], and we men-
tion here some representative examples. Algorithms for jointly
optimizing precoding at the transmitter and beamforming at
the RIS were proposed for a point-to-point Multiple-Input
Single-Output (MISO) systems in [16], and for Multiple-Input
Multiple-Output (MIMO) systems in [17], [18]. RIS-based
passive beamforming was compared to conventional relaying
methods such as amplify-and-forward and decode-and-forward
in [2].

Acquiring CSI is crucial for RIS-aided communication.
Channel estimation schemes were proposed in [15], [19],
in which RIS training patterns are designed under the con-
straint of discrete phase shifts. The overhead required for
channel estimation was studied in [20], and an overhead-
aware resource allocation framework was developed. Channel
estimation based on statistical CSI is used in [21] to reduce
the channel training overhead.

Schemes for encoding information in the configuration of
the RIS have been recently presented. In [10]–[13], infor-
mation is encoded in the reflection patterns of the RIS by
setting the amplitude of each reflecting element to be 0 or 1.
In [14], the receive antenna for which the SNR is maximized
encodes the information bits using index modulation [22].
The strategies above are extended in [8] by implementing
phase-shift keying (PSK) and quadrature amplitude modula-
tion (QAM) at each element, and by using two independent
data streams to control the RIS.

Main Contributions: This work provides an information-
theoretic analysis of the RIS-aided system illustrated in Fig. 1,
which consists of a single-RF transmitter and a receiver
with N antennas. CSI is assumed to be acquired at the
receiver via pilot-based transmission, and it may or may not
be shared with the transmitter. We first derive the capacity
for any RIS control rate, and prove that jointly encoding
data onto the transmitted signals and RIS reflection pattern is
generally necessary to achieve the maximum information rate.
We explicitly characterize the performance gain of joint encod-
ing in the high-SNR regime. Then, we propose an achievable
scheme based on layered encoding and successive cancellation
decoding (SCD) that enables RIS-based modulation, while
supporting standard separate encoding and decoding strategies.
Numerical experiments demonstrate that, for SNR levels of
practical interest and for a sufficiently fast RIS control link,
capacity-achieving joint encoding provides significant gain
over the max-SNR approach, which fixes the reflection pattern.
However, joint encoding is shown to require a more accurate
channel estimation compared to the max-SNR scheme, and
is hence mostly desirable for long channel coherence blocks.
The results in this paper were partially presented in [23], which
only considers perfect CSI at the transmitter and receiver.

Organization: The rest of the paper is organized as follows.
In Section II, we present an information-theoretic model for
an RIS-aided quasi-static fading channel with imperfect CSI
obtained via channel estimation. In Section III, we derive the
capacity and we compare it to the rates achieved by two

standard suboptimal signalling schemes: a max-SNR scheme
that does not encode information in the RIS reflection pat-
tern, and an RIS-based signalling scheme that modulates the
reflection pattern uniformly and has no beamforming gain.
In Section IV, we describe an achievable strategy based on lay-
ered encoding and successive cancellation decoding with basic
separate encoding and decoding procedures. In Section V,
lower bounds on the capacity and achievable rates are derived.
In Section VI, we present numerical results in order to
compare the capacity with the rates achieved by the suboptimal
strategies, and to assess the impact of imperfect CSI on
performance. Finally, in Section VII, we conclude the paper
and highlight some open problems.

Notation: Random variables, vectors, and matrices are
denoted by lowercase, boldface lowercase, and boldface upper-
case Roman-font letters, respectively. Realizations of random
variables, vectors, and matrices are denoted by lowercase,
boldface lowercase, and boldface uppercase italic-font letters,
respectively. For example, x is a realization of random variable
x, x is a realization of random vector x, and X is a realization
of random matrix X. For any positive integer K , we define the
set [K] � {1, 2, . . . , K}. The cardinality of a set A is denoted
as |A|. The Mahalanobis norm of vector v with positive semi-
definite matrix S is defined as �v�S �

√
v∗S−1v, where v∗

denotes the conjugate transpose of vector v, and the �2-norm
of a vector v is denoted as �v�. diag(x) represents a diagonal
matrix with diagonal given by the vector x. The trace of a
matrix X is denoted as tr(X). The vectorization of matrix
H , i.e., the operator that stacks the columns of H on top of
one another, is denoted by vec(H). The Kronecker product
of matrices A and B is denoted by A ⊗ B.

II. SYSTEM MODEL

We consider the system depicted in Fig. 1 in which a single-
RF transmitter communicates with a receiver equipped with N
antennas over a quasi-static fading channel in the presence
of an RIS that comprises K nearly-passive reconfigurable
elements. The K reconfigurable elements are spaced half
of the wavelength apart, so that the mutual coupling or
channel correlation effects can be ignored as a first-order
approximation [24]. We explore the potential improvement
in capacity that can be obtained when the transmitter can
encode its message w ∈ [2nR] of rate R [bits/symbol]
not only into a codeword of n symbols sent on the wire-
less link to the receiver, but also in the reflection pattern
of the RIS. The reflection pattern is controlled through a
rate-limited control link, and is defined by the phase shifts
that each of the K RIS elements applies to the impinging
wireless signal. Note that joint encoding takes place at the
transmitter, i.e., no information processing capabilities are
required for the RIS, which is assumed to be a nearly-passive
device.

As illustrated in Fig. 2, the fading coefficients are assumed
to remain constant for a coherence interval of T symbol
periods, after which they change to new independent values.
The coding slot of n symbols hence contains n/T coherence
blocks, which is taken to be an integer. The codeword trans-
mitted in a coding slot has n symbols from a constellation S
of S = |S| points. The constellation S is assumed to have an
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Fig. 2. Illustration of a coding slot. Each slot consists of n/T coherence
blocks, which, due to the RIS control link rate, contain � sub-blocks of m
symbols each.

average power of one, i.e.,

1
S

�
s∈S

|s|2 = 1. (1)

The phase shift applied by each element of the RIS is chosen
from a finite set A of A = |A| distinct hardware-determined
values. The RIS is controlled by the transmitter by selecting
the K phases of the elements as a function of the message
w. Due to practical limitations on the RIS configuration rate,
we assume that the phase shifts can only be modified once for
each sub-block that comprises m consecutive transmitted sym-
bols. As illustrated in Fig. 2, we assume that each coherence
block contains � = T/m sub-blocks for some integer � ≥ 1,
i.e., the RIS can be configured at the beginning of each sub-
block i ∈ [�] of m transmitted symbols. Note that if � = 1,
i.e., if m = T , the reflection pattern of the RIS is fixed for
the entire coherence block.

The channel from the transmitter to the RIS in the tth
coherence block, t ∈ [n/T ], is denoted by the vector g(t) ∈
CK×1, and the channel from the RIS to the N receiving
antennas is denoted by the matrix H(t) ∈ C

N×K . In order
to support multiple information streams with a single RF
chain, the transmitter and RIS are expected to be placed such
that there is a strong line-of-sight between them [9], [14].
Therefore, we assume that the elements of the channel vector
g(t) have random phases and unit amplitude, as illustrated
in Fig. 1. In contrast, the reflected signal is assumed to undergo
a multi-path channel before being received, and hence the
elements of the matrix H(t) are independent and identically
distributed (i.i.d.) as CN (0, 1). Moreover, as in, e.g., [8],
[14], we assume that the direct link between transmitter and
receiver is blocked, so that the propagation from transmitter
to receiver occurs solely through the reflected signal from
the RIS. During the tth coherence block, the fraction of the
codeword consisting of m symbols transmitted in the ith sub-
block, i ∈ [�], is denoted by si(t) = (si,1(t), . . . , si,m(t))ᵀ ∈
Sm×1, and is assumed to satisfy

1
m

E[s∗i (t)si(t)] ≤ 1. (2)

The phase shifts applied by the RIS in the ith sub-block are
denoted by the vector

ejθθθi(t) � (ejθi,1(t), . . . , ejθi,K(t))ᵀ (3)

with θi,k(t) ∈ A being the phase shift applied by the kth RIS
element, k ∈ [K]. Finally, we denote the signal received by
the N antennas for the qth transmitted symbol by yi,q(t) ∈
C

N×1, q ∈ [m]. The overall received signal matrix Yi(t) =
(yi,1(t), . . . ,yi,m(t)) ∈ CN×m in the ith sub-block can hence
be written as

Yi(t) = H(t) diag
�
ejθθθi(t)

�
g(t)γi(t)s

ᵀ
i (t) + Zi(t)

= H̄(t)ejθθθi(t)γi(t)s
ᵀ
i (t) + Zi(t), (4)

where the matrix H̄(t) � H(t) diag(g(t)), whose elements
are i.i.d. CN (0, 1), combines the channels g(t) and H(t);
the scalar γi(t) > 0 denotes the power gain applied to
the transmitted signal si(t), which is subject to the power
constraint

1
�

��
i=1

γ2
i (t) = P (5)

for some P > 0; and the matrix Zi(t) ∈ CN×m, whose
elements are i.i.d. as CN (0, 1), denotes the additive white
Gaussian noise at the receiving antennas. It is worth noting
that the product H̄(t)ejθθθi(t) in (4) can be viewed as an
augmented channel, shaped by the RIS for increasing the
capacity.

Since the message w is encoded onto both transmitted
symbols si(t) and phase shifts θθθi(t), i ∈ [�], t ∈ [n/T ],
we denote the effective channel input as

X̄i(t) � ejθθθi(t)sᵀ
i (t). (6)

With this notation, the channel (4) can be restated as

Yi(t) = γi(t)H̄(t)X̄i(t) + Zi(t). (7)

At first glance, the channel (7) resembles a standard
multiple-antenna wireless communication link [25]. In (7),
however, the input matrix X̄i(t) is rank-one and is chosen
from the finite set

C �
�
X̄ : X̄ =

�
ejθ1 , . . . , ejθK

�ᵀ
sᵀ,

s ∈ Sm×1, θθθ ∈ AK×1
�
. (8)

As a special case, for a fixed RIS reflection pattern θθθi = θθθ
for all i ∈ [�], i.e., when the same phase shift vector is used for
the entire coherence block, the channel input is chosen from
the subset

C(θθθ) �
	

X̄ : X̄ =
�
ejθ1 , . . . , ejθK

�ᵀ
sᵀ, s ∈ Sm×1



. (9)

In the present paper, we study the impact of imperfect
CSI on the achievable rates. In order to characterize the
joint distribution of channel estimation and output signal,
we vectorize the channel matrix H̄(t) and output Yi(t) in
(7) as

h̄(t) � vec(H̄(t)) (10)

and

yi(t) � vec(Yi(t)) = γi(t)X̄⊗
i (t)h̄(t) + zi(t), (11)

respectively, where we have defined the vector zi(t) �
vec(Zi(t)) ∈ CNm×1, and, for any matrix X̄, the matrix X̄⊗

is defined as the Kronecker product

X̄⊗ � X̄ᵀ ⊗ IN . (12)
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Fig. 3. Structure of a coherence block. The first τ sub-blocks in each
coherence block are used for channel estimation.

A. Training and Channel Estimation

As illustrated in Fig. 3, we focus our attention on transmis-
sion schemes in which, for each coherence block t ∈ [n/T ],
the first τ ≥ 0 sub-blocks are used to transmit pilot symbols
known to the receiver. That is, we have

X̄i(t) = X̄i, ∀ i ∈ [τ ], t ∈ [n/T ], (13)

where X̄1, . . . , X̄τ denote the pilot symbols. The pilot sym-
bols satisfy the power constraint

tr(X1:τX∗
1:τ ) ≤ Kmτ, (14)

where we have defined matrix

X1:τ � (X̄1, . . . , X̄τ ) ∈ C1×τ . (15)

As for the transmitter, we assume that either it has no access
to the CSI or that it has access to the receiver’s CSI via a
feedback channel.

The transmission power can vary between the training and
information transmission phases. Accordingly, the power gain
γi(t) in (4) has two levels

γi(t) =
�

γτ for 1 ≤ i ≤ τ,
γd for τ + 1 ≤ i ≤ �.

(16)

The power constraint (5) can hence be restated as

τ

�
γ2

τ +
� − τ

�
γ2

d = P. (17)

Therefore, the vectorized channel output during the training
phase is

y1:τ (t) � (yᵀ
1 (t), . . . ,yᵀ

τ (t))ᵀ = γτX⊗
1:τ h̄(t) + z1:τ (t), (18)

with z1:τ (t) � (zᵀ
1(t), . . . , zᵀ

τ (t))ᵀ ∈ CNmτ×1.
Based on the pilot symbols X1:τ , the receiver estimates the

channel vector h̄(t) using the minimum mean-square error
(MMSE) estimator, which yields ĥ(t) = E

�
h̄(t)|y1:τ (t)


as

the estimate of h̄(t) from the observations y1:τ (t). Since
vectors h̄(t) and y1:τ (t) are jointly Gaussian distributed,
the MMSE estimator can be computed as the linear MMSE
estimator [26], i.e.,

ĥ(t) = γτ (X⊗
1:τ )∗

�
γ2

τX⊗
1:τ (X⊗

1:τ )∗ + INmτ

�−1
y1:τ (t),

(19)

and the estimation error is a Gaussian random vector whose
covariance matrix is

ΓMMSE � E

�
(h̄(t) − ĥ(t))(h̄(t) − ĥ(t))∗

�
= INK

−γ2
τ (X⊗

1:τ)
∗ �

γ2
τX⊗

1:τ (X⊗
1:τ)

∗+INmτ

�−1
X⊗

1:τ . (20)

In order to assess how channel estimation affects the achiev-
able performance, we shall also consider as a benchmark the
case of perfect CSI, which corresponds to the case study in

which the vector ĥ(t) = h̄(t) is available to both the trans-
mitter and receiver as side information without any training
(τ = 0).

B. Channel Encoding

As discussed, in each coherence block, the transmitter
selects the � − τ data sub-blocks

X(t) � (X̄τ+1(t), . . . , X̄�(t)) ∈ C1×(�−τ) (21)

based on the information message w and the channel estimate
ĥ(t), if available. The vectorized channel output in (11),
received over the � − τ data sub-blocks, can be expressed as

y(t) � (yᵀ
τ+1(t), . . . ,y

ᵀ
� (t))ᵀ = γdX⊗(t)h̄(t) + z(t), (22)

with z(t) � (zᵀ
τ+1(t), . . . , z

ᵀ
� (t))ᵀ ∈ CNm(�−τ)×1. Having

received the vector y(t) in (22) for t ∈ [n/T ], the decoder
produces the estimate ŵ = ŵ(y(1), . . . ,y(n/T ),H) based on
the channel estimates H � {ĥ(1), . . . , ĥ(n/T )} in (19).

For a specific choice of training parameters τ , γτ , and X1:τ ,
a rate R(τ, γτ , X1:τ ) is said to be achievable if the probability
of error satisfies the limit Pr(ŵ 	= w) → 0 when the codeword
length grows large, i.e., n → ∞. The corresponding ergodic
capacity C(τ, γτ , X1:τ ) is defined as the maximum over all
achievable rates, i.e.,

C(τ, γτ , X1:τ )
� sup{R(τ, γτ , X1:τ) : R(τ, γτ , X1:τ) is achievable}, (23)

where the supremum is taken over all joint encoding and
decoding schemes. The number of sub-blocks used for training
0 ≤ τ ≤ �, pilot symbols X1:τ , and power-amplifier gain
γτ > 0 can all be optimized to increase the achievable rate.

III. CHANNEL CAPACITY

In this section, we derive the capacity C(τ, γτ , X1:τ )
defined in (23) and we prove that the conventional scheme
that does not encode information in the RIS reflection pattern
is strictly suboptimal. More specifically, this result is proved
in the high-SNR regime by characterizing the gain of the
proposed joint encoding. For finite values of the SNR, on the
other hand, the performance gain is evaluated in Section VI
via numerical experiments.

Most works on RIS-aided systems consider Gaussian code-
books for the transmitted signal si(t). This implies that the
resulting achievable rates are formulated in the standard form
log2(1+SNR), even in the presence of imperfect CSI by using
standard bounds [27]. In contrast, as described in Section II,
we focus our attention on the more practical model in which
the transmitted symbols and the RIS elements’ phase response
take values from finite sets. As a result, standard capacity
expressions of the form log2(1 + SNR) are not applicable,
and standard techniques for bounding the capacity under
imperfect CSI cannot be used. Specifically, lower bounding
the capacity by modeling the residual channel estimation
noise as Gaussian [28], [29] does not hold for finite input
constellations [30]. Therefore, the expressions for the capacity
and achievable rates that we present in this section are more
complex, and require the following definitions.
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Definition 1: The cumulant-generating function (CGF) of a
random variable u is defined as

κr(u) � log2 (E [eru]) , r ∈ R. (24)

The value of the CGF for r = 1 is denoted by κ(u) � κ1(u).
Definition 2: The CGF of a random variable u conditioned

on a random vector x is defined as

κr(u|x) � E [log2 (E [eru|x])] , r ∈ R. (25)

The value of the conditional CGF for r = 1 is denoted by
κ(u|x) � κ1(u|x).

We now derive the capacity for the general case with imper-
fect CSI available at both the transmitter and receiver. In partic-
ular, the capacity is formulated in the form of an optimization
problem with respect to the encoding distribution pX|ĥ(X|ĥ)
of the effective inputs in (21) given the channel estimate ĥ.
To this end, we define the covariance matrix of the received
signal y(t) in (22) conditioned on the channel estimate ĥ(t)
and the input X(t) as

E

�
y(t)y(t)∗ |ĥ(t),X(t)

�
= INm(�−τ)

+ γ2
dX

⊗(t) · ΓMMSE · (X⊗(t))∗

= ΓΓΓ(X(t)), (26)

where, for any matrix X, we have defined the positive semi-
definite matrix ΓΓΓ(X) as

ΓΓΓ(X) � INm(�−τ) + γ2
dX

⊗ · ΓMMSE · (X⊗)∗, (27)

with matrix ΓMMSE defined in (20). We also define the
decomposition

ΓΓΓ(X) = V (X)V (X)∗, (28)

where V (X) is a square root matrix of ΓΓΓ(X).
Proposition 1: When the MMSE estimate ĥ(t) in (19) is

available at both the receiver and transmitter, the capacity of
the channel (22) is given as

C(τ, γτ , X1:τ ) = −N(� − τ)
�

log2(e)

− min
pX|ĥ(X|ĥ):

E[tr(XX∗)]≤Km(�−τ),

X∈C1×(�−τ)

1
m�

κ(u|X1, z, ĥ),

(29)

where the random variable u is defined as

u � ln
� |ΓΓΓ(X1)|
|ΓΓΓ(X2)|

�
−

���V (X1)z + γd

�
X⊗

1 − X⊗
2

�
ĥ
���2

ΓΓΓ(X2)

(30)

with independent random vectors z ∼ CN (0, INm(�−τ)) and
ĥ ∼ CN (0, INK − ΓMMSE), and random matrices X1,X2 ∼
pX|ĥ(X|ĥ) that are conditionally independent given ĥ. Fur-
thermore, for τ ≥ K , we have the high-SNR limit

lim
P→∞

C(τ, γτ , X1:τ ) =
(� − τ) log2 (|C|)

m�
, (31)

which, for a given cardinality S = |S| of the signal con-
stellation, is maximized if the amplitude shift keying (ASK)
modulation is used, i.e.,

S = {σ, 3σ, . . . , (2S − 1)σ}, (32)

where the factor σ �
�

3/[3 + 4(S2 − 1)] ensures a unit
average power constraint. In this case, the high-SNR limit is

lim
P→∞

C(τ, γτ , X1:τ )=
� − τ

m�
[m log2(S)+ K log2(A)] . (33)

Proof: See Appendix A.
Achieving the capacity in (29) generally requires joint

encoding over the codeword symbols si(t) and RIS reflection
variables θθθi(t), for all data sub-blocks i = τ + 1, . . . , �,
t ∈ [n/T ], as well as joint decoding of the message w
at the receiver based on the information encoded over both
si(t) and θθθi(t). In (29), this is specified in the optimiza-
tion over the distribution pX|ĥ(X |ĥ) of the input X(t) =
(X̄τ+1(t), . . . , X̄�(t)) in (21), which, by (6), is a function
of both si(t) and θθθi(t). However, the high-SNR asymptotic
limit in (31) implies that, in the high-SNR regime, capacity
is achieved by using independent random codebooks with
uniform distribution for the codeword symbols s and the RIS
reflection pattern θθθ, and perfect channel estimation can be
obtained by using τ ≥ K pilot sub-blocks.

At a computational level, problem (29) is convex (see
Appendix A), and hence it can be solved by using convex
optimization tools. Moreover, calculating κ(u|X1, z, ĥ) in (29)
involves evaluating the expectation over the random vectors z
and ĥ, and over the random matrices X1 and X2. Since z
and ĥ are continuous random vectors, the former expectation
may be estimated via an empirical average, while the second
requires summing over |C|�−τ terms.

The following two corollaries formulate the capacity under
the assumption of imperfect CSI available only at the receiver,
and under the assumption of perfect CSI available at both the
transmitter and receiver, respectively.

Corollary 1: When the MMSE estimate ĥ(t) in (19) is
available only at the receiver, the capacity of the channel (22)
is given as

CCSIR(τ, γτ , X1:τ )=−N(� − τ)
�

log2(e)−
1

m�
κ(u|X1, z, ĥ),

(34)

where the random variable u is defined as in (30) with
independent random vectors z ∼ CN (0, INm(�−τ)) and ĥ ∼
CN (0, INK − ΓMMSE), and independent random matrices
X1,X2 ∼ pX(X) = 1/|C|�−τ for all X ∈ C1×(�−τ).
Furthermore, for τ ≥ K , we have the high-SNR limit

lim
P→∞

CCSIR(τ, γτ , X1:τ ) =
(� − τ) log2 (|C|)

m�
. (35)

Proof: It follows from the proof of Proposition 1 with the
caveat that, since the channel estimate ĥ is available only at
the receiver, the optimal input distribution pX(X) is uniform.
This is because the channel coefficients in vector h̄ (10) have
uniformly distributed phases (see [31, Sec. VII]).

Prior works [8]–[14] have considered RIS-based modulation
schemes that modulate the RIS reflection pattern indepen-
dently from the transmitted symbols. By Corollary 1, an RIS-
based modulation scheme with independent and uniformly
generated random codebooks for the transmitted symbols and
reflection pattern is optimal when the transmitter has no access
to CSI, and hence it cannot use the RIS for beamforming.
Furthermore, since the high-SNR limits in Proposition 1 and
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Corollary 1 are equal, the availability of the CSI at the
transmitter does not increase the capacity in the high-SNR
regime.

Corollary 2 [23, Proposition 1]: When perfect CSI is
available at both the receiver and transmitter, the capacity of
the channel (22) is given as

Cperfect = −N log2(e) − min
pX̄|h̄(X̄|h̄):

E[tr(X̄X̄∗)]≤Km,
X̄∈C

1
m

κ(ũ|X̄1, z, h̄),

(36)

where the random variable ũ is defined as

ũ � − ��z + γd

�
X̄⊗

1 − X̄⊗
2

�
h̄
��2

(37)

with independent random vectors z ∼ CN (0, INm), h̄ ∼
CN (0, INK), and random matrices X̄1, X̄2 ∼ pX̄|h̄(X̄|h̄)
that are conditionally independent given h̄. Furthermore,
we have the high-SNR limit limP→∞ Cperfect = log2(|C|)/m.

Proof: See Appendix B.
As shown in Appendix B, for perfect CSI, i.e., for ĥ(t) =

h̄(t), i.i.d. random coding across sub-blocks is optimal,
which is reflected in the optimization over the distribution
pX̄|h̄(X̄|h̄) with X̄ ∈ C in (36). This is because, when both
transmitter and receiver know the CSI h̄(t), the channel in
(11) can be viewed as � parallel Gaussian channels, for which
independent encoding of the channels’ input and separate
decoding of each output is optimal [32, Ch. 9.4].

A. Max-SNR Approach

Having observed that achieving the capacity generally
requires joint encoding of data over the codeword symbols
and the RIS reflection pattern, we now consider the standard
approach in which the reflection pattern of the RIS is fixed
for all data sub-blocks i = τ + 1, . . . , �, of the fading block t,
irrespective of the message w, i.e., θθθi(t) = θθθ(t). We denote
the fixed RIS reflection pattern by θθθ(ĥ) to emphasize that it
is chosen based on the channel estimate ĥ to maximize the
achievable rate, and we have the following result.

Proposition 2: When the MMSE estimate ĥ in (19) is
available at both the receiver and transmitter, an encoding
scheme that selects the phase shift vector θθθ(ĥ) as a function
of ĥ achieves the rate

Rmax-SNR(τ, γτ , X1:τ )

= −N(� − τ)
�

log2(e)

− min
θθθ(ĥ):

θθθ(ĥ)∈AK×1

min
pX|ĥ(X|ĥ):

E[tr(XX∗)]≤Km(�−τ),

X∈C(θθθ(ĥ))1×(�−τ)

1
m�

κ(u|X1, z, ĥ), (38)

where the random variable u is defined as in (30) with
independent random vectors z ∼ CN (0, INm(�−τ)), ĥ ∼
CN (0, INK − ΓMMSE), and random matrices X1,X2 ∼
pX|ĥ(X|ĥ) that are conditionally independent given ĥ. Fur-
thermore, for τ ≥ 1, we have the high-SNR limit

lim
P→∞

Rmax-SNR(τ, γτ , X1:τ ) =
(� − τ) log2(S)

�
. (39)

Proof: For a fixed RIS reflection pattern θθθi(t) = θθθ(ĥ(t))
with i = τ + 1, . . . , �, the channel input X(t) in (22) is
restricted to the finite set C(θθθ(ĥ(t)))1×(�−τ) in (9). Therefore,
the result follows from Proposition 1 by restricting the input
such that only the codeword symbols vary over the data sub-
blocks. In (38), this is reflected in the optimization over the
distribution pX|ĥ(X|ĥ) with X ∈ C(θθθ(ĥ))1×(�−τ), where the

RIS reflection pattern θθθ(ĥ) is fixed. In addition, the limit (39)
follows from (31) since, for any fixed RIS reflection pattern
θθθ(ĥ), we have |C(θθθ(ĥ))| = Sm.

The limit in (39) implies that, in the high-SNR regime,
the rate of the max-SNR scheme is limited to (�−τ) log2(S)/�.
This is because, in each coherence block, the information
data is modulated solely onto the m(� − τ) codeword sym-
bols, which are selected from a constellation S of S points.
By comparing (39) with (31), we evince that, for any phase
response set A of A distinct phases, modulating the RIS
reflection pattern can be used to increase the achievable rate
by additional K(� − τ) log2(A)/(m�) bits per symbol as
compared to the max-SNR scheme. However, note that the
max-SNR scheme can achieve the high-SNR rate (39) by
fixing the RIS reflection pattern irrespective of the CSI and
estimating only the effective channel from the transmitter
to the receiver. Therefore, the max-SNR approach requires
only τ ≥ 1 pilot symbols to achieve the high-SNR limit
in (39), whereas joint encoding achieves the limit in (31)
with τ ≥ K pilot symbols. For finite values of the SNR,
the achievable rate in (38) can be computed by combining
convex optimization tools for the inner minimization problem
and global optimization tools for the minimization over the set
of discrete phase shifts. The corresponding performance loss
is evaluated in Section VI via numerical experiments.

The rates achieved for imperfect CSI available only at the
receiver and for perfect CSI available at both the transmitter
and receiver are given in the following two corollaries, respec-
tively.

Corollary 3: When the MMSE estimate ĥ in (19) is avail-
able only at the receiver, a transmission scheme in which the
phase shift vector θθθ is kept fixed achieves the rate

RCSIR
max-SNR(τ, γτ , X1:τ ) = −N(� − τ)

�
log2(e)

− min
θθθ:θθθ∈AK×1

1
m�

κ(u|X1, z, ĥ), (40)

where the random variable u is defined as in (30) with
independent random vectors z ∼ CN (0, INm(�−τ)) and ĥ ∼
CN (0, INK − ΓMMSE), and independent random matrices
X1,X2 ∼ pX(X) = 1/|C(θθθ)|�−τ for all X ∈ C(θθθ)1×(�−τ).
Furthermore, for τ ≥ 1, we have the high-SNR limit

lim
P→∞

RCSIR
max-SNR(τ, γτ , X1:τ ) =

(� − τ) log2(S)
�

. (41)

Proof: It follows from the proof of Proposition 2 with the
caveat that, since the channel estimate ĥ is available only at
the receiver, the optimal input distribution pX(X) is uniform.
This is because the channel coefficients in vector h̄ (10) have
uniformly distributed phases (see [31, Sec. VII]).

Corollary 4 [23, Proposition 2]: When the CSI is perfectly
available at both the receiver and transmitter, a transmission
scheme that selects the phase shift vector θθθ(h̄) as a function
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of h̄ achieves the rate

Rperfect
max-SNR = −N log2(e)

− min
θθθ(h̄):

θθθ(h̄)∈AK×1

min
pX̄|h̄(X̄|h̄):

E[tr(X̄X̄∗)]≤Km,
X̄∈C(θθθ(h̄))

1
m

κ(ũ|X̄1, z, h̄),

(42)

where the random variable ũ is defined as in (37) with inde-
pendent random vectors z ∼ CN (0, INm), h̄ ∼ CN (0, INK),
and random matrices X̄1, X̄2 ∼ pX̄|h̄(X̄ |h̄) that are condi-
tionally independent given h̄. Furthermore, we have the high-
SNR limit limP→∞ Rperfect

max-SNR = log2(S).
Proof: Similar to the proof of Proposition 2, it follows

from Corollary 2 by restricting the input such that only the
codeword symbols vary over the data sub-blocks, whereas the
RIS reflection is fixed.

IV. LAYERED ENCODING

As discussed, achieving the capacity in (29) requires jointly
encoding the message over the phase shift vector θθθi(t)
and the transmitted signal si(t), while performing optimal,
i.e., maximum-likelihood joint decoding at the receiver. This
may be infeasible in some communication networks. There-
fore, in this section, we propose a strategy based on layered
encoding and successive cancellation decoding (SCD) that
uses only standard separate encoding and decoding procedures,
while still benefiting from the modulation of information onto
the state of the RIS so as to enhance the achievable rate
compared with the max-SNR scheme.

To this end, the message w is split into two sub-messages,
or layers, w1 and w2, such that w1, of rate R1, is encoded
onto the phase shift vectors θθθi(t) ∈ AK , whereas w2,
of rate R2, is encoded onto the transmitted signals si(t) =
(si,1(t), . . . , si,m(t))ᵀ, for i = τ + 1, . . . , � and t ∈ [n/T ].
In order to enable decoding using standard SCD, the first
μ ≥ 1 symbols in the vectors si(t) are fixed and used as
additional pilot symbols. In particular, we have

si,q(t) ≡ 1, i = τ + 1, . . . , �, q ∈ [μ], t ∈ [n/T ]. (43)

It is worth clarifying that the pilot symbols discussed in
Section II-A are employed for channel estimation, while the
additional pilot symbols introduced in this section facilitate
the separate decoding of the two layers, as detailed next.
The pilot symbols in (43) are necessary because the channel
estimation pilot symbols cannot be used for SCD since both
the transmitted symbols and RIS reflection pattern are fixed
during the channel estimation phase.

By averaging the first μ columns of the received signal
matrix Yi(t) in (7), we obtain

ȳi(t) � 1√
μ

μ�
q=1

yi,q(t) =
√

μγdH(t)ejθθθi(t) + z̄i(t), (44)

where we have defined random vector z̄i(t) ∼ CN (0, IN ).
The receiver decodes layer w1 based on the received matrix
Ȳ(t) � (ȳτ+1(t), . . . , ȳ�(t)), which, from (44), can be
expressed as

Ȳ(t) = γdH(t)Q(t) + Z̄(t), (45)

where we have defined the matrix Z̄(t) �
(z̄τ+1(t), . . . , z̄�(t)) ∈ CN×(�−τ), whose elements are
i.i.d. with distribution CN (0, 1), and the phase shift matrix

Q(t) �

⎛
⎜⎝
√

μejθτ+1,1(t) · · · √μejθ�,1(t)

...
. . .

...√
μejθτ+1,K(t) · · · √μejθ�,K(t)

⎞
⎟⎠ , (46)

which is selected from the set

Q(� − τ) �
	

Q ∈ C
K×(�−τ) : Qk,i =

√
μejθi,k , θi,k ∈ A,

k ∈ [K], i = τ + 1, . . . , �


. (47)

By direct inspection of (45), we evince that it depends
only of the RIS phase shifts, and hence layer w1 can be
separately decoded. Once layer w1 is decoded, the receiver
reconstructs the phase shift vectors θθθi(t), which are then used
to decode layer w2. This strategy achieves the rate detailed in
Proposition 3.

Proposition 3: A strategy based on layered encoding and
SCD achieves the rate

Rlayered(τ, γτ , X1:τ , μ) = R1(τ, γτ , X1:τ , μ)
+ R2(τ, γτ , X1:τ , μ), (48)

where the rate R1(τ, γτ , X1:τ , μ) is defined as

R1(τ, γτ , X1:τ , μ) = −N(� − τ)
m�

log2(e)

− 1
m�

κ(u1|Q1, z̄, ĥ) (49)

with the random variable u1

u1 � ln
� |ΓΓΓ(Q1)|
|ΓΓΓ(Q2)|

�
−

���V (Q1)z̄ + γd

�
Q⊗

1 − Q⊗
2

�
ĥ
���2

ΓΓΓ(Q2)

(50)

defined by independent random vectors z̄ ∼ CN (0, IN(�−τ))
and ĥ ∼ CN (0, INK − ΓMMSE), and independent ran-
dom matrices Q1,Q2 ∼ pQ(Q) = 1/AK(�−τ) for all
Q ∈ Q(�−τ); and where the rate R2(τ, γτ , X1:τ , μ) is defined
as

R2(τ, γτ , X1:τ , μ) = −N(m − μ)(� − τ)
m�

log2(e)

− 1
m�

κ(u2|X̌1, ž, ĥ,θθθτ+1, . . . ,θθθ�) (51)

with the random variable u2

u2 � ln
� |ΓΓΓ(X̌1)|
|ΓΓΓ(X̌2)|

�
−

���V (X̌1)ž + γd

�
X̌⊗

1 − X̌⊗
2

�
ĥ
���2

ΓΓΓ(X̌2)

(52)

defined by independent random vectors ž ∼
CN (0, IN(m−μ)(�−τ)), ĥ ∼ CN (0, INK − ΓMMSE),
θθθτ+1, . . . ,θθθ� ∼ pθθθ(θθθ) = 1/AK for all θθθ ∈ AK ,
and independent random matrices X̌1, X̌2 ∼
pX̌|θθθτ+1,...,θθθ�

(X̌ |θθθτ+1, . . . , θθθ�) = 1/S(m−μ)(�−τ) for all
X̌ ∈ C(θθθτ+1, . . . , θθθ�; μ) with

C(θθθτ+1, . . . , θθθ�; μ) �
	

X̌ : X̌ = (ejθθθτ+1 šᵀ
τ+1, . . . , e

jθθθ� šᵀ
� ),

ši ∈ S(m−μ)×1, i = τ + 1, . . . , �


.

(53)
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Furthermore, for τ ≥ K , we obtain the high-SNR limit

lim
P→∞

Rlayered(τ, γτ , X1:τ , μ)

=
� − τ

m�
[(m − μ) log2 (S) + K log2 (A)] . (54)

Proof: See Appendix C.
Note that the layered encoding scheme does not require

CSI at the transmitter (CSIT) since both layers are encoded
independently from the channel estimate ĥ. In addition, while
the rate of the first layer increases with the number of
additional pilots μ due to the averaging in (44), the rate of
the second layer decreases as μ increases since fewer symbols
at each sub-block can be used to encode sub-message w2.
Therefore, in order to maximize the achievable rate in (48),
the number of pilots μ should be optimized. However, for
sufficiently high SNR, the limit in (54) implies that setting
μ = 1 maximizes the achievable rate. The rate achieved by
the proposed layered strategy in the case of perfect CSI is
derived in the following corollary.

Corollary 5 [23, Proposition 4]: Under the assumption that
perfect CSI is available at the receiver, a strategy based on
layered encoding and SCD achieves the rate

Rperfect
layered(μ) = Rperfect

1 (μ) + Rperfect
2 (μ), (55)

where the rate Rperfect
1 (μ) is defined as

Rperfect
1 (μ) = −N

m
log2(e) −

1
m

κ(ũ1|Q1, z̄, h̄) (56)

with the random variable u1

ũ1 � − ��z̄ + γd

�
Q⊗

1 − Q⊗
2

�
h̄
��2

(57)

defined by independent random vectors z̄ ∼ CN (0, IN )
and h̄ ∼ CN (0, INK), and independent random matrices
Q1,Q2 ∼ pQ(Q) = 1/AK for all Q ∈ Q(1) (47); and where
the rate Rperfect

2 (μ) is defined as

Rperfect
2 (μ) = −N(m − μ)

m
log2(e) −

1
m

κ(ũ2|X̌1, ž, h̄,θθθ)

(58)

with the random variable u2

ũ2 � − ��ž + γd

�
X̌⊗

1 − X̌⊗
2

�
h̄
��2

(59)

defined by independent random vectors ž ∼ CN (0, IN(m−μ)),
h̄ ∼ CN (0, INK), θθθ ∼ pθθθ(θθθ) = 1/AK for all θθθ ∈ AK ,
and independent random matrices X̌1, X̌2 ∼ pX̌|θθθ(X̌|θθθ) =
1/S(m−μ) for all X̌ ∈ C(θθθ; μ) (53).

Proof: Similar to the proof of Corollary 2, it follows from
the proof of Proposition 3 by noting that, for perfect CSI,
i.e., ĥ(t) = h̄(t) and τ = 0, separate decoding of the sub-
blocks is optimal.

V. LOWER BOUNDS

As discussed in the previous sections, calculating the capac-
ity and achievable rates typically requires the evaluation of
expectations over Gaussian random vectors and over discrete
random matrices whose size increases exponentially with �−τ .
This makes the evaluation numerically difficult for long coher-
ence blocks. Furthermore, unlike the Gaussian vectors that

have a known distribution, the input distribution of the random
matrices needs to be numerically optimized. This implies that
the standard method for estimating the expectations via empiri-
cal averages cannot be applied to the discrete random matrices,
and hence estimating the expectations from a small number of
samples requires methods such as the Monte Carlo gradient
estimation [33]. In this section, we take a different approach
and present lower bounds on the capacity and achievable rates
that require summing over a fixed number of terms that does
not increase with the number of sub-blocks �, which simplifies
the exact calculation of the bounds.

A. Lower Bounds for Optimal Signalling and Max-SNR

Proposition 4: When the MMSE estimate ĥ in
(19) is available at both the receiver and transmitter,
the capacity in Proposition 1 and the rate achieved
by the max-SNR scheme in Proposition 2 are lower
bounded as C(τ, γτ , X1:τ ) ≥ C(τ, γτ , X1:τ ) and
Rmax-SNR(τ, γτ , X1:τ ) ≥ Rmax-SNR(τ, γτ , X1:τ ), respectively,
where

C(τ, γτ , X1:τ ) � −N(� − τ)
�

log2(e)

− min
pX̄|ĥ(X̄|ĥ):

E[tr(X̄X̄∗)]≤Km,
X̄∈C

� − τ

m�
κ(u|X̄1, z, ĥ),

(60)

and

Rmax-SNR(τ, γτ , X1:τ )

� −N(� − τ)
�

log2(e)

− min
θθθ(ĥ):

θθθ(ĥ)∈AK×1

min
pX̄|ĥ(X̄|ĥ):

E[tr(X̄X̄∗)]≤Km,

X̄∈C(θθθ(ĥ))

� − τ

m�
κ(u|X̄1, z, ĥ). (61)

The random variable u in (60) and (61) is defined as in
(30) with independent random vectors z ∼ CN (0, INm),
ĥ ∼ CN (0, INK − ΓMMSE), and random matrices X̄1, X̄2 ∼
pX̄|ĥ(X̄ |ĥ) that are conditionally independent given ĥ.

Proof: See Appendix D.
As detailed in Appendix D, the lower bounds in

Proposition 4 correspond to rates achievable when the sub-
blocks X̄i ∈ C, i = τ + 1, . . . , �, are encoded and decoded
separately. This is in contrast to the optimal strategy pre-
sented in Proposition 1 that jointly decodes all data sub-
blocks inputs (X̄τ+1, . . . , X̄�) ∈ C�−τ from the channel
outputs yτ+1, . . . ,y�. The key computational advantage of
the lower bounds is that evaluating the expectations over the
discrete random matrices X1 and X2 defined in Proposition 1
requires summing over |C|�−τ terms, whereas evaluating the
expectations in the lower bound (60) requires summing over
|C| terms, which is exponentially smaller.

In addition, as shown in Appendix D, for perfect CSI,
i.e., ĥ(t) = h̄(t) and τ = 0, the lower bounds in Proposition 4
coincide with the capacity and achievable rates in Corollary 2
and Corollary 4. This is because, for perfect channel esti-
mation, independent encoding of the sub-blocks is optimal.
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Therefore, based on this result, the lower bounds are expected
to be close to the capacity when channel estimation is accurate,
e.g., for τ ≥ K and for sufficiently high SNR, as demonstrated
in Section VI via numerical experiments.

The corresponding lower bounds on capacity and rate
achieved by the max-SNR scheme under the assumptions of
imperfect CSI available only at the receiver are formulated in
the following corollary.

Corollary 6: When the MMSE estimate ĥ in (19) is avail-
able only at the receiver, the capacity in Corollary 1 and the
rate achieved by the max-SNR scheme in Corollary 3 are lower
bounded as CCSIR(τ, γτ , X1:τ ) ≥ CCSIR(τ, γτ , X1:τ ) and
RCSIR

max-SNR(τ, γτ , X1:τ ) ≥ RCSIR
max-SNR(τ, γτ , X1:τ ), respectively,

where

CCSIR(τ, γτ , X1:τ ) � −N(� − τ)
�

log2(e)

− � − τ

m�
κ(u|X̄1, z, ĥ) (62)

and

RCSIR
max-SNR(τ, γτ , X1:τ ) � −N(� − τ)

�
log2(e)

− min
θθθ:θθθ∈AK×1

� − τ

m�
κ(u|X̄1, z, ĥ).

(63)

The random variable u in (62) and (63) is defined as in
(30) with independent random vectors z ∼ CN (0, INm)
and ĥ ∼ CN (0, INK − ΓMMSE), and independent random
matrices X̄1, X̄2 ∼ pX̄(X̄), where pX̄(X̄) = 1/|C| in (62)
and pX̄(X̄) = 1/|C(θθθ)| in (63).

Proof: It follows from the proof of Proposition 4 with the
caveat that, since the channel estimate ĥ is available only at
the receiver, the optimal input distribution pX(X) is uniform.
This is because the channel coefficients in vector h̄ (10) have
uniformly distributed phases (see [31, Sec. VII]).

B. Lower Bound for Layered Encoding

Similar to Proposition 4, we derive a lower bound on the
rate achieved by the layered-encoding scheme introduced in
Section IV.

Proposition 5: The achievable rate of the layered encod-
ing scheme introduced in Section IV is lower bounded as
Rlayered(τ, γτ , X1:τ , μ) ≥ Rlayered(τ, γτ , X1:τ , μ) with

Rlayered(τ, γτ , X1:τ , μ) � − � − τ

m�

�
N(m + 1 − μ) log2(e)

+ κ(u1|Q1, z̄, ĥ)
+ κ(u2|X̌1, ž, ĥ,θθθ)


, (64)

where the random variable u1 is defined as in (50) with
independent random vectors z̄ ∼ CN (0, IN ) and ĥ ∼
CN (0, INK − ΓMMSE), and independent random matrices
Q1,Q2 ∼ pQ(Q) = 1/AK for all Q ∈ Q(1); and where
the random variable u2 is defined as in (52) with independent
random vectors ž ∼ CN (0, IN(m−μ)), ĥ ∼ CN (0, INK −
ΓMMSE), θθθ ∼ pθθθ(θθθ) = 1/AK for all θθθ ∈ AK , and independent
random matrices X̌1, X̌2 ∼ pX̌|θθθ(X̌ |θθθ) = 1/S(m−μ) for all
X̌ ∈ �

X̌ : X̌ = ejθθθ šᵀ, š ∈ S(m−μ)×1
�

.
Proof: See Appendix E.

Note that, similar to the capacity and rate achieved by the
max-SNR scheme, the lower bound in Proposition 5 coincides
with the achievable rate in Corollary 5 for perfect CSI.

VI. NUMERICAL RESULTS

In this section, we illustrate and discuss numerical examples
with the main aims of (i) comparing the capacity achieved
by the proposed joint encoding scheme with the achievable
rates attained by the max-SNR and the layered encoding
schemes, and (ii) assessing the impact of imperfect CSI. For
the phase response set, we consider A uniformly spaced phases
in the set A � {0, 2π/A, . . . , 2π(A− 1)/A}, whereas, for the
input constellation, we consider ASK, which was shown to
maximize the capacity in the high-SNR regime (Proposition 1),
and PSK modulations. In addition, we set an equal power
for training and data sub-blocks, i.e., γτ = γd =

√
P , and

optimize the channel estimation by testing all pilot symbols
X1:τ ∈ C1×τ that satisfy the power constraint in (14). More-
over, the empirical average over Gaussian random vectors,
e.g., ĥ and z in Proposition 1, is evaluated via a Monte Carlo
method, and the optimal input distributions, e.g., pX|ĥ(X|ĥ)
in Proposition 1, are numerically calculated using the fmincon
function in MATLAB.

We limit our investigation to small number of RIS elements
K in order to numerically evaluate the capacity and lower
bound without requiring excessive computing power for opti-
mizing the input distribution in (29) and (60), respectively. It is
noted that the complexity of optimizing the input distribution
does not reflect the implementation complexity at run time. For
instance, as discussed in Section III, in some regimes, uniform
distributions are optimal, which can be realized with standard
codes. More generally, when the distribution is not uniform,
probability shaping methods can be leveraged [34]. Based on
the high-SNR analysis in Proposition 1, we can conclude that
the capacity increases linearly with the number of elements
K for sufficiently high SNR and a sufficiently long coherence
block. We postpone the numerical analysis with larger K to
future works.

On the role of the SNR level. In Fig. 4, we plot the rate as
a function of the average power P , with � = 4 sub-blocks of
which τ = 2 sub-blocks are used for channel estimation, N =
2 receive antennas, K = 2 RIS elements, A = 2 available
phase shifts, a symbol-to-RIS control rate m = 1, and an input
constellation given by the 4-ASK S = {σ, 3σ, 5σ, 7σ} with
σ = 1/

√
21. For very low SNR, i.e., less than −20dB, it is

observed that the max-SNR approach is close to being optimal,
and hence, in this regime, encoding information in the RIS
reflection pattern does not increase the rate. For larger SNR
levels of practical interest, however, joint encoding provides a
significant gain over the max-SNR scheme.

It is also observed that CSIT is unnecessary for very low or
very high SNR levels. This is because, at low SNR, the channel
estimate is poor and cannot be applied for beamforming,
whereas, at high SNR, beamforming, which is used to increase
SNR, is unnecessary. In addition, the lower bounds presented
in Section V are shown to be close to the achievable rates.

Optimal number of pilot symbols. In Fig. 5, we plot the
lower bounds on the rate as a function of the number of
training sub-blocks τ with � = 20 sub-blocks in each coher-
ence block, N = 2 receive antennas, K = 4 RIS elements,
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Fig. 4. Rates as a function of the normalized power P [dB] for � = 4,
τ = 2, N = 2, K = 2, A = 2, m = 1, and 4-ASK input constellation.

Fig. 5. Rate lower bounds as a function of the number of training sub-blocks
τ for � = 20, N = 2, K = 4, A = 2, m = 1, P = 40 dB, and 4-ASK
input constellation.

A = 2 available phase shifts, a symbol-to-RIS control rate
m = 1, an average power constraint of P = 40 dB, and an
input constellation given by 4-ASK. Note that we plot the
lower bounds and not the exact expressions since evaluating
the capacity requires summing over the set of channel inputs
X whose size is |C|�−τ = (AK · Sm)�−τ = 2120−6τ , which
is not feasible. It is observed that the lower bound on the
capacity increases with τ up to τ = 4, and then decreases. This
is because increasing the number of pilot symbols improves
the channel estimation accuracy on the one hand, but on
the other hand leaves fewer sub-blocks for transmitting data.
In addition, joint encoding is shown to require a more accurate
channel estimation compared to the max-SNR scheme with
CSIT, for which allocating τ = 1 pilot is optimal. Comparing
the penalty of channel estimation between the joint encoding
strategy and the max-SNR scheme, we observe that the gap
is larger for joint encoding since a higher percentage of
the coherence block is used to obtain a sufficient channel
estimation accuracy.

As seen in Fig. 5, the capacity-achieving joint encoding
strategy requires a better channel estimation compared to
the max-SNR scheme. However, for short coherence blocks,

Fig. 6. Rate lower bounds as a function of the number of sub-blocks � for
N = 1, K = 4, A = 2, m = 1, P = 10 dB, and 4-ASK input constellation.

acquiring sufficiently good channel estimation might not be
feasible and the gain of joint encoding is expected to decrease.
This is illustrated in Fig. 6, where we plot the lower bounds
on the rate as a function of the number of sub-blocks � with
N = 2 receive antennas, K = 4 RIS elements, A = 2
available phase shifts, a symbol-to-RIS control rate m = 1,
an average power constraint of P = 10 dB, and an input
constellation given by 4-ASK. For each value of �, the lower
bounds are optimized over τ = 0, . . . , �−1. For fast-changing
channels, the gain of joint encoding is shown to be low.
Moreover, without CSIT, the max-SNR scheme is optimal for
� ≤ 2. In addition, Fig. 6 demonstrates the dependence of the
optimal input distribution on the channel estimation quality.
Specifically, for � = 1 and � = 10, i.e., when very poor or very
good channel estimation can be obtained with minor overhead
relative to the coherence block, uniform signalling is shown
to achieve a close-to-optimal rate, whereas, for intermediate
coherence blocks, joint encoding over the transmitted signal
and RIS reflection pattern is required to achieve the capacity.

On the number of receive antennas. In Fig. 7, we plot
the lower bounds on the rate as a function of the number
of receive antennas N with � = 30 sub-blocks of which
τ = 6 sub-blocks are used for channel estimation, K = 6
RIS elements, A = 2 available phase shifts, a symbol-to-
RIS control rate m = 1, an average power constraint of
P = 10 dB, and an input constellation given by 2-ASK
S = {σ, 3σ} with σ = 1/

√
5. While both capacity and rate

achieved by the max-SNR scheme increase with the number
of receive antennas, the effect is more prominent for joint
encoding since, for the max-SNR scheme, spatial multiplexing
is restricted by the number of transmit antennas, whereas, for
joint encoding, spatial multiplexing is restricted by the number
of RIS elements.

Layered Encoding. In Fig. 8, we compare the rate achieved
by layered encoding to that of the max-SNR method and to the
capacity by plotting the lower bounds on the rate as a function
of the average power P , with � = 50 sub-blocks of which
τ = 3 sub-blocks are used for channel estimation, N = 2
receive antennas, K = 3 RIS elements, A = 2 available
phase shifts, a symbol-to-RIS control rate m = 2, and input
constellation given by 4-ASK or QPSK S = {±1,±i}. For
layered encoding, we set μ = 1 pilot, which was seen to
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Fig. 7. Rate lower bounds as a function of the number of receive antennas
N for � = 30, τ = 6, K = 6, A = 2, m = 1, P = 10 dB, and 2-ASK
input constellation.

Fig. 8. Rate lower bounds as a function of the normalized power P [dB]
for � = 50, τ = 3, N = 2, K = 3, A = 2, m = 2, μ = 1, and 4-ASK or
QPSK input constellation.

maximize the rate in this experiment. It is observed that, for
sufficiently high SNR, the layered-encoding scheme improves
the rate over the max-SNR approach, whereas, for low SNR
and QPSK input constellation, the max-SNR approach is
favorable. This is because layered encoding is beneficial when
the rate gained from modulating the reflection pattern is higher
than the rate loss caused by fixing additional pilot symbols.
Note that, in the high-SNR regime, as apparent from the limits
in (39) and (54), layered encoding achieves a higher rate when
K log2(A) > μ log2(S). In addition, while PSK outperforms
ASK when used with the max-SNR and layered-encoding
schemes, the opposite is true with joint encoding in the high-
SNR regime. In fact, as discussed in Proposition 1, in the
high-SNR regime, out of all finite input sets S with the same
size, ASK achieves the maximum capacity.

On the RIS control rate. The gain of using the state of the
RIS as a medium for conveying information is expected to
decrease as the rate of the control link from the transmitter to
the RIS decreases. This is illustrated in Fig. 9, where we plot
the rate with perfect CSI at both the transmitter and receiver
as a function of the RIS control rate factor m, with N = 2

Fig. 9. Rates with perfect CSI as a function of the RIS control rate factor
m for N = 2, K = 2, A = 2, P = 40 dB, μ = 1, and 2-ASK input
constellation.

receive antennas, K = 2 RIS elements, A = 2 available phase
shifts, an average power constraint of P = 40 dB, and an input
constellation 2-ASK. Note that the performance of the layered-
encoding scheme improves from m = 1 to m = 2 since, for
m = 1, the transmitted symbol in each sub-block is used as a
pilot, and hence only the first layer carries information. It is
observed that joint encoding achieves three times the rate of
max-SNR for m = 1, but the gain reduces to a factor of 1.3 for
m = 7.

VII. CONCLUSION

In this work, we have studied the capacity of an RIS-
aided system. We focused on a fundamental model with one
transmitter and one receiver, where the CSI is acquired through
pilot-assisted channel estimation. The common approach of
using the RIS as a passive beamformer to maximize the
achievable rate was shown to be generally suboptimal in terms
of the achievable rate for finite input constellations, especially
for slowly-changing channels. Instead, the capacity-achieving
scheme was proved to jointly encode information in the RIS
reflection pattern as well as in the transmitted signal. While the
optimal scheme was shown to require a more accurate channel
estimation compared to the max-SNR approach, the gain of
encoding information in the reflection pattern of the RIS
was demonstrated to be significant for a sufficiently high
RIS control rate. In addition, a suboptimal, yet practical,
strategy based on separate layered encoding and successive
cancellation decoding was demonstrated to outperform passive
beamforming for sufficiently high SNR levels, and motivates
RIS-based modulation design [8]–[14] for single-RF MIMO
communication.

Among related problems left open by this study, we mention
the design of low-complexity joint encoding and decoding
strategies that approach capacity; the derivation of the capacity
for channels with direct link from the transmitter to the
receiver and a fading link from the transmitter to the RIS,
for noisy RIS [35], and for RIS with mutual coupling [24]; as
well as extensions to RIS systems with multiple users/surfaces
[36] or with security constraints [37]. Another related problem
is finding the optimal input distribution for a slowly fading
channel with CSI only at the receiver [38].
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APPENDIX

A. Proof of Proposition 1

The model in (22) can be viewed as a standard channel
with input X, output y, and known CSI ĥ. This is because the
transmitter directly controls the states of the RIS θi(t) and the
transmitted symbols si(t) for i ∈ [�] and t ∈ [n/m]. Therefore,
it follows, from the channel coding theorem [32, Ch. 7], [39,
Ch. 7.4.1], that the ergodic capacity can be expressed as

C(τ, γτ , X1:τ ) = max
pX|ĥ(X|ĥ):

E[tr(XX∗)]≤Km(�−τ),

X∈C1×(�−τ)

1
m�

I(X;y|ĥ). (65)

The mutual information I(X;y|ĥ) in (65) can be written as
I(X;y|ĥ) = h(y|ĥ)−h(y|ĥ,X). In addition, the conditional
probability density function of the output y given the estimate
ĥ and input X is

py|ĥ,X(y|ĥ, X)

=
1

πNm(�−τ)|ΓΓΓ(X)| exp
�
−

���y − γdX
⊗ĥ

���2

ΓΓΓ(X)

�
, (66)

where the covariance matrix ΓΓΓ(X) is defined in (27). There-
fore, the conditional differential entropy h(y|ĥ,X) is given
as

h(y|ĥ,X)
= Nm(� − τ) log2(πe)

+
�

CNK×1
pĥ(ĥ)

�
X∈C1×(�−τ)

pX|ĥ(X |ĥ) log2 det (ΓΓΓ(X)) dĥ,

(67)

and the conditional differential entropy h(y|ĥ) can be
expressed as (see, e.g., [40, Eq. (3)] and [41, Eq. (4)])

h(y|ĥ)
= Nm(� − τ) log2(π)

−
�

CNK×1
pĥ(ĥ)

�
CNm(�−τ)×1

pz(z)
�

X1∈C1×(�−τ)

pX|ĥ(X1|ĥ)

log2

⎛
⎝ �

X2∈C1×(�−τ)

pX|ĥ(X2|ĥ)

|ΓΓΓ(X1)| eu

⎞
⎠dz dĥ (68)

with z ∼ CN (0, INm(�−τ)) and where we have defined the
scalar

u � ln
� |ΓΓΓ(X1)|
|ΓΓΓ(X2)|

�

−
���V (X1)z + γd

�
X⊗

1 − X⊗
2

�
ĥ

���2

ΓΓΓ(X2)
. (69)

Overall, by subtracting (67) from (68) and applying the
conditional CGF definition in (25), we get (29). Note that
the mutual information I(X;y|ĥ) is a concave function of
pX|ĥ(X|ĥ) for fixed py|ĥ,X(y|ĥ, X) [32, Theorem 2.7.4].
Therefore, problem (65) can be solved using convex optimiza-
tion tools.

In the high-SNR regime, the channel can be perfectly
estimated if τ ≥ K , and hence we have the limit

lim
P→∞

I(X;y|ĥ) = H(X|ĥ) ≤ H(X) ≤ (� − τ) log2(|C|),
(70)

where the equality is achieved for a uniform distribution
pX|ĥ(X |ĥ) = 1/|C|�−τ . Furthermore, the cardinality of the
set C in (8) is upper bounded as |C| ≤ SmAK , where the
equality is achieved for the ASK input constellation.

B. Proof of Corollary 2

For perfect CSI, i.e., ĥ(t) = h̄(t) and τ = 0, the mutual
information I(X;y|ĥ) in (65) can be upper bounded as

I(X;y|ĥ) = I(X;y|h̄)
= h(y1, . . . ,y�|h̄) − h(y1, . . . ,y�|h̄, X̄1, . . . , X̄�)

(a)=
��

i=1

�
h(yi|h̄,y1, . . . ,yi−1)

−h(yi|h̄, X̄1, . . . , X̄�,y1, . . . ,yi−1)


(b)=
��

i=1

�
h(yi|h̄,y1, . . . ,yi−1) − h(yi|h̄, X̄i)



(c)≤
��

i=1

�
h(yi|h̄) − h(yi|h̄, X̄i)



=
��

i=1

I(X̄i;yi|h̄), (71)

where the equality (a) follows from the chain rule for differ-
ential entropy [32, Thm. 8.6.2]; the equality (b) holds since,
given the channel vector h̄ and input X̄i, the channel output
yi in (11), for sub-block i ∈ [�], is independent of the other
channel outputs and inputs; and the inequality (c) is due to the
conditioning reduces entropy property [32, Thm. 2.6.5]. Note
that the equality (c) is achieved if the sub-blocks are encoded
independently, i.e.,

pX|h̄(X |h̄) = pX|h̄(X̄1, . . . , X̄�|h̄) =
��

i=1

pX̄|h̄(X̄i|h̄),

(72)

for which we have

I(X;y|h̄) = �I(X̄1;y1|h̄). (73)

Therefore, Corollary 2 is proved by repeating the proof
in Appendix A with the caveat that the mutual information
I(X;y|ĥ) in (65) is replaced with �I(X̄1;y1|h̄) and the input
is distributed as in (72).

C. Proof of Proposition 3

The channel in (45) is equivalent to a point-to-point
Gaussian multiple-input multiple-output (MIMO) channel with
PSK input Q. Therefore, for layer w1, the following rate is
achievable

R1(τ, γτ , X1:τ , μ) =
1

m�
I(Q; Ȳ|Ĥ) =

1
m�

I(Q; ȳ|ĥ), (74)

where we have defined

ȳ � vec (Ȳ) = γdQ⊗h̄ + z̄ (75)

with z̄ ∼ CN (0, IN(�−τ)), and where the phase shifts matrix
Q (46) is uniformly distributed, i.e., pQ(Q) = 1/AK(�−τ) for
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all Q ∈ Q(� − τ) (47). It hence follows from the proof of
Proposition 1 (Appendix A) that

I(Q; ȳ|ĥ)
= −N(� − τ) log2(e)

−
�

CNK×1
pĥ(ĥ)

�
CN(�−τ)×1

pz̄(z̄)
�

Q1∈Q(�−τ)

1
AK(�−τ)

log2

⎛
⎝ �

Q2∈Q(�−τ)

exp(u1)
AK(�−τ)

⎞
⎠dz̄ dĥ, (76)

where we have defined the scalar

u1 � ln
� |ΓΓΓ(Q1)|
|ΓΓΓ(Q2)|

�
−

���V (Q1)z̄ + γd

�
Q⊗

1 − Q⊗
2

�
ĥ
���2

ΓΓΓ(Q2)
.

(77)

By applying the conditional CGF definition in (25) to the
achievable rate in (74), we get (49) with the aid of (76).

For layer w2, let Y̌i(t) denote the last (m−μ) columns of
Yi(t) (7), i.e.,

Y̌i(t) � (yi,μ+1(t), . . . ,yi,m(t))
= γdH(t)ejθθθi(t)šᵀ

i (t) + Ži(t), (78)

where we have defined ši(t) � (si,μ+1, . . . , si,m)ᵀ ∈
S(m−μ)×1 and Ži(t) ∈ CN×(m−μ) whose elements are i.i.d. as
CN (0, 1). After layer w1 is decoded, the receiver reconstructs
the phase shifts {θθθi(t)}i, i = τ + 1, . . . , �, t ∈ [n/T ], and
decodes layer w2 from the received signals

Y̌(t) � (Y̌τ+1(t), . . . , Y̌�(t)) = γdH(t)X̌(t) + Ž(t), (79)

where we have defined Ž(t) � (Žτ+1(t), . . . , Ž�(t)) and

X̌(t) � (ejθθθτ+1(t)šᵀ
τ+1(t), . . . , e

jθθθ�(t)šᵀ
� (t)) ∈ C(ΘΘΘ; μ) (80)

with ΘΘΘ � (θθθτ+1, . . . , θθθτ+1). Therefore, the following rate is
achievable for layer w2

R2(τ, γτ , X1:τ , μ) =
1

m�
I(X̌; Y̌|ĥ,θθθτ+1, . . . ,θθθ�)

=
1

m�
I(X̌; y̌|ĥ,θθθτ+1, . . . ,θθθ�), (81)

where we have defined

y̌ � vec (Y̌) = γdX̌⊗h̄ + ž (82)

with ž ∼ CN (0, IN(m−μ)(�−τ)), and where the input X̌ is
uniformly distributed, i.e., pX̌(X̌) = 1/S(m−μ)(�−τ) for all
X̌ ∈ C(ΘΘΘ; μ) (53). Similar to layer w1, we have

I(X̌; y̌|ĥ,θθθτ+1, . . . ,θθθ�)
= −N(m − μ)(� − τ) log2(e)

−
�

CNK×1
pĥ(ĥ)

�
CN(�−τ)×1

pž(ž)
�

ΘΘΘ∈AK×(�−τ)

1
AK(�−τ)

�
X̌1∈C(ΘΘΘ)

1
S(m−μ)(�−τ)

log2

⎛
⎝ �

X̌2∈C(ΘΘΘ)

exp(u2)
S(m−μ)(�−τ)

⎞
⎠dž dĥ,

(83)

where we have defined the scalar

u2 � ln
� |ΓΓΓ(X̌1)|
|ΓΓΓ(X̌2)|

�

−
���V (X̌1)ž + γd

�
X̌

⊗
1 − X̌

⊗
2

�
ĥ

���2

ΓΓΓ(X̌2)
. (84)

By applying the conditional CGF definition in (25) to the
achievable rate in (81), we get (51) with the aid of (83).

As in the proof of Proposition 1, for τ ≥ K , we have the
high-SNR limits

lim
P→∞

I(Q; ȳ|ĥ) = H(Q) = (� − τ)K log2(A) (85)

and

lim
P→∞

I(X̌; y̌|ĥ,θθθτ+1, . . . ,θθθ�) = H(X̌|θθθτ+1, . . . ,θθθ�)

= (� − τ)(m − μ) log2(S).
(86)

D. Proof of Proposition 4

To lower bound the capacity, we restrict the input distribu-
tion pX|ĥ(X|ĥ) in (65) such that each sub-block is encoded
independently, given the channel estimate, as in (72). Further-
more, we lower bound the mutual information I(X;y|ĥ) in
(65) as

I(X;y|ĥ)
= H(X̄τ+1, . . . , X̄�|ĥ)

−H(X̄τ+1, . . . , X̄�|ĥ,yτ+1, . . . ,y�)

(a)=
��

i=τ+1

�
H(X̄i|ĥ)

− H(X̄i|ĥ,yτ+1, . . . ,y�, X̄τ+1, . . . , X̄i−1)
�

(b)≥
��

i=τ+1

�
H(X̄i|ĥ) − H(X̄i|ĥ,yi)

�

= (� − τ)I(X̄τ+1;yτ+1|ĥ), (87)

where the equality (a) follows from the entropy chain rule
[32, Thm. 2.5.1] and the input distribution in (72); and the
inequality (b) is due to the conditioning reduces entropy
property [32, Thm. 2.6.5]. Proposition 4 is then proved by
repeating the proof in Appendix A with the caveat that the
mutual information I(X;y|ĥ) is replaced with the lower
bound (87). Note that, for ĥ = h̄ and τ = 0, the lower bound
in (87) reduces to (73). That is, for perfect CSI, the lower
bound coincides with the capacity.

E. Proof of Proposition 5

Similar to the proof of Proposition 4 (Appendix D),
the mutual information I(Q; ȳ|ĥ) in (74) can be lower
bounded as

I(Q; ȳ|ĥ) (a)= I(θθθτ+1, . . . ,θθθ�; ȳτ+1, . . . , ȳ�|ĥ)
≥ (� − τ)I(θθθτ+1; ȳτ+1|ĥ), (88)
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where the equality (a) follows from the definitions in
(44), (46), and (75). Furthermore, the mutual information
I(X̌; y̌|ĥ,θθθτ+1, . . . ,θθθ�) in (81) can be lower bounded as

I(X̌; y̌|ĥ,θθθτ+1, . . . ,θθθ�)
(a)= I(šτ+1, . . . , š�; Y̌τ+1, . . . , Y̌�|ĥ,θθθτ+1, . . . ,θθθ�)
≥ (� − τ)I(šτ+1; Y̌τ+1|ĥ,θθθτ+1), (89)

where the equality (a) follows from the definitions in (79),
(80), and (82). Proposition 5 is then proved by repeating
the proof in Appendix C with the caveat that the mutual
information I(Q; ȳ|ĥ) is replaced with the lower bound in
(88), and the mutual information I(X̌; y̌|ĥ,θθθτ+1, . . . ,θθθ�) is
replaced with the lower bound in (89).
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